34

Chapter 3

Hierarchical Training Methods

Training a maximum entropy model is usually a computationally intensive task.
This drawback of the maximum entropy approach has prevented many people from
using this method. In this chapter, we will describe some efficient training methods
for maximum entropy models. Preliminary results have been introduced in Wu &
Khudanpur (2000b) and Wu & Khudanpur (2002). We will present more detailed

results in this chapter.

3.1 Introduction

Training an ME model using either generalized iterative scaling or its improved
version described by Della Pietra, Della Pietra & Lafferty (1997) needs several it-
erations for converging. The running time is proportional to both the number of
iterations and the time for each iteration. The training procedure inside each iter-
ation can be separated into three phases: computing normalization factors z for all
the histories seen in training, calculating feature expectations p[g| for each constraint
¢ and updating model parameters . We study the first two phases of training in
this chapter, and the last phase has been discussed in Section 2.5.3. The first two
phases are the same for both GIS and IIS. The only difference lies in the updating of
model parameters, which takes only a small amount of computation in each iteration.

Therefore, the total training time is predominantly the time for computing z and p[g].

35

The crucial idea of training maximum entropy models efficiently is to take ad-
vantage of hierarchical structures among features, i.e., to share the computation cor-
responding to lower order features among high order features nesting them. The
computation of z’s and that of p[g]’s take the same amount of time, as we have shown
in the previous chapter, and any improvement made for the former applies to the
latter (and vice versa). We therefore focus on improving the computation of normal-
ization factors first, and then transfer the resulting efficient methods for computing
z to the computation of feature expectations.

In order to address the training methods for maximum entropy models, we need
to introduce the relations between features and the feature hierarchy of maximum
entropy models. It will later be shown that the efficiency of training an ME model
mainly depends on the extent of computation sharing permitted by the hierarchical
structure of the model.

By taking advantage of the hierarchical structure of N-gram features, training N-
gram models (and models that look like N-gram models) can be as fast per iteration
as training the corresponding back-off models, which is the time for scanning the
training data once. However, the major motivation of using the ME method is not to
build N-gram models, but rather models with some kinds of non-local dependencies.
Unfortunately, training these models cannot take advantage of nested features directly
and thus it is computationally intensive. However, the ideas of sharing computation
among features can be ported from the training of N-gram models to these kinds of
models. There are some nested features (although not all features are nested) in these
models, and the computation related to these nested features can still be simplified.
As a result, the training time can be made much shorter than that of the state-of-
the-art unigram-caching method introduced in the previous chapter, even for more
complex models.

For specific kinds of non-N-gram models such as the topic-dependent model, a
divide-and-conquer strategy is designed to train them almost as efficiently as training
back-off models.

36

3.1.1 Lower Bound and Upper Bound on Complexity

Training a maximum entropy model per iteration needs at least the time O(L) of
scanning the training data once. Even the empirical estimation needs O(L) time. If
a training algorithm reaches this lower bound, then it is already optimal.

On the other hand, if the probability of histories is approximated by their relative
frequency in the training data, a maximum entropy model needs no more than O(L -
|V']) time where |V| is the vocabulary size. Therefore, the upper bound of training
any ME model is O(L - |V|). Tt should be noted that O(L - |V|) # O(L) because
|V] is actually a function of L and cannot be simply treated as a constant!. Using
unigram-caching will reduce the training time to O(|X|-C) where | X| is the number of
different history classes seen in the training data and C, the average number of words
with some conditional features activated for each history class, is also a function of
V| and L. Usually | X| is several times smaller than L and C is 10-100 times smaller
than |V in language modeling.

In some applications such as part-of-speech tagging and syntactic parsing, O(|V])
is only of the order of 100 and independent of L. A complexity of O(|X| - C) or
O(L - |V]) is acceptable in such applications. In language modeling, however, the
vocabulary size is more than tens of thousands. Consequently, a time of O(|X|- C)
becomes intractable and we are seeking training methods with O(|X| - ¢) complexity

where c is significantly smaller than C.

The remainder of this chapter is organized as follows. We start with an example
of training a trigram model and then derive the hierarchical training method for N-
gram models in Section 3.2. In Section 3.3, we define three relations between features:
nested, overlapping and non-overlapping and describe the feature hierarchy of an ME
model by a digraph, in which nodes are feature patterns and arcs are feature relations.
The extension of hierarchical training method for the model with non-nested features
is described in Section 3.4. The generalized version of the hierarchical method for

ME models and the divide-and-conquer strategy for topic models in particular follow

!Even if |V| were to be treated as a constant, it is typically 10* — 10* and hence not negligible in
practice even if it were to be negligible in the O(-) sense.

37

in Section 3.5 and Section 3.6, respectively. We only describe the computation of
the normalization factor z in these sections. The computation of the expectation of
feature functions is briefly discussed in Section 3.7. In Section 3.8, we provide some
details of training specific language models studied in this dissertation. The efficiency
of training methods is evaluated in Section 3.9 based on two tasks, Switchboard and

Broadcast News.

