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What is Deep Learning?

A family of methods that uses deep architectures to learn high-level
feature representations

(p.2)



Example of Trainable Features [Lee et al., 2009]

Input: Images (raw pixels)
→ Output: Features representing Edges, Body Parts, Full Faces

(p.3)
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Problem Setup

Training Data: a set of (x (m), y (m))m={1,2,..M} pairs

I Input x (m) ∈ Rd

I Output y (m) = {0, 1}
Goal: Learn function f : x → y to predict correctly on new inputs x .

I Step 1: Choose a function model family:
F e.g. logistic regression, support vector machines, neural networks

I Step 2: Optimize parameters w on the Training Data
F e.g. minimize loss function minw

∑M
m=1(fw (x (m))− y (m))2

(p.6)



Logistic Regression (1-layer net)

Function model: f (x) = σ(w T · x)
I Parameters: vector w ∈ Rd

I σ is a non-linearity, e.g. sigmoid: σ(z) = 1/(1 + exp(−z))

Non-linearity will be important in expressiveness multi-layer nets.
Other non-linearities, e.g., tanh(z) = (ez − e−z )/(ez + e−z )

(p.7)



Gradient Descent for Logistic Regression

Assume Squared-Error∗ Loss(w) = 1
2

∑
m(σ(w T x (m))− y (m))2

Gradient: ∇w Loss =
∑

m

[
σ(w T x (m))− y (m)

]
σ′(w T x (m))x (m)

I Define input into non-linearity in(m) = w T x (m)

I General form of gradient:
∑

m Error (m) ∗ σ′(in(m)) ∗ x (m)

I Derivative of sigmoid σ′(z) = σ(z)(1− σ(z))

Gradient Descent Algorithm ():
1 Initialize w randomly
2 Update until convergence: w ← w − γ(∇w Loss)

Stochastic gradient descent (SGD) algorithm:
1 Initialize w randomly
2 Update until convergence: w ← w − γ(Error (m) ∗ σ′(in(m)) ∗ x (m))

*An alternative is Cross-Entropy loss:∑
m y (m) log(σ(wT x (m))) + (1− y (m)) log(1− σ(wT x (m)))

(p.8)



SGD Pictorial View

Loss objective contour plot: 1
2

∑
m(σ(w T x (m))− y (m))2 + ||w ||

I Gradient descent goes in steepest descent direction
I SGD is noisy descent (but faster per iteration)

(p.9)



2-layer Neural Networks

x1 x2 x3 x4

h1 h2 h3

y

xi

wij

hj

wj

w11 w12

w1 w2 w3

f (x) = σ(
∑

j wj · hj ) = σ(
∑

j wj · σ(
∑

i wij xi ))

Hidden units hj ’s can be viewed as new ”features” from combining xi ’s

Called Multilayer Perceptron (MLP), but more like multilayer logistic regression
(p.10)



Expressive Power of Non-linearity

A deeper architecture is more expressive than a shallow one given
same number of nodes [Bishop, 1995]

I 1-layer nets only model linear hyperplanes
I 2-layer nets can model any continuous function (given sufficient nodes)
I >3-layer nets can do so with fewer nodes

(p.11)



Training Neural Nets: Back-propagation

x1 x2 x3 x4

h1 h2 h3

y

xi

wij

hj

wj

Predict f (x (m))

Adjust weights

w11 w12

w1 w2 w3

1. For each sample, compute f (x (m)) = σ(
∑

j wj · σ(
∑

i wij x
(m)
i ))

2. If f (x (m)) 6= y (m), back-propagate error and adjust weights {wij ,wj}.

(p.12)



Derivatives of the weights

Assume two outputs (y1, y2) per input x ,
and loss per sample: Loss =

∑
k

1
2 [σ(ink )− yk ]2

x1 x2 x3 x4

h1 h2 h3

y1 y2

xi

wij

hj

wjk

yk

∂Loss
∂wjk

= ∂Loss
∂ink

∂ink
∂wjk

= δk
∂(

∑
j wjk hj )

∂wjk
= δk hj

∂Loss
∂wij

= ∂Loss
∂inj

∂inj

∂wij
= δj

∂(
∑

j wij xi )

∂wij
= δj xi

δk = ∂
∂ink

(∑
k

1
2 [σ(ink )− yk ]2

)
= [σ(ink )− yk ]σ′(ink )

δj =
∑

k
∂Loss
∂ink

∂ink
∂inj

=
∑

k δk · ∂
∂inj

(∑
j wjkσ(inj )

)
= [
∑

k δk wjk ]σ′(inj )

(p.13)



Training Neural Nets: Back-propagation

All updates involve some scaled error from output ∗ input feature:

∂Loss
∂wjk

= δk hj where δk = [σ(ink )− yk ]σ′(ink )

∂Loss
∂wij

= δj xi where δj = [
∑

k δk wjk ]σ′(inj )

First compute δk from final layer, then δj for previous layer and iterate.

x1 x2 x3 x4

h1 h2 h3

y1 y2

xi

wij

hj

wjk

yk

δj=h3 = [δk=y1w31 + δk=y2w32]σ′(inh3)

δk=y1 δk=y2

∂Loss
∂wij

w31 w32

(p.14)
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Potential of Deep Architecture

*Figure from [Bengio, 2009]

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y
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Difficulties of Deep Architecture

Vanishing gradient problem in
Backpropagation

∂Loss
∂wij

= ∂Loss
∂inj

∂inj

∂wij
= δj xi

δj =
[∑

j+1 δj+1wj(j+1)

]
σ′(inj )

δj may vanish after repeated
multiplication

Also, exploding gradient
problem!

