Bundle Methods for Machine Learning
(Teo, Vishwanathan, Smola, 1 e)
JMLR 2010, NIPS 2007

Presented by Kevin Duh
Bayes Reading Group 6/4/2010

1-slide summary
Many machine learning methods involve
solving a minimum regularized risk objective

min J(w) := AQ(w) + Remp(w),
w
m

where Repp(w) := — E (2, yi,w)

Cutting-plane algorithm &
Bundle methods solve

it iteratively by using a
piece-wise lower bound

Why I chose this paper

These optimization methods (invented in
1960s) are becoming popular in supervised
learning

o Very fast

o Scale to large datasets

Handles non-smooth convex optimization, so
widely applicable

o Can be used when LBFGS fails

Outline

Background

Cutting plane algorithm
Bundle method
Different loss functions

Warm-up

Convex Set:

o asetis a convex set if it contains the line segment joining
any of its points

x,ydS;a,b=0;a+b=1
= ax+bydS
o are these sets convex?

O D

Background: Convex functions

Convex function:

o A function is convex is its domain is a convex set and the
segment joining any two points on f do not have values
lower than f

Ox,yOdom(f);a,b=0,a+b=1
af (x) +bf (y) = f (ax+by)

What's convex, what's concave?

N AN o

‘ Convex & differentible functions

= Gradient exists if f is differentiable

proN Of(x) Of(x) of (x)
Vi) = <0—,1 gy T)

= 1st-order condition: a differentiable f is convex iff:

fy)= f()+(y-x0f) Oy

‘ Gradient provides a global lower bound to f

f(x)+(y-x)'gradient

Nonsmooth (non-differentiable) functions

Derivative at x>1 is 1
Derivative at x<1 is -1

= What if f is not differentiable, e.g. Derivative atx=0?
o Li1-regularizer or |X|
o Envelope function: f(w) =max os(x)

= Subgradient: a vector s is a subgradient if
f(Mzf+(y-xs) Oy
= There may exist many subgradients at a point

o The set of subgradients is called the subdifferential
o The methods we deal with only require one subgradient

Subgradient Method for optimizing non-
smooth functions

= Similar as gradient descent, except:
o works on non-differentiable functions
o step-lengths not chosen by line-search, but fixed
o itis not a descent method

= descent direction d can only be defined by R
<d,s> <0 for all s in sub-differential
= Pseudo-code:

o Repeat until convergence:
1. s =subgradient at f(x)
X = X — stepsize * s
keep track of best x so far

Outline

1. Background

2. Cutting plane algorithm
Bundle method

4. Different loss functions

w

Cutting-plane algorithm for optimizing
non-smooth functions

= Recall subgradient forms a lowerbound on f

= Main Idea:
o If we have multiple subgradients at different
points, we get a tighter lowerbound
o The lowerbound improves with each iteration, so
minimizing the lowerbound eventually minimizes
the desired objective

Figure: lower bound improves after each
iteration

The math
Overall optimization goal:

min J(w) := AQ(w) 4+ Remp(w),
w
m

where Reyp(w) := ;]1 Z (24, g5, w)
Lower bound: =

o Given sequence of iterates w and subgradients s,
the (piecewise-linear) lower bound is:

J(w) > JLCP(U‘) = 1111;1x{.](1rl,1) + (w—w;_1,8)}
<i<t
o Because J(w) > J(w')+ (w—u',s)
o At each iteration, compute w; := argmin JCF (w).
w

Note: Slight change of notation starting now: function f(x) > J(w)

13

Cutting-plane pseudocode

Compute J(w,) and its subgradient s,
Compute error ¢ := Juin J(w;) — JEP (wy)

If error < threshold, stop

Update bound ¢ (w) := max {J (wioy) + (= wioy i)}
Optimize it to get new iterate w: = argmin J&* ()
Goto step 1

Why does this work?

Let w* be optimal solution, then
I(w) 2 Iw) = minJI(w) = I(w)

/ By construction, Osist

L IW) = IS (w), Ow=> J(w) = I (w)
k\ So op_)tlmal point is sandwiched: cp
cminJdWw) 2 Jw) 2 37 (w)
Osist

This error is monotonically decreases.
When it reaches zero, we have w*

Final word on cutting plane-algorithm

It has nice stopping criteria

o (better than subgradient method)

Cost is solving linear programs per iteration:
o Size of this subproblem grows with each iteration
o But usually this can be solved quickly

Speed depends critically on the set of cutting

€= min J(w;) — JCF (wy) planes
osist o Zig-zag behavior possible, slowing down
convergence
Outline Standard Bundle Method
Background Zig-zag in cutting-plane is caused by taking

Cutting plane algorithm
Bundle method
Different loss functions

large steps and neglecting previous solutions

Bundle methods extend cutting-plane by
ensuring new iterate is not too far

wy = argmiu{%’ lw = dea]® + JE (w)}
w

(Standard) Bundle method pseudo-code

Algorithm 1 Proximal Bundle Method
1: input & initialization: € > 0, p € (0,1), wi, t — 0, wp — wo

2: loop
3: t—t+1
4 Compute J(w_1) and s € 9 J(w_1)

