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Problems addressed

* Integration/Expectation

E[f(0]= j f (X) p(x)dx

¢ Optimization
argmax p(x)

« Situation suitable for MCMC:

— Direct integration/optimization is hard:
« Xis alarge space or f(x) is complex
— P(x) is easily computed (up to normalization constant)Z

Example: Integration

¢ Problem: Compute area of circle
— Suppose we don't know the formula pi*r’2

e Monte Carlo approach:
1. Bound the circle with a box
2. Randomly (uniformly) spread seeds in the box
3. Count the number of seeds inside the circle
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Example: Optimization

« Problem: ASR decoding without Viterbi
« argmax p(x) where p(x) is complex acoustic +
language model
e Markov Chain Monte Carlo approach:
1. Start with random hypothesis sentence x,
2. Randomly transform x, into X,
3. 1Fp(x) > P(ea), let Xy = X,
4. Repeat steps 2 & 3 until convergence
my hi is name...
himy is name...

hiis my name...
himy name is...

What we’ll cover

« Monte Carlo methods:
— Rejection sampling
— Importance sampling
¢ Markov Chain Monte Carlo (MCMC):
— Markov Chain review
— Metropolis-Hastings algorithm
— Gibbs sampling
« Others: Monte Carlo EM, Slice sampling

Monte Carlo Principle

» Approximate density by samples from p(x):
PN(x) = % gﬁ\m(,\'),

« Estimate is unbiased and converges to the truth

1.5

l N .
I =5 A ) 5 10 = /] Fplx)dy.

N—

« Advantage over deterministic integration:
— Samples from high-probability area, so more efficient
— Question: how to sample from complex p(x)?




Rejection sampling
* Problem setup:

— Want to sample p(x), but too hard

— Instead sample from proposal distribution g(x)
« Reauirement: Ma(x) 2 p(x) forall x
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Figure 2. Rejection sampling: Sample a candidate x@ and a uniform variable . Accept the candidate sample if
uMq(xD) < p(x), otherwise reject it

Issues with Rejection sampling

« Difficult to bound p(x) over the whole
space with a small M

« If M is too large, most samples will be
rejected - not efficient
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Pr(x accepted) = Pr{ u < px) ) = —
Mqg(x) M

Importance Sampling

« Use arbitrary proposal distribution g(x) whose support
includes p(x)
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Importance weight

« Directly compute expectation (using all samples)
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What is a good proposal
distribution?
» Answer: one that is
proporitional to [f(x)|p(x)

| f(0)|p(x)
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* Sampling from g*(x) may
be more efficient than p(x)
* But this is not always Contours of q(x) T (Op()
possible
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« Monte Carlo methods:
— Rejection sampling
— Importance sampling
¢ Markov Chain Monte Carlo (MCMC):
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MCMC Motivation

« Monte Carlo methods may not be efficient in
high dimensional spaces

* In MCMC, successive samples are correlated
via a Markov chain

— Explores high-density regions of the state-space

Green=accepted
Red=rejected
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Markov Chain review

¢ Aninvariant p(x) = p(x)T exists if transition
matrix T satisfies:
— Irreducibility: fully-connected
— Aperiodic: chain not trapped in cycles

« A sufficient (but not necessary) condition is
reversibility:
- p(x1+1) T(Xt|xt+1) = p(xt) T(X1+1|Xt)

¢ In MCMC, we define proposal distribution
T=0(X;s1 | X))
— After a period of “burn-in” / “mixing”, we’ll be sampling

from the invariant distribution p(x)

Metropolis-Hastings (MH) algorithm

1. Initialise (0.
2. Fori=0toN-1

— Sample u~ u[o’ll' Reject new state?

—  Sample 2* ~ g(z*|zD).