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

wij

wj(j+1)

(p.17)



Analysis of Training Difficulties [Erhan et al., 2009]

MNIST digit classification task
Train neural net by Backpropagation (random initialization of wij )

(p.18)
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Layer-wise Pre-training [Hinton et al., 2006]

First, train one layer at a time, optimizing data-likelihood objective P(x)

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer1
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Layer-wise Pre-training [Hinton et al., 2006]

First, train one layer at a time, optimizing data-likelihood objective P(x)

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer2

Keep Layer1 fixed
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Layer-wise Pre-training [Hinton et al., 2006]

Finally, fine-tune labeled objective P(y |x) by Backpropagation

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Predict f(x)

Adjust weights

(p.22)



Layer-wise Pre-training [Hinton et al., 2006]

Key Idea:
Focus on modeling the input P(X ) better with each successive layer.
Worry about optimizing the task P(Y |X ) later.

”If you want to do computer vision, first learn computer
graphics.” – Geoff Hinton

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer2

Train Layer1

Extra advantage:
Can exploit large
amounts of unlabeled
data!

(p.23)
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Deep Learning Paradigm

Recall problem setup: Learn function f : x → y

First learn hidden features h that model input, i.e. x → h→ y

How do we discover useful latent features h from data x?
I e.g. use Restricted Boltzmann Machines (RBMs)

(p.25)



Restricted Boltzmann Machine (RBM)

RBM is a probabilistic model on binary variables hj and xi :

p(x , h) =
1

Zθ
exp (−Eθ(x , h))

=
1

Zθ
exp (xT Wh + bT x + dT h)

I W is a matrix; elements Wij models correlation between xi and hj

I b and d are bias terms; we’ll assume b = d = 0 here.
I normalizer (partition function): Zθ =

∑
(x,h) exp(−Eθ(x , h))

x1 x2 x3

h1 h2 h3

Wij

(p.26)



Restricted Boltzmann Machine (RBM): Example

x1 x2 x3

h1 h2 h3

Let weights Wij on edges (h1, x1), (h1, x3) be positive, others be near 0.

x1 x2 x3 h1 h2 h3 p(x , h) = 1
Zθ

exp (xT Wh)

1 0 0 1 0 1 highest

1 0 0 0 0 1 high

1 0 0 1 0 0 high

0 0 0 1 0 1 low

0 1 0 0 0 0 low

0 0 1 0 0 0 low
etc

(p.27)



RBM Posterior Distribution (Easy!)

Computing p(h|x) is easy due to factorization:

p(h|x) =
p(x , h)∑
h p(x , h)

=
1/Zθ exp(−E(x, h))∑
h 1/Zθ exp(−E(x, h))

=
exp(xT Wh + bT x + dT h)∑
h exp(xT Wh + bT x + dT h)

=

∏
j exp(xT Wj hj + dj hj ) · exp(bT x)∑

h1∈{0,1}
∑

h2∈{0,1} · · ·
∑

hj

∏
j exp(xT Wj hj + dj hj ) · exp(bT x)

=

∏
j exp(xT Wj hj + dj hj )∏

j

∑
hj∈{0,1} exp(xT Wj hj + dj hj )

=
∏

j

exp(xT Wj hj + dj hj )∑
hj∈{0,1} exp(xT Wj hj + dj hj )

=
∏

j

p(hj |x)

p(hj = 1|x) = exp(xT Wj + dj )/Z = σ(xT Wj + dj ) is Logistic
Regression!
Similarly, computing p(x |h) =

∏
i p(xi |h) is easy

(p.28)



RBM Max-Likelihood Training (Hard!)

Derivative of the Log-Likelihood: ∂wij log Pw (x = x (m))

= ∂wij log
∑

h

Pw (x = x (m), h) (1)

= ∂wij log
∑

h

1

Zw
exp (−Ew(x(m), h)) (2)

= − ∂wij log Zw + ∂wij log
∑

h

exp (−Ew(x(m), h)) (3)

=
1

Zw

∑
h,x

e(− Ew(x,h)) ∂wij Ew(x, h)− 1∑
h e(− Ew(x(m),h))

∑
h

e(− Ew(x(m),h)) ∂wij Ew(x(m), h)

=
∑
h,x

Pw (x , h)[∂wij Ew(x, h)]−
∑

h

Pw (x (m), h)[∂wij Ew(x(m), h)] (4)

= −Ep(x,h)[xi · hj ] + Ep(h|x=x (m))[x
(m)
i · hj ] (5)

Second term (positive phase) increases probability of x (m); First term
(negative phase) decreases probability of samples generated by the model

(p.29)



Contrastive Divergence Algorithm

x1 x2 x3

h1 h2 h3

The negative phase term (Ep(x ,h)[xi · hj ]) is expensive because it
requires sampling (x,h) from the model

Gibbs Sampling (sample x then h iteratively) works, but waiting for
convergence at each gradient step is slow.
Contrastive Divergence is a faster but biased method: initialize with
training point and wait only a few (usu. 1) sampling steps

1 Let x (m) be training point, W = [wij ] be current model weights

2 Sample ĥj ∈ {0, 1} from p(hj |x = x (m)) = σ(
∑

i wij x
(m)
i + dj ) ∀j .