5. Update model J“’() 1= maxy<i<e{J((wi— 1)+ (w—wi_1,8:)}
6wy — argmin, JOT(w) + $ w — i,y

e l(u,) IU (@ +¢"/HQ7U(J

8. 1l leturn wy
9: meaLucl) W — ‘ubmulnem Tty + (i, — 1)) (if expensive, set 7, = 1)

100wy — We_y + (W — Wy_q)
This paper argues that some

11: &w—r)\g) > pe: then :
12 (SERIOUS STEP: ; « w,
—— e parameters are hard to tune:

13: else
1 NULL STEP: wy — iy (e P
15: end if

16: end loop

‘ Proposed Bundle Method (BMRM)

= Regularized risk minimization objective
already has a reqgularization term:
ngliln J(w) = AUw) + Remp(w),

= S0 optimize this subproblem: J:(w) = x2(w) + R (w)

wy = min Je(w)
w

= No need for serious/null step

19 20
Algorithm 2BMRM___ _ In more detail: how to solve subproblem
1: input & initialization: € > 0, wg, t — 0
2: 1 2at i
ST in step 6
4: Compute a; € J,, Ijg,,.p(luq) and by — Remp(wi—1) — (wi—1, az)
e e ot (o0 +) = Reformulate as constrained optimization:
; l.,f{;;ln;n(osng(w') = Rw) w = m:mn Ji(w) = 11)+ max, \u a;) + b;
miny, ¢ AQ(w)
(subgradient of Rump) a7 € Oy Rermp(wi—1) subject to 5 Z (w,a;) +b; fori=1,..., t
S (offset) b = Ramp(e-s) = {11, = Then call linear/quadratic program depending
(piecewise linear lower bound of Remp) RfT (w) := ln:;x\xl{ (w,a:) +b;} | .
(piecewise convex lower bound of J) Ji(w) := AQ(w) + Rf" (w) on regularizer
(iterate) wy = min J;(w) 0 # constraints = #iterations, unrelated to #samples!
(approximation gap) e := gpip, J(wi) = () o Dual program for L2 regularizer:
ap = argmax{~FaTATAa+ a0 [a > 0, |af, =1}
acR?
21 22

Convergence Analysis

Theorem 4 Assume that MaX,eg, Romp(w) |/l < G for all w € dnm J. Also assume that
Q" has lmundezl curvature, ie., |82 ()| < H* for all p € {~A"1 Y1} ava; where a; >
0. Vi and Y1} i = 1}. In this case we have

€ — €141 un(Lm/uﬂH*;, (27)

—
Furthermore, if ||03.J(w)|| < H, then we have ~ Every iteration the error is halved!!

if & > AG2H* /X
X/8H* ifAGPH* /A > ¢ > H/2 (28)
Xec/AHH* otherwise

€ — €41 >

23

‘ Experiments in actual speed

10° 109
10! il 9)5 10!
~ Ollog(1/6))

T1072 1077

1079 1079

4 } i %
W07 10t 107 10 100 107 10t 7 i 10t
Iteration # Iteration ¢
(a) adult9 (b) astro-ph
24

Outline

Background

Cutting plane algorithm
Bundle method
Different loss functions

Binary classification

Accuracy-based loss: AYLY) = 0 ify=y
YYI=31 otherwise

Convex upper-bounds:
o Soft margin loss: /(x,y,f) = max(0,1 — yf(x))

o) Non-smooth point here.

/Subgradients: -yf(x), 0

Vi) gy
o Logisitic: 10g(1+exp(=yf (x)))
o MCE (Katagiri et. al.) — sigmoid, with adjustable parameter
o Gaussian process classifier, MAP solution:
Minimize L1 S oxptui).

Structured Prediction

Similar to previous slide, convex upper
bounds for structured loss A(.y)
o CRF: l(z,y,w) = log Z exp ((w. d(z,y))) — (w, d(z.y))

y'ey
Dl y, w) = Eyop(yo) [o(x,y)] = oz, y).
o Structured SVM:
(z,y,w) = 111:1):1"(;/. y) (w,p(z.y) — o, Jl)> + Ay, y)
yey
Owl(z,y,w) =T (y, j(x)) [d(a.g(x)) — o(z,y)]
j(z) == argmaxT'(y,y') <u'. o(x,y) — é(a, ;z/)> + Ay,
v

For bundle methods, just collect the vectors 9,,/(x, y, w) and give to the LP/QP

2

ROC score

AUC is not continuous in w:
AUC(z,y,w) = L Z I((w. 2;) < (w,2;)),

mym_
+ Ui <y;

But this nonsmooth convex bound is:
Repp(w) = L Z max(0,1 + (w,z; — x5))

mym_
+ Yi<y;

We can directly calculate subgradients in
closed-form, but we can also obtain from an
algorithm if it's more efficient

o See algorithm 7 in JMLR paper

Do you see the pattern?

Give me any problem, with any evaluation
metric (may be difficult to optimize)
Think of a convex upper bound for the
metric

o This bound does not need to be smooth

o Just need to get subgradients from it
Solve with:

= Gradient descent, LFBGS; or

= Subgradient method, Bundle method, etc.
Done: submit NIPS paper

29

Discussions
Fear not non-smooth convex functions

What about non-convex optimization?

o EM-style training where M is solved by bundle

Yu & Joachims, Learning Structural SVMs w/ Latent
Variables (ICML09)

o Modified bundle method:

Do & Artieres, Large margin training of HMMs w/
partially-observed states (ICML09)

