Artificial Intelligence: Search & Mining

2015 人工知能:探索とマイニング

Introduction to Data Mining

Kevin Duh

2015-05-19

Today's Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm

What is Data Mining?

- Data is all around us:
 - Your photo/video collection
 - Text and multimedia from the Web
 - Credit card transactions
 - DNA sequencing database
 - Facebook social graph

What is Data Mining?

- Data is all around us:
 - Your photo/video collection
 - Text and multimedia from the Web
 - Credit card transactions
 - DNA sequencing database
 - Facebook social graph
- Data Mining = a set of methods for acquiring useful knowledge from data

Topics in Data Mining

- Discovering Frequent Patterns
- Cluster & Outlier Analysis
- Classification/Prediction

Topics in Data Mining

- Discovering Frequent Patterns
- Cluster & Outlier Analysis
- Classification/Prediction

Is Data Mining part of Artificial Intelligence? Depends on who you ask.

- Discovering Frequent Patterns:
 - What items are frequently bought together? Put them on nearby shelves.

- Discovering Frequent Patterns:
 - What items are frequently bought together? Put them on nearby shelves.
- Cluster & Outlier Analysis
 - What kinds of customer types exist?

- Discovering Frequent Patterns:
 - What items are frequently bought together? Put them on nearby shelves.
- Cluster & Outlier Analysis
 - What kinds of customer types exist?
- Classification/Prediction
 - Given a particular customer profile, predict if ad campaign will be effective.

We'll focus on Discovering Patterns

- Discovering Frequent Patterns
 - We'll discuss how to discover frequent and interesting patterns from various data: sets, sequences, and graphs
 - Emphasis on efficient algorithms
- Cluster & Outlier Analysis
- Classification/Prediction
 - See Prof. Nakamura's Big Data Analysis & Prof. Ukita's Pattern Recognition course
 - Emphasis on statistical methods

Emphasis on Efficient Algorithms

 Simple way to discover frequent patterns: Enumerate and count all possible patterns

Emphasis on Efficient Algorithms

- Simple way to discover frequent patterns: Enumerate and count all possible patterns
- But too many patterns!
- Similar to Search, we need efficient algorithms to solve the problem

Today's Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm

Problem Definition

• Given a finite set of **items** $\{A, B, C, \ldots\}$

Problem Definition

- Given a finite set of **items** $\{A, B, C, \ldots\}$
- ► in several **baskets**, e.g.
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}

Problem Definition

- Given a finite set of **items** $\{A, B, C, \ldots\}$
- ► in several **baskets**, e.g.
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- Find the **frequent itemsets**, i.e. sets of items appearing in *s* baskets or more

- ► Find itemsets that appear in s = 3 or more baskets:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- Answer:

- ► Find itemsets that appear in s = 3 or more baskets:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- Answer:
 - ► {*A*}: 3

- ► Find itemsets that appear in s = 3 or more baskets:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- Answer:
 - ► {*A*}: 3
 - ► {*B*}: 4

- ► Find itemsets that appear in s = 3 or more baskets:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- Answer:
 - ► {*A*}: 3
 - ► {*B*}: 4
 - ► {*E*}: 3

- ► Find itemsets that appear in s = 3 or more baskets:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- Answer:
 - ► {*A*}: 3
 - ► {*B*}: 4
 - ► {*E*}: 3
 - ► {*A*, *B*}: 3

- ► Find itemsets that appear in s = 3 or more baskets:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- Answer:
 - ► {*A*}: 3
 - ► {*B*}: 4
 - ► {*E*}: 3
 - ► {*A*, *B*}: 3
 - ► {*B*, *E*}: 3

- ► Find itemsets that appear in s = 3 or more baskets:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- Answer:
 - ► {*A*}: 3
 - ► {*B*}: 4
 - ► {*E*}: 3
 - ► {*A*, *B*}: 3
 - ► {*B*, *E*}: 3

 We are given several baskets, each containing several items.

- We are given several baskets, each containing several items.
- Let *I* be an itemset. The support of *I* is the number of baskets that contain *I*

- We are given several baskets, each containing several items.
- Let I be an itemset. The support of I is the number of baskets that contain I
- We specify a number s as threshold, and say I is a **frequent itemset** if its support is s or more.

- We are given several baskets, each containing several items.
- Let I be an itemset. The support of I is the number of baskets that contain I
- We specify a number s as threshold, and say I is a **frequent itemset** if its support is s or more.
- Goal: find all such frequent itemsets

- ► We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}

- ► We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- ▶ 1-item Itemsets & their support:
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2

- ► We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ▶ Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- ► 1-item Itemsets & their support:
 - ▶ $\{A\}$: 3, $\{B\}$: 4, $\{C\}$: 1, $\{D\}$: 1, $\{E\}$: 3, $\{F\}$: 2
- 2-item Itemsets & their support:
 - {A, B}: 3, {A, C}: 1, {A, D}: 1, {A, E}: 2, {A, F}: 1, {B, C}: 1, {B, D}: 1, ...

- ► We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- ► 1-item Itemsets & their support:
 - ▶ $\{A\}$: 3, $\{B\}$: 4, $\{C\}$: 1, $\{D\}$: 1, $\{E\}$: 3, $\{F\}$: 2
- 2-item Itemsets & their support:
 - {A, B}: 3, {A, C}: 1, {A, D}: 1, {A, E}: 2, {A, F}: 1, {B, C}: 1, {B, D}: 1, ...
- 3-item Itemsets & their support:
 - {A, B, C}: 1, {A, B, D}: 1, {A, B, E}: 2, {A, B, F}: 1, {A, C, D}: 0, ...

