Artificial Intelligence： Search \＆Mining

2015 人工知能：探索とマイニング

Introduction to Data Mining

Kevin Duh

2015－05－19

Today's Agenda

Introduction to Data Mining

Frequent Itemset Mining

What is Data Mining?

- Data is all around us:
- Your photo/video collection
- Text and multimedia from the Web
- Credit card transactions
- DNA sequencing database
- Facebook social graph

What is Data Mining?

- Data is all around us:
- Your photo/video collection
- Text and multimedia from the Web
- Credit card transactions
- DNA sequencing database
- Facebook social graph
- Data Mining = a set of methods for acquiring useful knowledge from data

Topics in Data Mining

11 Discovering Frequent Patterns
2. Cluster \& Outlier Analysis
${ }_{3}$ Classification/Prediction

Topics in Data Mining

11 Discovering Frequent Patterns
2. Cluster \& Outlier Analysis

3 Classification/Prediction

Is Data Mining part of Artificial
Intelligence? Depends on who you ask.

Example: Supermarket

Suppose you're a supermarket owner, and you have data on what customers bought

Example: Supermarket

Suppose you're a supermarket owner, and you have data on what customers bought

1 Discovering Frequent Patterns:

- What items are frequently bought together? Put them on nearby shelves.

Example: Supermarket

Suppose you're a supermarket owner, and you have data on what customers bought

1 Discovering Frequent Patterns:

- What items are frequently bought together? Put them on nearby shelves.

2. Cluster \& Outlier Analysis
-What kinds of customer types exist?

Example: Supermarket

Suppose you're a supermarket owner, and you have data on what customers bought

1 Discovering Frequent Patterns:

- What items are frequently bought together? Put them on nearby shelves.

2. Cluster \& Outlier Analysis

- What kinds of customer types exist?

3 Classification/Prediction

- Given a particular customer profile, predict if ad campaign will be effective.

We'll focus on Discovering Patterns

11 Discovering Frequent Patterns

- We'll discuss how to discover frequent and interesting patterns from various data: sets, sequences, and graphs
- Emphasis on efficient algorithms

2 Cluster \& Outlier Analysis
3 Classification/Prediction

- See Prof. Nakamura's Big Data Analysis \& Prof. Ukita's Pattern Recognition course
- Emphasis on statistical methods

Emphasis on Efficient Algorithms

- Simple way to discover frequent patterns: Enumerate and count all possible patterns

Emphasis on Efficient Algorithms

- Simple way to discover frequent patterns: Enumerate and count all possible patterns
- But too many patterns!
- Similar to Search, we need efficient algorithms to solve the problem

Today's Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm

Problem Definition

- Given a finite set of items $\{A, B, C, \ldots\}$

Problem Definition

- Given a finite set of items $\{A, B, C, \ldots\}$
- in several baskets, e.g.
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

Problem Definition

- Given a finite set of items $\{A, B, C, \ldots\}$
- in several baskets, e.g.
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Find the frequent itemsets, i.e. sets of items appearing in s baskets or more

Example

- Find itemsets that appear in $s=3$ or more baskets:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Answer:

Example

- Find itemsets that appear in $s=3$ or more baskets:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Answer:
- $\{A\}: 3$

Example

- Find itemsets that appear in $s=3$ or more baskets:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Answer:
- $\{A\}: 3$
- $\{B\}: 4$

Example

- Find itemsets that appear in $s=3$ or more baskets:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Answer:
- $\{A\}: 3$
- $\{B\}: 4$
- $\{E\}: 3$

Example

- Find itemsets that appear in $s=3$ or more baskets:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Answer:
- $\{A\}: 3$
- $\{B\}: 4$
- $\{E\}: 3$
- $\{A, B\}: 3$

Example

- Find itemsets that appear in $s=3$ or more baskets:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Answer:
- $\{A\}: 3$
- $\{B\}: 4$
- $\{E\}: 3$
- $\{A, B\}: 3$
- $\{B, E\}: 3$

Example

- Find itemsets that appear in $s=3$ or more baskets:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- Answer:
- $\{A\}: 3$
- $\{B\}: 4$
- $\{E\}: 3$
- $\{A, B\}: 3$
- $\{B, E\}: 3$

Problem Definition (rigorous version)

- We are given several baskets, each containing several items.

Problem Definition (rigorous version)

- We are given several baskets, each containing several items.
- Let I be an itemset. The support of I is the number of baskets that contain I

Problem Definition (rigorous version)

- We are given several baskets, each containing several items.
- Let I be an itemset. The support of I is the number of baskets that contain I
- We specify a number s as threshold, and say I is a frequent itemset if its support is s or more.

Problem Definition (rigorous version)

- We are given several baskets, each containing several items.
- Let I be an itemset. The support of I is the number of baskets that contain I
- We specify a number s as threshold, and say I is a frequent itemset if its support is s or more.
- Goal: find all such frequent itemsets

Example (again)

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

Example (again)

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- 1-item Itemsets \& their support:
- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

Example (again)

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- 1-item Itemsets \& their support:
- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$
- 2-item Itemsets \& their suppport:

$$
\begin{aligned}
- & \{A, B\}: 3,\{A, C\}: 1,\{A, D\}: 1,\{A, E\}: 2 \\
& \{A, F\}: 1,\{B, C\}: 1,\{B, D\}: 1, \ldots
\end{aligned}
$$

Example (again)

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- 1-item Itemsets \& their support:
- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$
- 2-item Itemsets \& their suppport:

$$
\begin{aligned}
- & \{A, B\}: 3,\{A, C\}: 1,\{A, D\}: 1,\{A, E\}: 2 \\
& \{A, F\}: 1,\{B, C\}: 1,\{B, D\}: 1, \ldots
\end{aligned}
$$

- 3-item Itemsets \& their suppport:
- $\{A, B, C\}: 1,\{A, B, D\}: 1,\{A, B, E\}: 2$, $\{A, B, F\}: 1,\{A, C, D\}: 0, \ldots$

Brute-force Solution

For each possible Itemset I :

Brute-force Solution

For each possible Itemset I :

1 Count the support of I

Brute-force Solution

For each possible Itemset I :
I Count the support of I

- If support is larger than s, report I as frequent

How many Itemsets are possible?

