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Problems addressed

• Integration/Expectation

• Optimization

• Situation suitable for MCMC: 
– Direct integration/optimization is hard: 

• X is a large space or f(x) is complex

– P(x) is easily computed (up to normalization constant)
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Example: Integration

• Problem: Compute area of circle
– Suppose we don’t know the formula pi*r^2

• Monte Carlo approach:
1. Bound the circle with a box
2. Randomly (uniformly) spread seeds in the box
3. Count the number of seeds inside the circle 
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Example: Optimization

• Problem: ASR decoding without Viterbi
• argmax p(x) where  p(x) is complex acoustic + 

language model

• Markov Chain Monte Carlo approach:
1. Start with random hypothesis sentence x0

2. Randomly transform xt into xt+1

3. If p(xt) > p(xt+1), let xt+1 = xt

4. Repeat steps 2 & 3 until convergence

my hi is name…
hi my is name…

hi my name is…
hi is my name…
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What we’ll cover

• Monte Carlo methods:
– Rejection sampling

– Importance sampling

• Markov Chain Monte Carlo (MCMC):
– Markov Chain review

– Metropolis-Hastings algorithm

– Gibbs sampling

• Others: Monte Carlo EM, Slice sampling
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Monte Carlo Principle

• Approximate density by samples from p(x):

• Estimate is unbiased and converges to the truth

• Advantage over deterministic integration:
– Samples from high-probability area, so more efficient
– Question: how to sample from complex p(x)?
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Rejection sampling
• Problem setup: 

– Want to sample p(x), but too hard
– Instead sample from proposal distribution q(x)

• Requirement: Mq(x) ≥ p(x) forall x 
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Issues with Rejection sampling

• Difficult to bound p(x) over the whole 
space with a small M

• If M is too large, most samples will be 
rejected � not efficient
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Importance Sampling

• Use arbitrary proposal distribution q(x) whose support 
includes p(x)

• Directly compute expectation (using all samples)
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What is a good proposal 
distribution?

• Answer: one that is 
proporitional to |f(x)|p(x)

• Sampling from q*(x) may 
be more efficient than p(x)

• But this is not always 
possible
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What we’ll cover

• Monte Carlo methods:
– Rejection sampling

– Importance sampling

• Markov Chain Monte Carlo (MCMC):
– Markov Chain review

– Metropolis-Hastings algorithm

– Gibbs sampling

• Others: Monte Carlo EM, Slice sampling
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MCMC Motivation

• Monte Carlo methods may not be efficient in 
high dimensional spaces

• In MCMC, successive samples are correlated 
via a Markov chain
– Explores high-density regions of the state-space

Green=accepted
Red=rejected



3

13

Markov Chain review

• An invariant p(x) = p(x)T exists if transition 
matrix T satisfies:
– Irreducibility: fully-connected
– Aperiodic: chain not trapped in cycles

• A sufficient (but not necessary) condition is 
reversibility:
– p(xt+1) T(xt|xt+1) = p(xt) T(xt+1|xt)

• In MCMC, we define proposal distribution 
T=q(xt+1 | xt):
– After a period of “burn-in” / “mixing”, we’ll be sampling 

from the invariant distribution p(x)
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Metropolis-Hastings (MH) algorithm

Reject new state?
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MH Examples: 
True p(x) is bimodal
Proposal q(xt+1|xt) = N(xt,sigma)

16

Why does MH work?

By construction, the reversibility condition is satisfied by KMH, 
with p(x) emerging as the invariant distribution:

The main question is choosing q() so that convergence is fast
- Gibbs sampling, Metropolis method, etc. are instances of MH with different q()
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Gibbs sampler

• Assume a multivariate p(x)
• Gibbs sampling uses the conditional 

probabilities as q()
– Very natural for graphical models

• Acceptance probability A() turns out to be 1
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Gibbs sampling pseudocode
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What we’ll cover

• Monte Carlo methods:
– Rejection sampling

– Importance sampling

• Markov Chain Monte Carlo (MCMC):
– Markov Chain review

– Metropolis-Hastings algorithm

– Gibbs sampling

• Others: Monte Carlo EM, Slice sampling
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Monte Carlo EM

Use Monte Carlo sampling here to:
(1) approximate difficult integrals
(2) get out of local optima 
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Slice sampling
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Sequential Monte Carlo (Particle Filter)

Setup: 
Dynamic model p(xt|xt-1)
Observation model p(yt|xt)

Goal:
Estimate posterior p(xt|y1,y2,..yt)

Increase states with high w
Decrease states with low w
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Summary
1. Problems addressed: 

– Difficult integration/optimization where p(x) is easily evaluated 
for a given x

2. All methods use a proposal q() to help sample from p(x)
– Rejection sampling: Mq(x) ≥ p(x) 

3. MCMC differs from Monte Carlo in that successive 
samples are correlated by q(xt+1 | xt)
– Metropolis-Hastings: general q(xt+1 | xt)

– Gibbs: q(xt+1 | xt) is conditional probability of multivariate 
distribution 24
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