#### Markov Chain Monte Carlo

Kevin Duh Mokuyokai 12/10/2009

#### Problems addressed

• Integration/Expectation

$$E_p[f(x)] = \int_{\mathcal{X}} f(x) p(x) dx$$

Optimization

$$arg \max p(x)$$

- Situation suitable for MCMC:
  - Direct integration/optimization is hard:
    - X is a large space or f(x) is complex
  - P(x) is easily computed (up to normalization constant),

## **Example: Integration**

- · Problem: Compute area of circle
  - Suppose we don't know the formula pi\*r^2
- Monte Carlo approach:
  - Bound the circle with a box
  - Randomly (uniformly) spread seeds in the box
  - 3. Count the number of seeds inside the circle



3

## **Example: Optimization**

- Problem: ASR decoding without Viterbi
  - argmax p(x) where p(x) is complex acoustic + language model
- Markov Chain Monte Carlo approach:
  - 1. Start with random hypothesis sentence x<sub>0</sub>
  - 2. Randomly transform  $x_t$  into  $x_{t+1}$
  - 3. If  $p(x_t) > p(x_{t+1})$ , let  $x_{t+1} = x_t$
  - 4. Repeat steps 2 & 3 until convergence

my hi is name... hi my is name... hi is my name is

.

#### What we'll cover

- Monte Carlo methods:
  - Rejection sampling
  - Importance sampling
- Markov Chain Monte Carlo (MCMC):
  - Markov Chain review
  - Metropolis-Hastings algorithm
  - Gibbs sampling
- · Others: Monte Carlo EM, Slice sampling

Monte Carlo Principle

Approximate density by samples from p(x):

$$p_N(x) = \frac{1}{N} \sum_{i=1}^N \delta_{x^{(i)}}(x),$$

• Estimate is unbiased and converges to the truth

$$I_N(f) = \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \xrightarrow[N \to \infty]{a.s.} I(f) = \int_{\mathcal{X}} f(x) p(x) dx.$$

- Advantage over deterministic integration:
  - Samples from high-probability area, so more efficient
  - Question: how to sample from complex p(x)?

6

## Rejection sampling

- Problem setup:
  - Want to sample p(x), but too hard
  - Instead sample from proposal distribution q(x)
    - Requirement:  $Ma(x) \ge p(x)$  for all x



Figure 2. Rejection sampling: Sample a candidate  $x^{(i)}$  and a uniform variable u. Accept the candidate sample if  $uMq(x^{(i)}) < p(x^{(i)})$ , otherwise reject it.

## Issues with Rejection sampling

- Difficult to bound p(x) over the whole space with a small M
- If M is too large, most samples will be rejected → not efficient

$$Pr(x \text{ accepted}) = Pr\left(u < \frac{p(x)}{Mq(x)}\right) = \frac{1}{M}$$

# Importance Sampling

Use arbitrary proposal distribution q(x) whose support includes p(x)

$$I(f) = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx = \int f(x)w(x)q(x)dx$$
Importance weight

· Directly compute expectation (using all samples)

$$\hat{I}_N(f) = \sum_{i=1}^N f(x^{(i)}) w(x^{(i)})$$

### What is a good proposal distribution?

· Answer: one that is proporitional to |f(x)|p(x)





But this is not always possible



10

#### What we'll cover

- Monte Carlo methods:
  - Rejection sampling
  - Importance sampling
- Markov Chain Monte Carlo (MCMC):
  - Markov Chain review
  - Metropolis-Hastings algorithm
  - Gibbs sampling
- · Others: Monte Carlo EM, Slice sampling

#### MCMC Motivation

- Monte Carlo methods may not be efficient in high dimensional spaces
- In MCMC, successive samples are correlated via a Markov chain
  - Explores high-density regions of the state-space



#### Markov Chain review

- An invariant p(x) = p(x)T exists if transition matrix T satisfies:
  - Irreducibility: fully-connected
  - Aperiodic: chain not trapped in cycles
- A sufficient (but not necessary) condition is reversibility:
  - $p(x_{t+1}) T(x_t|x_{t+1}) = p(x_t) T(x_{t+1}|x_t)$
- In MCMC, we define proposal distribution  $T=q(x_{t+1}\mid x_t)$ :
  - After a period of "burn-in" / "mixing", we'll be sampling from the invariant distribution p(x)