_ () kY = i p(z*)a(z D |2*)
Ifu < Az, 2*) = mm{l, P RO mEmO

pli+l) = g
else
20+ = 506
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MH Examples:
True p(x) is bimodal
Proposal q(x,[x;) = N(x,sigma) Why dOeS M H WOI’k?
]J|q The transition kernel for the MH algorithm is
| . . . P .
///;“(Z ‘\\‘ J,d KNIH(~\“+” } ,\“”) — ([(,\‘“+” ‘ ,\“”)A(v\‘”. X“+“) + 5\‘” (V\A(H-l))r(v\(l\)‘
- \ - . ) -
% b where r(x®) is the term associated with rejection
J
r(x?7) = / g ([ O) (1= AP, x*)) dx*.
x
By construction, the reversibility condition is satisfied by K,
J‘ N ) with p(x) emerging as the invariant distribution:
A
1, /7(7\A(A))KMH(\AU+H ‘ x(h) — p(A\‘““))KMH(YU) ‘ x_u‘+ly)
The main question is choosing q() so that convergence is fast
- Gibbs sampling, Metropolis method, etc. are instances of MH with different q()
Figure 7. Approximations obtained using the MH algorithm with three Gaussian proposal distributions of dif-
ferent variances. 15 16
Gibbs sampler Gibbs sampling pseudocode
* Assume a multivariate p(x) 1. Initialise 0,1
« Gibbs sampling uses the conditional 2. Fori=0to N -1
probabilities as q() - Sample 2" ~ pla[of, 27, ..., o).
. (i+1) (i+1) (3} (%)
— Very natural for graphical models = Sample 2™ ~ plzp|ey™ 257, wn).
« Acceptance probability A() turns out to be 1
A, x*) = min] 1 g (xV ] x*) - Sample If,‘H-l) ~ P(zjlz(lﬁ—l): .. ’Iz‘t'—ll)vz%)-lv cee :555:))'
TR = " p(x®)g (xr]x®)
{1 pcp() | x) ] .
= min T — i ;. : 4
P(O)pxila ) ~ Sample 2D p(xn]xyﬂ),zg’ﬂ), B x;'jll))
= min{ 1, I)(V\‘;)') } =1
p(x%) 17 18
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* Monte Carlo methods:
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¢ Markov Chain Monte Carlo (MCMC):
— Markov Chain review
— Metropolis-Hastings algorithm
— Gibbs sampling
« Others: Monte Carlo EM, Slice sampling

Monte Carlo EM

1. E step. Compute the expected value of the complete log-likelihood function with respect
to the distribution of the hidden variables

() =/ log(p(xp, xy | @) p(xn ‘xv,H‘”l‘“)<1xh,

Vi v

where 6©9 refers to the valtre.of the parameters at the previous time step.
2. M step. Perform the following maximisation 6" = arg max, Q(0).

Use Monte Carlo sampling here to:
(1) approximate difficult integrals
(2) get out of local optima
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Slice sampling

XS X

Figure 15. Slice sampling: given a previous sample, we sample a uniform variable u*+ between 0 and f(x©).
One then samples x@+1 in the interval where f(x) > u(+D
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Sequential Monte Carlo (Particle Filter)

Setup:
Dynamic model p(x|x,.,)
Observation model p(y,/x,)

i=1,...N=10 particles

o FONT Goal:

Estimate posterior p(X|yy,Y,.--Y,)

W 2 () p (el )
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SN - Increase states with high w
Decrease states with low w

P
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22

Summary

1. Problems addressed:

— Difficult integration/optimization where p(x) is easily evaluated
for a given x

[ iy _as
In(f)= ﬁ;,f (D) VIT’ 1(f)= /1 FOpx)dx.

oo

2. All methods use a proposal () to help sample from p(x)
— Rejection sampling: Mq(x) 2 p(x)

3. MCMC differs from Monte Carlo in that successive
samples are correlated by q(x.,; | X)
— Metropolis-Hastings: general (X, | )
A, 2%) = min{l, Zis el )}

— Gibbs: q(x., | X) is conditional probability of multivariate
distribution 23
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