3 Sample x̃i ∈ {0, 1} from p(xi |h = ĥ) = σ(
∑

j wij ĥj + bi ) ∀i .

4 Sample h̃j ∈ {0, 1} from p(hj |x = x̃) = σ(
∑

i wij x̃i + dj ) ∀j .

5 wij ← wij + γ(x
(m)
i · ĥj − x̃i · h̃j )

(p.30)



Contrastive Divergence Pictorial View

Goal: Make RBM p(x , h) have high probability on training samples
To do so, we’ll ”steal” probability mass from nearby samples that
incorrectly preferred by the model
For detailed analysis, see [Carreira-Perpinan and Hinton, 2005]

(p.31)



Distributed Representations learned by RBM

Vector h act as Distributed Representation of data
I Multiple hj may be active simultaneously for a given x .

(Multi-clustering)
I 2|h| possible representations with |h| × |x | parameters.

x1 x2 x3

h1 h2 h3

An equivalent mixture model p(x) =
∑

h p(c)p(x |c) needs 2|h| × |x |
parameters:

x1 x2 x3

c

(p.32)



Deep Belief Nets (DBN) = Stacked RBM

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

h′′1 h′′2 h′′3

Layer1 RBM

Layer2 RBM

Layer3 RBM
DBN defines a probabilistic
generative model p(x) =∑

h,h′,h′′ p(x |h)p(h|h′)p(h′, h′′)
(top 2 layers is interpreted as a
RBM; lower layers are directed
sigmoids)

Stacked RBMs can also be used
to initialize a Deep Neural
Network (DNN)

(p.33)



Example of what a Deep Generative Model can do

After training on 20k images, the generative model of
[Salakhutdinov and Hinton, 2009]* can generate random images
(dimension=8976) that are amazingly realistic!

This model is a Deep Boltzmann Machine (DBM), different from Deep Belief Nets
(DBN) but also built by stacking RBMs.

(p.34)



Deep Belief Nets (DBN) Summary

1 Layer-wise pre-training is the innovation that rekindled interest in
deep architectures.

2 Pre-training focuses on optimizing likelihood on the data, not the
target label. First model p(x) to do better p(y |x).

3 Why RBM? p(h|x) is tractable, so it’s easy to stack.

4 RBM training can be expensive. Solution: contrastive divergence

5 We can stack RBMs to form a deep probabilistic generative model
(DBN), or to initialize deep neural network (DNN)

(p.35)
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Auto-Encoders: Efficient replacement for RBM

x1 x2 x3

h1 h2

x ′1 x ′2 x ′3

Encoder: h = σ(Wx + b)

Decoder: x ′ = σ(W ′h + d)

Encourage h to give small reconstruction error:

e.g. Loss =
∑

m ||x (m) − DECODER(ENCODER(x (m)))||2
Reconstruction: x ′ = σ(W ′σ(Wx + b) + d)
|h| is small to enforce ”compression” of data
Training by Backpropagation for 2-layer nets, with x (m) as both input
and output

(p.37)



Stacked Auto-Encoders (SAE)

The encoder/decoder gives same form p(h|x), p(x |h) as RBMs, so
can be stacked in the same way to form Deep Architectures

x1 x2 x3 x4

h1 h2 h3

h′1 h′2

y

Layer1 Encoder

Layer2 Encoder

Output layer

Unlike RBMs, Auto-encoders are deterministic.
I h = σ(Wx + b), not p(h = {0, 1}) = σ(Wx + b)
I Disadvantage: Can’t form deep generative model
I Advantage: Fast to train, and useful still for Deep Neural Nets

(p.38)



Auto-Encoder Variants: e.g. Denoising Auto-Encoder

x̃1 x̃2 x̃3

h1 h2

x ′1 x ′2 x ′3

x̃ = x+ noise

Encoder: h = σ(W x̃ + b)

Decoder: x ′ = σ(W ′h + d)

1 Perturb input data x to x̃ using invariance from domain knowledge.

2 Train weights to reduce reconstruction error with respect to original
input: ||x − x ′||

(p.39)



Denoising Auto-Encoders

Example: Randomly shift, rotate, and scale input image

An image of ”2” is a ”2” no matter how you add noise, so the
auto-encoder will try to cancel the variations that are not important.