Brute-force Solution

For each possible Itemset *I*:

Brute-force Solution

For each possible Itemset *I*:

1 Count the support of *I*

Brute-force Solution

For each possible Itemset *I*:

- Count the support of I
- If support is larger than s, report I as frequent

How many Itemsets are possible?

- ▶ If we have *n* items
 - Number of 1-item Itemsets: n
 - **2** Number of 2-item Itemsets: $\binom{n}{2}$
 - **3** Number of 3-item Itemsets: $\binom{n}{3}$

4 Number of k-item Itemsets: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

How many Itemsets are possible?

- ► If we have *n* items
 - Number of 1-item Itemsets: n
 - **2** Number of 2-item Itemsets: $\binom{n}{2}$
 - **3** Number of 3-item Itemsets: $\binom{n}{3}$
 - 4 Number of k-item Itemsets: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- It's impossible to enumerate! e.g.

$$\binom{10}{3} = 120$$
 $\binom{20}{3} = 1,140$
 $\binom{40}{3} = 9,980$
 $\binom{80}{3} = 82,160$
 $\binom{160}{3} = 669,920$

Brute-force Solution doesn't work!

For each possible Itemset $I: \leftarrow \text{TOO MANY}!$

- Count the support of I
- If support is larger than s, report I as frequent

Today's Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm

Monotonicity Principle

 If a set *I* is frequent, then every subset of *I* is also frequent.

Monotonicity Principle

- If a set *I* is frequent, then every subset of *I* is also frequent.
- ► Why?
 - **1** Let $J \subseteq I$. e.g. $I = \{A, B, C\}, J = \{A, C\}$
 - Every basket that contains *I* must contain *J*. So support of *J* ≥ support of *I*.
 - If *I* is frequent (support $\geq s$), then so is *J*.

Monotonicity Principle (Contrapositive version)

- If a set *I* is frequent, then every subset of *I* is also frequent.
- If *I* is not frequent, then no superset of *I* can be frequent.
 - ► e.g. if support({*A*, *B*})< *s*, then:
 - ▶ support({*A*, *B*, *C*}) < *s*
 - ► support({*A*, *B*, *D*}) < *s*
 - support($\{A, B, X\}$) < s for any X
 - ▶ support({*A*, *B*, *X*, *Y*}) < *s* for any *X*, *Y*

Apriori Algorithm (main idea)

- Exploits the Monotonicity Principle.
- Don't enumerate every itemset.
- If an itemset *I* is not frequent, don't enumerate any superset of *I*.

Reference:

Rakesh Agrawal and Ramakrishnan Srikant, "Fast algorithms for mining association rules in large databases," Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pp.487-499, 1994.

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ▶ Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- First pass (enumerate all 1-item)
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ▶ Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- First pass (enumerate all 1-item)
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2
- Second pass (enumerate only 2-item sets where both items are frequent)

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ▶ Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- First pass (enumerate all 1-item)
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2
- Second pass (enumerate only 2-item sets where both items are frequent)

•
$$\binom{3}{2} = 3$$
 vs. $\binom{6}{2} = 15$

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ▶ Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- First pass (enumerate all 1-item)
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2
- Second pass (enumerate only 2-item sets where both items are frequent)

•
$$\binom{3}{2} = 3$$
 vs. $\binom{6}{2} = 15$

• $\{A, B\}$: 3, $\{A, E\}$: 2, $\{B, E\}$: 3

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- First pass (1-item itemsets)
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2
- Second pass (2-item itemsets)
 - ► {*A*, *B*}: 3, {*A*, *E*}: 2, {*B*, *E*}: 3

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- First pass (1-item itemsets)
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2
- Second pass (2-item itemsets)
 - ► {*A*, *B*}: 3, {*A*, *E*}: 2, {*B*, *E*}: 3
- Third pass (3-item itemsets)
 - ► only enumerate {*A*, *B*, *E*}: 2
 - No more frequent itemsets, so stop.

Apriori Algorithm (general flow)

Alternate between:

- *L_k*: set of **truly frequent** itemsets of size *k*
- ► *C_k*: set of **candidate** itemsets of size *k*
 - constructed from L_{k-1}, avoids all possible enumerations

Figure from Rajamaran et. al., Mining of Massive Datasets, chapter 6

Supermarket example: What items are frequently bought together?

cereal and milk

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and saladdiaper and beer?

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad
- diaper and beer?
 - Parents who buy diaper likely drink at home rather than outside

What's Data Mining? Methods for acquiring useful knowledge from data

- What's **Data Mining**? Methods for acquiring useful knowledge from data
- Frequent Itemset Mining: Given many baskets of items, find itemsets that appear in more than s baskets

- What's **Data Mining**? Methods for acquiring useful knowledge from data
- Frequent Itemset Mining: Given many baskets of items, find itemsets that appear in more than s baskets
- Monotonicity Principle: If itemset *I* is not frequent, no superset of *I* can be.

- What's **Data Mining**? Methods for acquiring useful knowledge from data
- Frequent Itemset Mining: Given many baskets of items, find itemsets that appear in more than s baskets
- Monotonicity Principle: If itemset I is not frequent, no superset of I can be.
- Apriori Algorithm: construct candidates C_k from truly frequent itemsets of smaller size L_{k-1}

Next Week

Sequence Mining

- Extending Frequent Itemset Mining to Sequence data (e.g. DNA, text strings)
- Other methods that can be even more efficient than the Apriori Algorithm