13







# Gibbs sampler

- Assume a multivariate p(x)
- Gibbs sampling uses the conditional probabilities as q()
  - Very natural for graphical models
- Acceptance probability A() turns out to be 1

$$\begin{split} \mathcal{A}(x^{(i)}, x^{\star}) &= \min \left\{ 1, \frac{p(x^{\star})q(x^{(i)} \mid x^{\star})}{p(x^{(i)})q(x^{\star} \mid x^{(i)})} \right\} \\ &= \min \left\{ 1, \frac{p(x^{\star})p(x_{j}^{(i)} \mid x_{-j}^{(i)})}{p(x^{(i)})p(x_{j}^{\star} \mid x_{-j}^{\star})} \right\} \\ &= \min \left\{ 1, \frac{p(x_{-j}^{\star})}{p(x^{(i)})} \right\} = 1. \end{split}$$

# Gibbs sampling pseudocode

 $\begin{aligned} &1. \text{ Initialise } x_{0,1:n}. \\ &2. \text{ For } i=0 \text{ to } N-1 \\ &-& \text{ Sample } x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, \dots, x_n^{(i)}). \\ &-& \text{ Sample } x_2^{(i+1)} \sim p(x_2|x_1^{(i+1)}, x_3^{(i)}, \dots, x_n^{(i)}). \\ &&\vdots \\ &-& \text{ Sample } x_j^{(i+1)} \sim p(x_j|x_1^{(i+1)}, \dots, x_{j-1}^{(i+1)}, x_{j+1}^{(i)}, \dots, x_n^{(i)}). \\ &&\vdots \\ &-& \text{ Sample } x_n^{(i+1)} \sim p(x_n|x_1^{(i+1)}, x_2^{(i+1)}, \dots, x_{n-1}^{(i+1)}). \end{aligned}$ 

3

#### What we'll cover

- · Monte Carlo methods:
  - Rejection sampling
  - Importance sampling
- Markov Chain Monte Carlo (MCMC):
  - Markov Chain review
  - Metropolis-Hastings algorithm
  - Gibbs sampling
- Others: Monte Carlo EM, Slice sampling

19

#### Monte Carlo EM

1. Estep. Compute the expected value of the complete log-likelihood function with respect to the distribution of the hidden variables

$$Q(\theta) = \int_{\mathcal{X}_h} \log(p(x_h, x_v \mid \theta)) p(x_h \mid x_v, \theta^{\text{(old)}}) dx_h,$$

where  $\theta^{(\text{old})}$  refers to the value of the parameters at the previous time step. 2. M step. Perform the following maximisation  $\theta^{(\text{new})} = \arg\max_{\theta} Q(\theta)$ .

Use Monte Carlo sampling here to: (1) approximate difficult integrals

(2) get out of local optima

20

# Slice sampling



Figure 15. Slice sampling: given a previous sample, we sample a uniform variable  $u^{(i+1)}$  between 0 and  $f(x^{(i)})$ . One then samples  $x^{(i+1)}$  in the interval where  $f(x) \ge u^{(i+1)}$ .

21

23

# Sequential Monte Carlo (Particle Filter)



# Summary

- 1. Problems addressed:
  - Difficult integration/optimization where p(x) is easily evaluated for a given x

 $I_N(f) = \frac{1}{N} \sum_{i=1}^N f(x^{(i)}) \xrightarrow[N \to \infty]{a.s.} I(f) = \int_{\mathcal{X}} f(x) p(x) dx.$ 

- 2. All methods use a proposal q() to help sample from p(x)
  - Rejection sampling:  $Mq(x) \ge p(x)$
- 3. MCMC differs from Monte Carlo in that successive samples are correlated by  $q(x_{t+1} \mid x_t)$ 
  - Metropolis-Hastings: general q(x<sub>t+1</sub> | x<sub>t</sub>)

$$\mathcal{A}(x^{(i)}, x^{\star}) = \min \left\{ 1, \frac{p(x^{\star})q(x^{(i)}|x^{\star})}{p(x^{(i)})q(x^{\star}|x^{(i)})} \right\}$$

– Gibbs:  $q(x_{t+1} \mid x_t)$  is conditional probability of multivariate distribution

• Figures/Equations for these slides come from:

References

- Andrieu et. al. "An Intro to MCMC for Machine Learning", Machine Learning 2003
- Bishop, Pattern Recognition and Machine Learning (chapter 11)
- Other useful references:
  - Diaconis, "The MCMC Revolution"
  - Resnik, "Gibbs sampling for the uninitiated"
  - Robert/Casella, Monte Carlo statistical methods, 1999
  - Neal, "Probabilistic inference using MCMC methods", 1993

24