Figure from Geoff Hinton’s 2012 Coursera course, lecture 1:
https://www.coursera.org/course/neuralnets

(p.40)

https://www.coursera.org/course/neuralnets


Stacked Auto-Encoders (SAE): Summary

1 Auto-Encoders are cheaper alternatives to RBMs.
I Not probabilistic, but fast to train using Backpropagation
I Achieves similar accuracies as RBM [Bengio et al., 2006]

2 Auto-Encoders learn to ”compress” and ”re-construct” input data.
Again, the focus is on modeling p(x) first.

3 Many variants, some provide ways to incorporate domain knowledge.

(p.41)
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Why does Pre-Training work? [Erhan et al., 2010]

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y
A deep net can fit the training data in
many ways (non-convex):

1 By optimizing upper-layers really hard
2 By optimizing lower-layers really hard

Top-down vs. Bottom-up information
1 Even if lower-layers are random

weights, upper-layer may still fit well.
But may not generalize to new data

2 Pre-training with objective on P(x)
learns more generalizable features

Pre-training seems to help put weights
at a better local optimum

(p.43)



Is Pre-Training really necessary?

Answer in 2006: Yes!
Answer in 2014: No!

1 If initialization is done well by design (e.g. sparse connections and
convolutional nets), maybe won’t have vanishing gradient problem

2 If you have an extremely large datasets, maybe won’t overfit. (But
maybe that also means you want an ever deeper net)

3 New architectures are emerging: e.g. Stacked SVM’s with random
projections [Vinyals et al., 2012]

(p.44)



Success in Speech Recognition

Hybrid DNN-HMM system: (typically 3-8 layers, 2000 units/layer, 15
frames of input, 6000 output)

(p.45)



Success in Speech Recognition

Word Error Rate Results [Hinton et al., 2012a]:

(p.46)



Success in Computer Vision [Le et al., 2012]

ImageNet Test Accuracy (22K categories):
Method Accuracy

Random 0.005%
Previous State-of-the-art 9.3%

”9”-layer net, back-propagation without pre-training 13.6%
+ pre-training on 10 million Youtube images 15.8%

Deep network has 1 billion parameters, trained on 16k cores for a week

(p.47)



Cat neuron

*Graphics from [Le et al., 2012]

(p.48)



Face neuron

*Graphics from [Le et al., 2012]

(p.49)



Further enhancements worth knowing about

SGD alternative, e.g. 2nd order methods [Martens, 2010], accelerated
gradient [Sutskever et al., 2013]

Better regularization, e.g. Dropout [Hinton et al., 2012b]

Scaling to large data, e.g. [Dean et al., 2012, Coates et al., 2013]

Hyper-parameter search, e.g. [Bergstra et al., 2011]

Recent analyses on why things work or fail, e.g. [Szeged et al., 2014]

(p.50)
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Recent Papers with keywords: Deep or Neural
Sequence labeling

POS tagging & Name Entity Recognition [Turian et al., 2010, Collobert et al., 2011, Wang and Manning, 2013,
Ma et al., 2014, Tsuboi, 2014, Guo et al., 2014, Qi et al., 2014]

Word Segmentation [Zheng et al., 2013, Pei et al., 2014]

Syntax & Morphology

Dependency Parsing [Stenetorp, 2013, Chen et al., 2014a, Levy and Goldberg, 2014, Bansal et al., 2014,
Chen and Manning, 2014, Le and Zuidema, 2014]

Constituency Parsing [Billingsley and Curran, 2012, Socher et al., 2013a, Andreas and Klein, 2014]

CCG [Hermann and Blunsom, 2013], Selectional Preference [Van de Cruys, 2014], Morphology [Luong et al., 2013]

Semantics

Word Representations [Tsubaki et al., 2013, Srivastava et al., 2013, Rocktäschel et al., 2014, Baroni et al., 2014,
Hashimoto et al., 2014, Pennington et al., 2014, Neelakantan et al., 2014, Chen et al., 2014b, Milajevs et al., 2014]

Semantic Role Labeling: [Hermann et al., 2014, Roth and Woodsend, 2014]

Paraphrase [Socher et al., 2011]

Grounding/Multi-modal [Fyshe et al., 2014, Kiela and Bottou, 2014]

Discourse

[Ji and Eisenstein, 2014, Li et al., 2014a]

Question Answering, Knowledge Bases, & Relation Extraction

[Hashimoto et al., 2013, Fu et al., 2014, Chang et al., 2014, Yih et al., 2014, Bordes et al., 2014, Iyyer et al., 2014,
Yang et al., 2014, Gardner et al., 2014]

Sentiment Analysis

[Glorot et al., 2011, Socher et al., 2013b, Irsoy and Cardie, 2014]

Summarization

[Liu et al., 2012]

Novel Applications

Poetry [Zhang and Lapata, 2014], Interestingness [Gao et al., 2014b], Hashtags [Weston et al., 2014]

(p.52)



Disclaimer!

There’s no consensus yet on how best to apply Deep Learning in NLP
I Good results have been reported, but not yet revolutionary
I Compared to Vision/Speech, methods for NLP seem to have

less emphasis on ”deep.” Perhaps a single word is already an extremely
informative feature, worth a thousand pixels?

What we’ll do: Summarize 2 ways Deep/Neural ideas can be used
1 As non-linear classifier
2 As distributed representation

Show one successful and one unsuccessful case study each, to
emphasise that everything is work-in-progress!
→ What you believe is good today may be bad tomorrow.