- If we have n items

1 Number of 1-item Itemsets: n
2 Number of 2-item Itemsets: $\binom{n}{2}$
3 Number of 3-item Itemsets: $\binom{n}{3}$
4 Number of k-item Itemsets: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

How many Itemsets are possible?

- If we have n items

1 Number of 1-item Itemsets: n
2 Number of 2-item Itemsets: $\binom{n}{2}$
3 Number of 3-item Itemsets: $\binom{n}{3}$
4 Number of k-item Itemsets: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

- It's impossible to enumerate! e.g.
- $\binom{10}{3}=120$
- $\binom{20}{3}=1,140$
- $\binom{40}{3}=9,980$
- $\binom{80}{3}=82,160$
- $\binom{160}{3}=669,920$

Brute-force Solution doesn't work!

For each possible Itemset $I: \leftarrow$ TOO MANY!

1 Count the support of I
2 If support is larger than s, report I as frequent

Today's Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm

Monotonicity Principle

- If a set I is frequent, then every subset of I is also frequent.

Monotonicity Principle

- If a set I is frequent, then every subset of I is also frequent.
- Why?

1 Let $J \subseteq I$. e.g. $I=\{A, B, C\}, J=\{A, C\}$
■ Every basket that contains I must contain J. So support of $J \geq$ support of I.
3 If I is frequent (support $\geq s$), then so is J.

Monotonicity Principle

 (Contrapositive version)- If a set I is frequent, then every subset of I is also frequent.
- If I is not frequent, then no superset of I can be frequent.
- e.g. if support $(\{A, B\})<s$, then:
- support $(\{A, B, C\})<s$
- support $(\{A, B, D\})<s$
- support $(\{A, B, X\})<s$ for any X
- support $(\{A, B, X, Y\})<s$ for any X, Y

Apriori Algorithm (main idea)

- Exploits the Monotonicity Principle.
- Don't enumerate every itemset.
- If an itemset I is not frequent, don't enumerate any superset of I.

Reference:
Rakesh Agrawal and Ramakrishnan Srikant, "Fast algorithms for mining association rules in large databases," Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pp.487-499, 1994.

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

1 First pass (enumerate all 1-item)

- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

1 First pass (enumerate all 1-item)

- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

2 Second pass (enumerate only 2 -item sets where both items are frequent)

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

11 First pass (enumerate all 1-item)

- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

2. Second pass (enumerate only 2-item sets where both items are frequent)

$$
\binom{3}{2}=3 \text { vs. }\binom{6}{2}=15
$$

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

11 First pass (enumerate all 1-item)

- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

2 Second pass (enumerate only 2-item sets where both items are frequent)
$\begin{aligned} \text { - } & \binom{3}{2}=3 \text { vs. }\binom{6}{2}=15 \\ \text { - } & \{A, B\}: 3,\{A, E\}: 2,\{B, E\}: 3\end{aligned}$

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

1 First pass (1-item itemsets)

- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

2 Second pass (2-item itemsets)

- $\{A, B\}: 3,\{A, E\}: 2,\{B, E\}: 3$

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

1 First pass (1-item itemsets)

- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

2 Second pass (2-item itemsets)

- $\{A, B\}: 3,\{A, E\}: 2,\{B, E\}: 3$

3 Third pass (3-item itemsets)

- only enumerate $\{A, B, E\}: 2$
- No more frequent itemsets, so stop.

Apriori Algorithm (general flow)

Alternate between:

- L_{k} : set of truly frequent itemsets of size k
- C_{k} : set of candidate itemsets of size k
- constructed from L_{k-1}, avoids all possible enumerations

Figure from Rajamaran et. al., Mining of Massive Datasets, chapter 6

Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk

Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad

Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad
- diaper and beer?

Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad
- diaper and beer?
- Parents who buy diaper likely drink at home rather than outside

Summary

1 What's Data Mining? Methods for acquiring useful knowledge from data

Summary

1 What's Data Mining? Methods for acquiring useful knowledge from data
2 Frequent Itemset Mining: Given many baskets of items, find itemsets that appear in more than s baskets

Summary

1 What's Data Mining? Methods for acquiring useful knowledge from data
2 Frequent Itemset Mining: Given many baskets of items, find itemsets that appear in more than s baskets
${ }_{3}$ Monotonicity Principle: If itemset I is not frequent, no superset of I can be.

Summary

1 What's Data Mining? Methods for acquiring useful knowledge from data
2 Frequent Itemset Mining: Given many baskets of items, find itemsets that appear in more than s baskets
${ }_{3}$ Monotonicity Principle: If itemset I is not frequent, no superset of I can be.
4 Apriori Algorithm: construct candidates C_{k} from truly frequent itemsets of smaller size L_{k-1}

Next Week

Sequence Mining

- Extending Frequent Itemset Mining to Sequence data (e.g. DNA, text strings)
- Other methods that can be even more efficient than the Apriori Algorithm

