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1-slide summary

� Many machine learning methods involve 
solving a minimum regularized risk objective

� Cutting-plane algorithm & 
Bundle methods solve 
it iteratively by using a 
piece-wise lower bound
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Why I chose this paper

� These optimization methods (invented in 
1960s) are becoming popular in supervised 
learning
� Very fast
� Scale to large datasets

� Handles non-smooth convex optimization, so 
widely applicable 
� Can be used when LBFGS fails
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Outline

1. Background
2. Cutting plane algorithm
3. Bundle method
4. Different loss functions
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Warm-up

� Convex Set: 
� a set is a convex set if it contains the line segment joining 

any of its points

� are these sets convex?
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Background: Convex functions

� Convex function:
� A function is convex is its domain is a convex set and the 

segment joining any two points on f do not have values 
lower than f

� What’s convex, what’s concave?
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Convex & differentible functions

� Gradient exists if f is differentiable

� 1st-order condition: a differentiable f is convex iff:
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f(x)f(y)

f(x)+(y-x)’gradient

Gradient provides a global lower bound to f
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Nonsmooth (non-differentiable) functions

� What if f is not differentiable, e.g. 
� L1-regularizer or |x|
� Envelope function: 

� Subgradient: a vector s is a subgradient if

� There may exist many subgradients at a point
� The set of subgradients is called the subdifferential

� The methods we deal with only require one subgradient

Derivative at x>1 is 1
Derivative at x<1 is -1
Derivative at x=0?
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Subgradient Method for optimizing non-

smooth functions

� Similar as gradient descent, except:
� works on non-differentiable functions
� step-lengths not chosen by line-search, but fixed

� it is not a descent method 
� descent direction d can only be defined by 

<d,s> <0 for all s in sub-differential

� Pseudo-code:
� Repeat until convergence:

1. s = subgradient at f(x)

2. x = x – stepsize * s
3. keep track of best x so far
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Cutting-plane algorithm for optimizing 

non-smooth functions

� Recall subgradient forms a lowerbound on f
� Main Idea: 

� If we have multiple subgradients at different 
points, we get a tighter lowerbound

� The lowerbound improves with each iteration, so 
minimizing the lowerbound eventually minimizes 
the desired objective 

12

Figure: lower bound improves after each 

iteration
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The math

� Overall optimization goal:

� Lower bound:
� Given sequence of iterates w and subgradients s, 

the (piecewise-linear) lower bound is:

� Because 
� At each iteration, compute 

Note: Slight change of notation starting now: function f(x) � J(w)
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Cutting-plane pseudocode

1. Compute J(wt) and its subgradient st

2. Compute error
3. If error < threshold, stop
4. Update bound
5. Optimize it to get new iterate
6. Goto step 1  
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Why does this work?
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Let w* be optimal solution, then

By construction,

So optimal point is sandwiched:

This error is monotonically decreases. 
When it reaches zero, we have w*
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Final word on cutting plane-algorithm

� It has nice stopping criteria 
� (better than subgradient method)

� Cost is solving linear programs per iteration: 
� Size of this subproblem grows with each iteration
� But usually this can be solved quickly

� Speed depends critically on the set of cutting 
planes
� Zig-zag behavior possible, slowing down 

convergence
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Standard Bundle Method

� Zig-zag in cutting-plane is caused by taking 
large steps and neglecting previous solutions

� Bundle methods extend cutting-plane by 
ensuring new iterate is not too far
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(Standard) Bundle method pseudo-code

This paper argues that some 
parameters are hard to tune:
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Proposed Bundle Method (BMRM)

� Regularized risk minimization objective 
already has a regularization term:

� So optimize this subproblem:

� No need for serious/null step
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In more detail: how to solve subproblem

in step 6 

� Reformulate as constrained optimization:

� Then call linear/quadratic program depending 
on regularizer
� # constraints = #iterations, unrelated to #samples!

� Dual program for L2 regularizer:
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Convergence Analysis

Every iteration the error is halved!!
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Experiments in actual speed



5

25

Outline

1. Background
2. Cutting plane algorithm
3. Bundle method
4. Different loss functions

26

Binary classification

� Accuracy-based loss:

� Convex upper-bounds:
� Soft margin loss: 

� Logisitic:
� MCE (Katagiri et. al.) – sigmoid, with adjustable parameter

� Gaussian process classifier, MAP solution:
� Minimize

Non-smooth point here.
Subgradients: -yf’(x), 0

)))(exp(1log( xyf−+
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Structured Prediction

� Similar to previous slide, convex upper 
bounds for structured loss
� CRF:

� Structured SVM:

For bundle methods, just collect the vectors                    and give to the LP/QP 
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ROC score 

� AUC is not continuous in w:

� But this nonsmooth convex bound is:

� We can directly calculate subgradients in 
closed-form, but we can also obtain from an 
algorithm if it’s more efficient 
� See algorithm 7 in JMLR paper 
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Do you see the pattern?

1. Give me any problem, with any evaluation 
metric (may be difficult to optimize)

2. Think of a convex upper bound for the 
metric

� This bound does not need to be smooth
� Just need to get subgradients from it

3. Solve with:
� Gradient descent, LFBGS; or
� Subgradient method, Bundle method, etc.

4. Done: submit NIPS paper
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Discussions
� Fear not non-smooth convex functions
� What about non-convex optimization?

� EM-style training where M is solved by bundle
� Yu & Joachims, Learning Structural SVMs w/ Latent 

Variables (ICML09)

� Modified bundle method:
� Do & Artieres, Large margin training of HMMs w/ 

partially-observed states (ICML09)