(p.53)



Use as Non-linear Classifier

Idea: Directly replace a linear classifer used in NLP with a deep network.

Expected to work if:

1 Difficult to engineer effective features

2 Linear classifier underfits (e.g. high training error)

(p.54)



Case Study 1: Domain Adaptation for Large-Scale
Sentiment Classification [Glorot et al., 2011]

Amazon Review dataset [Blitzer et al., 2007]
I 4 domains: electronics, books, DVDs, kitchen.
I Pre-train on unlabeled data to get ”good features” across domains
I Then, train SVM on target labeled data per domain

x1 x2 x3 x4

h1 h2 h3

h′1 h′2

y

Denoising Auto-Encoder: noise=randomly set xi =0; σ non-linearity

Denoising Auto-Encoder: noise=gaussian; rectifier non-linearity

Output layer: SVM

Input: 5000 most frequent 1gram/2gram words

Hyperparameters: Masking noise (0.8), Gaussian noise var, number of hidden
layers (1-3), no. hidden layers (1000, 2500, 5000), regularization, learning rate γ

(p.55)



Experiment Results [Glorot et al., 2011]

Evaluation metric:

error(A,B) = error of classifier trained on DomainA, test on DomainB

transfer loss = error(Source,Target)− error(Target,Target)

(p.56)



Case Study 2: Machine Translation N-best List Re-ranking

Hypothesis: Dense features in current systems are not sufficiently
expressive [Duh and Kirchhoff, 2008]

I Translation model, language model scores are too coarse-grained
I Linear re-ranker attains only convex hull of N-best candidates

(p.57)



Experiment Results

(p.58)



Outline

1 Deep Learning Background
Neural Networks (1-layer, 2-layer)
Potentials and Difficulties of Deep Architecture
The Breakthrough in 2006

2 Two Main Types of Deep Architectures
Deep Belief Nets (DBN) [Hinton et al., 2006]
Stacked Auto-Encoders (SAE) [Bengio et al., 2006]
Current Status of Deep Learning

3 Applications in Natural Language Processing and Machine Translation
Use as Non-linear classifier
Use as Distributed representation
Survey of Machine Translation Research
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Distributed (Vector) Representation of Words

Embed word in vector space, such that nearby words are syntactically
or semantically similar

Neural nets can be used to learn these vectors from raw text
[Collobert et al., 2011, Chen et al., 2013]

(p.60)



Use as Distributed Representation

Idea: Replace/Append original features with distributed representation.

Expected to work if:

1 Original features are too sparse (e.g. small training data)

2 Distributed representation enables more flexible model of language

(p.61)



Case Study 1: POS tagging of Web Text

Motivation: POS tagging performs well on WSJ (news) but poorly on web
text. One main reason is unknown/rare words.

Distributed representation ensures unknown words can be tagged
because similar words occur in WSJ Treebank

*RNNLM = Recurrent Neural Net Language Model [Mikolov et al., 2011]

(p.62)



POS Tagging Accuracy (SANCL2012 Shared Task data)

Conclusion:

Distributed representation helps. But Brown clustering is just as good.

What to improve: Representation? CRF integration? Joint learning?
(p.63)



Case Study 2: Parsing with Compositional Vector
Grammar [Socher et al., 2013a]

Background: Parsing results can be improved by splitting coarse
categories (e.g. NP, VP).

Here, rather than splitting, directly learn distributed representation of
phrases

(p.64)



Compositional Vector Grammar [Socher et al., 2013a]

Begin with word representation. Phrase vector is output of 1 layer
net, compute recursively bottom-up.

The score of e.g. node p(1) is v (B,C)p(1) + log P(P1 → BC )

Predicted parse tree is the one that achieves max sum of node scores.

Weight matrix (for each node type) is trained by structured
max-margin objective

(p.65)



WSJ Section 23 Experiment Results

System F1

Stanford Parser (PCFG) 85.5
Stanford Parser (Factored) 86.6
Berkeley Parser 90.1
Compositional Vector Grammar 90.4

End-to-end distributed representation outperforms both manually factored
and automatically split state systems.

(p.66)



Case Study Summary

Exploiting Non-linear Classifiers

It’s possible to directly apply Deep Learning to text problems with
little modification, as evidenced by [Glorot et al., 2011]

But sometimes NLP-specific modifications are needed, e.g. training
objective mismatch in Machine Translation N-best experiment

Exploiting Distributed Representation

Distributed Representation is a simple way to improve robustness of
NLP, but it’s not the only way (POS tagging experiment)

Promising direction: distributed representations beyond words,
considering e.g. compositionality [Socher et al., 2013a]

Note: The above uses are really two sides of the same coin, not
mutually-exclusive.

(p.67)
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A Taxonomy of Neural Nets in Machine Translation

Core Engine: What is being modeled?

Target word probability:
I Language Model: p(target wordt | target wordt−1)
I Language Model with Source Information:

p(target wordt | target wordt−1, source)

Translation/Reordering probabilities under Phrase-based MT:
I Translation Model: p(target phrase | source phrase)
I Reordering Model: p(orientation | target phrase, source phrase)

Probabilities under Tuple-based MT:
p([target phrase, source phrase]t | [target phrase, source phrase]t−1)

Inversion Transduction Grammar (ITG) Model

Related Components:

Word Alignment

Adaptation / Topic Context

Multilingual Embeddings

(p.69)



A Taxonomy of Neural Nets in Machine Translation

Core Engine: What is being modeled?

Target word probability:

I Language Model: [Schwenk et al., 2012, Vaswani et al., 2013,

Niehues and Waibel, 2013, Auli and Gao, 2014]
I LM w/ Source: [Kalchbrenner and Blunsom, 2013, Auli et al., 2013,

Devlin et al., 2014, Cho et al., 2014, Bahdanau et al., 2014,

Sundermeyer et al., 2014, Sutskever et al., 2014]

Translation/Reordering probabilities under Phrase-based MT:

I Translation: [Maskey and Zhou, 2012, Schwenk, 2012, Liu et al., 2013,

Gao et al., 2014a, Lu et al., 2014, Tran et al., 2014, Wu et al., 2014a]
I Reordering: [Li et al., 2014b]

Tuple-based MT: [Son et al., 2012, Wu et al., 2014b, Hu et al., 2014]

ITG Model: [Li et al., 2013, Zhang et al., 2014, Liu et al., 2014]

Related Components:

Word Align: [Yang et al., 2013, Tamura et al., 2014, Songyot and Chiang, 2014]

Adaptation / Topic Context: [Duh et al., 2013, Cui et al., 2014]

Multilingual Embeddings:
[Klementiev et al., 2012, Lauly et al., 2013, Zou et al., 2013, Kočiský et al., 2014,
Faruqui and Dyer, 2014, Hermann and Blunsom, 2014, Chandar et al., 2014]

(p.70)



Next, we’ll discuss...

Core Engine: What is being modeled?

Target word probability:

I Language Model: [Vaswani et al., 2013, Auli and Gao, 2014]
I LM w/ Source:

[Kalchbrenner and Blunsom, 2013, Devlin et al., 2014, Sutskever et al., 2014]

Translation/Reordering probabilities under Phrase-based MT:

I Translation: [Gao et al., 2014a]
I Reordering

Tuple-based MT: [Son et al., 2012]

ITG Model: [Zhang et al., 2014]

Related Components:

Word Align

Adaptation / Topic Context

Multilingual Embeddings: [Klementiev et al., 2012]

(Obviously there’s no time to discuss everything. These papers are chosen to

pedagogically demonstrate the diverse ways in which neural nets are used in MT.)
(p.71)



Language Models (LM) using Neural Nets

Model P(current word | previous words) using neural nets.
I Motivation: Continuous distributed representations of words learned by

neural nets reduce sparsity problems

Example rare word: ”Bar-ba-loots”
I P(wt = fruits | wt−2 = like,wt−2 = Bar -ba-loots) =?
I P(wt = bars | wt−2 = like,wt−2 = Bar -ba-loots) =?
I Which has higher probability?
I What if I tell you vector(Bar-ba-loots) is similar to vector(bears)?

Feed-forward Neural Net Language Model:
I (1) Map wt−1,wt−2, . . . to vectors. (2) Compress. (3) Predict wt

Recurrent Neural Net Language Model:
I (1) Map wt−1 to vector.

(2) Combine with previous state & compress.
(3) Predict wt

(p.72)



(Feed-forward) Neural Language Models [Bengio et al., 2003]

x1 x2 x3 x4 x5 x6

v1 v2 v3 v4

h1 h2 h3

y1 y2 y3

Word at t-2, [x1, x2, x3] = [0, 1, 0]

Distributed representation

Word at t-1, [x4, x5, x6] = [1, 0, 0]

Distributed representation

P(current word = k) = yk =
exp(W T

jk h)∑
k′ exp(W T

jk′h)

Compression: h = σ(MT v)

M

wjk

wij

(p.73)



Training Feed-Forward Neural LMs

Training data = sets of n-gram
I Supervised task: Given previous n-1 words, predict current word
I Standard Backpropagation works
I Deeper nets are possible [Arisoy et al., 2012] (minor gains?)

By-product: [wij ]i can be used as ”word embeddings”. Useful for
many applications [Zhila et al., 2013, Turian et al., 2010]

In practice:

I yk =
exp(W T

jk h)∑
k′ exp(W T

jk′h)
requires expensive summation k over vocabulary size

I Many speed-up techniques proposed, e.g. class-based vocabulary,
noise-contrastive estimation, approximate normalization

I If we only need embeddings, alternative models are recommended, esp.
[Collobert et al., 2011], word2vec [Mikolov et al., 2013]

(p.74)



Recurrent Neural Net Language Models [Mikolov et al., 2010]

Model p(current word |previous words) with a recurrent hidden layer

x1 x2 x3 x4 x5

h1 h2

y1 y2 y3

Previous Word Previous h

Current Word (assume 3-word vocabulary)

wij

wjk

Probability of word k:

yk =
exp(W T

jk h)∑
k′ exp(W T

jk′h)

[x4, x5] is a copy of
[h1, h2] from the
previous time-step

hj = σ(W T
ij xi ) is hidden

state of partial sentence

Arbitrarily-long history is
(theoretically) kept
through recurrence

(p.75)



Training Recurrent Nets: Backpropagation through Time

Unroll the hidden states for certain time-steps.
Given error at y , update weights by backpropagation
Example: Bar-ba-loots like | fruits

x1 x2 x3 h′1 h′2

h1 h2

y1 y2 y3

x1 x2 x3 h′′1 h′′2
”Bar-ba-loots” [x1, x2, x3] = [0, 1, 0]

”like” [x1, x2, x3] = [1, 0, 0] Previous h

Initial h

wij

wjk

wij

(p.76)



Neural Language Model Decoder Integration

Feed-forward Neural LMs have same form as n-grams, so
straightforward to integrate into MT decoder

I Caveat: For calculation speed-up (esp. normalization constant), resort
to approximations and caching.

Recurrent Neural LMs require history going back to start-of-sentence.
Harder to do dynamic programming.

I [Auli and Gao, 2014]: To score new words, each decoder state needs to
maintain h. For recombination, merge hypotheses by traditional
n-gram context but keep a beam of h’s.

(p.77)



Neural Language Models generally improve MT

Feed-forward Neural LM [Vaswani et al., 2013]

NIST06 WMT06
Zh-En Fr-En De-En Es-En

baseline (n-gram) 34.3 25.5 21.5 32.0
1000-best rescoring 34.7 26.0 21.5 32.2

decoding 34.9 26.1 21.9 32.1

Recurrent Neural LM [Auli and Gao, 2014]

WMT12 Fr-En WMT12 De-En

baseline (n-gram) 24.85 19.80
100-best rescoring 25.74 20.54

lattice rescoring 26.43 20.63
decoding 26.86 20.93

(p.78)



Next, we’ll discuss...

Core Engine: What is being modeled?

Target word probability:

I Language Model: [Vaswani et al., 2013, Auli and Gao, 2014]
I LM w/ Source:

[Kalchbrenner and Blunsom, 2013, Devlin et al., 2014, Sutskever et al., 2014]

Translation/Reordering probabilities under Phrase-based MT:

I Translation: [Gao et al., 2014a]
I Reordering

Tuple-based MT: [Son et al., 2012]

ITG Model: [Zhang et al., 2014]

Related Components:

Word Align

Adaptation / Topic Context

Multilingual Embeddings: [Klementiev et al., 2012]

(p.79)



Language Model with Source

Model p(target wordt | target wordt−1, source)

Main question is how to model source:
I Entire source sentence or aligned source words only?
I Vector representation or traditional words?
I If vector representation, how to compute it?

(p.80)



Model of [Devlin et al., 2014]

Extend feed-forward neural LM to include window around aligned
source word.

I Heuristic: If align to multiple source words, choose middle. If
unaligned, inherit alignment from closest target word

Train on bitext with alignment; optimize target likelihood.

(p.81)



Model of [Kalchbrenner and Blunsom, 2013]

(f=target, e=source for our purposes here)

Extend recurrent LM with vector representation of source sentence
I A matrix K convolves arbitrary-length source sentence into vector(s) of

predetermined dimension

Train on bitext without alignment; optimize target likelihood.

(p.82)



Model of [Sutskever et al., 2014]

(”A B C” is source sentence; ”W X Y Z” is target sentence)

Treats MT as general sequence-to-sequence transduction
I (1) Read source (2) Accumulate hidden state, (3) Generate target.
I End-of-sentence ”〈EOS〉” token stops the recurrent process.
I In practice, read input sentence in reverse gave better MT results.

Used Long Short-Term Memory (LSTM); better modeling of
long-range dependencies than basic recurrent nets.

Train on bitext; optimize target likelihood. (Common in all LM w/ Source models)

(p.83)
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Neural Net Translation Model under Phrase-based MT

Recall log-linear MT formulation:
arg maxtarget

∑
k λk Φk (target, source, align) where Φk are language

model, translation model scores, etc.

Translation model score p(target phrase | source phrase) is
conventionally based on counts (max likelihood estimate)

Potential advantages of replacing this score with neural net score:
I Alleviate data sparsity
I Enable complex scoring functions
I Incorporate more source side context e.g. [Tran et al., 2014]

Easy to add as feature, with no decoder modification.

(p.85)



Model of [Gao et al., 2014a]

Two neural nets (one for source side, one for target side)
I Input: Bag-of-words representation of source/target phrase
I Output: Vectors yfi for source phrase, yej for target phrase

Score of phrase pair = dot product of these vectors yfi
Tyej

(p.86)



Training procedure of [Gao et al., 2014a]

1 Baseline MT generates N-best list for training data.
I Key assumption: oracle in N-best is much better than 1-best, so it’s

worthwhile to train the neural nets.

2 Optimize neural net parameters:
I Use ”Expected BLEU”1 objective to enable smooth gradients:∑

ei ,fj

δExpBLEU(W )
δscoreW (yfi ,yej )

δscoreW (yfi ,yej )

δW

3 Optimize (MERT) feature weights λ in log-linear model∑
k λk Φk (target, source, align). [Loop if desired]

Note: Alternative models / training procedures are possible, e.g.

Pairwise ranking (PRO) objective on dev set [Liu et al., 2013]

Direct training on extracted phrase table [Schwenk, 2012]

RBMs/Autoencoders on top of conventional phrase features
[Maskey and Zhou, 2012, Lu et al., 2014]

1Expected Bleu:
∑

E∈nbest P(E |F )sentBLEU(E ,Eref )
(p.87)



Next, we’ll discuss...

Core Engine: What is being modeled?

Target word probability:

I Language Model: [Vaswani et al., 2013, Auli and Gao, 2014]
I LM w/ Source:

[Kalchbrenner and Blunsom, 2013, Devlin et al., 2014, Sutskever et al., 2014]

Translation/Reordering probabilities under Phrase-based MT:

I Translation: [Gao et al., 2014a]
I Reordering

Tuple-based MT: [Son et al., 2012]

ITG Model: [Zhang et al., 2014]

Related Components:

Word Align

Adaptation / Topic Context

Multilingual Embeddings: [Klementiev et al., 2012]

(p.88)



Tuple-based MT [Son et al., 2012]

p([target phrase, source phrase]t | [target phrase, source phrase]t−1)

A target and source phrase tuple forms a single unit (u)

Apply standard neural language model to score sequences of u
I Challenge: Large output space using tuple.
I One Solution: Factorize!

(p.89)



Inversion Transduction Grammar (ITG) Model

ITG views translation as bilingual
parsing, allows phrase blocks to
combine hierarchically.

Basic component:
p(straight/inverted | block1, block2)
can use neural net [Li et al., 2013]

[Zhang et al., 2014] extension:
constrain phrase embeddings of
translations to be similar.

Advantage: Elegantly models
monolingual composition and
bilingual equivalence in unified
framework.

(p.90)
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Multilingual Embeddings

What: Train word representations such that words in different
languages map to same space

Why: Useful for many cross-lingual tasks as well as MT
I Train classifier on large labeled English data; Test on Xhosa

Main questions:
I Amount of multilingual info: parallel bitext? comparable corpora?

word alignment table?
I How to multilingual info incorporated?

(p.92)



Multilingual Embeddings from [Klementiev et al., 2012]

Optimize independent neural language models,
with regularizer Ω = vec(wordi )

T · Aij · vec(wordj )
enforcing word vectors to be similar if alignment score Aij is high:

log p(en wordt | en wordt−1) + log p(zh wordt | zh wordt−1) + Ω

Example embeddings & nearby words:

[Zou et al., 2013] proposed similar model (different language model/regularizer),

show MT gains by adding embedding similarity as translation model score
(p.93)



Discussion: Outlook on neural nets for MT

Active field! Still lots to try. e.g.

Model tree/forest-based machine translation

Even better decoder integration

More synergy with compositional semantics

Move beyond parallel bitext; exploit comparable corpora

Improve existing work; experiments on more tasks by more researchers

Three main questions to consider if you want to start:

1 What to model? i.e. What is input/output of neural net?

2 How to setup training data? (Input/ouput is often not explicit in MT)

3 What kind of network and training algorithm? What are reasonable
hyper-parameters to try? Details matter.

But also be humble! Lots of ideas hidden in older work, e.g.

[Castano et al., 1997, Jain et al., 1991]

(p.94)



Summary of entire talk

1 Deep Learning Background
Neural Networks (1-layer, 2-layer)
Potentials and Difficulties of Deep Architecture
The Breakthrough in 2006

2 Two Main Types of Deep Architectures
Deep Belief Nets (DBN) [Hinton et al., 2006]
Stacked Auto-Encoders (SAE) [Bengio et al., 2006]
Current Status of Deep Learning

3 Applications in Natural Language Processing and Machine Translation
Use as Non-linear classifier
Use as Distributed representation
Survey of Machine Translation Research
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Final Thoughts

Is Deep Learning just a fad?

What ideas will stand the test of time?

Should I jump on the bandwagon?

(p.96)



To Learn More

Survey paper:
I Yoshua Bengio’s [Bengio, 2009] short book: Learning Deep

Architectures for AI2

Courses & In-depth Lecture Notes:
I My course @ NAIST:

http://cl.naist.jp/~kevinduh/a/deep2014/
I Hugo Larochelle’s course @ Sherbrooke3

I Geoff Hinton’s Coursera course4

Tutorials for NLPers:
I Richard Socher et. al.’s NAACL2013 tutorial5

I Ed Grefenstette et.al. ACL2014 Tutorial6

To Learn Even More:
I Theano code samples: http://deeplearning.net/tutorial/
I Blog at http://deeplearning.net

2http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
3http://tinyurl.com/qccl66y
4https://www.coursera.org/course/neuralnets
5http://www.socher.org/index.php/DeepLearningTutorial/
6https://www.youtube.com/watch?v=_ASOqXiWBVo

(p.97)
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Thanks for your attention! Questions?

(p.98)
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