3.2 Hierarchical Training Method for Maximum

Entropy Models with only Nested Features

In an N-gram model

N

1
s e) — 9(Wi—nt1,m wi)
p(wz‘wz—N—Ha awz—l) - P H awi_ln_,ﬁ,---,,w,i '
n=1
where
1 w; p+1,---,w; has an n-gram constraint,
I Wipg1, -+, wi) =

0 otherwise

are feature functions and au,_,, ;... »; are corresponding parameters. If a word w; has
an order n feature g(w;—n41,--- ,w;) active in the given history w;_yi1,- -+, w1, it
also usually has an order n — 1 feature g(w;_n42, - ,w;) activated (for 2 <n < N).
Therefore, g(w;—n+1,-- - ,w;) is nested in a feature g(w;—p42, -+, w;) for 2 <n < N.
Figure 3.1 shows the sets of words Yj, Y5, .-+, Y5 with unigram, bigram,---, and
N-gram features activated respectively for a given history w;_yy1, -, w;.

We will show in this section that this kind of model can be trained hierarchi-
cally, and training such a model for one iteration takes the same amount of time as
the calculation of empirical expectations. We demonstrate the hierarchical training
method by a trigram model and then extend this method to any model with only

nested features.

38

Yl =V
__/ Y2
—
...... Y3
YN
Figure 3.1: Word sets with unigram, bigram, - --, N-gram features activated.

3.2.1 Computing Normalization Factors in a Trigram Model

Recall the trigram model

g(wi) g(wi—1,wi) g(wi—2,wi—1,w;)
awi Wi —1,W; Wi—2,Wi—1,W; (3 1)

Z(wi—Qa wi—l)

p(wi|wz’—27 wi—l) =
where

.) = E g(wi) | (9(wi-rwi) | o9(wi—2,wi—1,wi)
2(Wimg, wi1) = Q; vy Qg iy

w;EV
Subscripts of a’s here indicate the indices of corresponding features in the feature set.
The order of features g is indicated by the number of coefficients of g and may be
omitted without causing any confusion. The normalization factor z can be computed

as

2(wi_g, wiq) = Z a&(iw") + Z [ag(w’”’w"*l’w") - I(Wi-1wi) _ 1] - oz&(iw") (3.2)

Wi—2,Wi—1,W; Wi—1,W;
w; €V W; €Yy

as described in Chapter 13, page 226, in Jelinek (1997). According to the analysis in
Section 2.5.1, the second term in Equation (3.2)

Z (ag(wi—hwi) . I Wi—2,wi1wi) 1) . o9wi) (3_3)

wWi—1,W5 Wi—2,Wi—1,W; Wi
wiEYm

with complexity of O(3°, % |Yz|) dominates the computation. In the future, the
short-hand notation O(|X| - C) will be used for O(>_,ex |Yal|) for simplicity, where

C= ﬁerX |Yw‘

39

Most of the words in Y, have only bigram features active. For example, in any
given history x, the set of words with bigram features contains on average roughly
300 words and 6000 words respectively in Switchboard and Broadcast News, among
which only 2 or 3 (on average) have trigram or higher order constraints. We take

advantage of this fact and split the word set Y, into Y5 and Y, — Y5 where
Yo = {w; : g(w;_1,w;) =1 for some bigram feature}
and also into Y3 and Y, — Y3 where
Ys = {w; : g(w; 2, w; 1, w;) =1 for some trigram feature}.

Note that Y5 and Y3 are history dependent even though we omit the subscripts z for
the sake of simplicity. Now, since Y, = Yo U Y3 and Y, NY; = ¢, Y, is split into three

disjoint subsets as shown in Figure 3.2

Figure 3.2: Splitting Y, according to Y and Y;. The values of (af L™ .

Wi _2,W;_1,W . .
Wi zwi 1) _ 1) iy different cases are shown.

Obviously, for any sum over all words in Y,

LD ITDITD IR

Y2 ﬂYg Y2 nYs Y>NYs
Table 3.1 gives the value of g(w;—1,w;) and g(w;—g, w;—1, w;) for words w; in the three

subsets above. Applying the values in Table 3.1 to the sum in (3.3), we have

(a,g(wi—l,wi) . IWi—2wi—1,wi) 1)(1%10@')

Wi 1,W; Wi 2,Wi—1,W;
(awi—ly'wi - 1) T Oy, w; € YoNYs;
= (O‘Wifz,wfhwi - 1) T Oy, w; € YoNYs,

(awi—l,wi T Qs wi—,wi 1) T Qly, Wi € YonYs

40

‘ word set ‘ g(w;_1, w;) ‘ g(w;_o, w;_1,w;) ‘

YoNY; 1 0
YoNY; 0 1
YoNYs 1 1

Table 3.1: Value of g(w;—1,w;) and g(w;—g, wi—1,w;)

and therefore

g(wi—1,wi) | g(wi—2wi—1,wi) g(w;)

Z (awiflv’w,i awif%w,iflyw,i 1)awi (3'4)
wi€EYy

= E , (awi—lywi -]‘)awi + E : (awz’—2awi—1;wi - 1)awi—1,wi Oy, -
wi€Y2 wi;€EYs

We merge (3.2) and (3.4) into

2(Wi—g, wi—1) = Z Qlyy; + Z (s y 0 — 1) Oty (3.5)

w; €V w; EY2
+ E : (awifbwiflawi - 1)O‘wi71,wi T Oy -
wi€Ys

Analysis of Complexity
Now we analyze the computational complexity of implementation of the sum in (3.5).

e The first term on the right-hand size of (3.5) takes O(U) time to calculate,

where U is the number of unigrams in the training data.

e The sum over Y, in the right-hand side of the equation is fixed for all histories
sharing a suffix w;_; and need be computed only once for each word w;_; in
the vocabulary. If for a given w;_1, Y5 contains only those words following w;_,
in the training data, the size of Y; is exact the number of bigrams beginning
with w;_;. The number of combinations of w;_; and Y3 is exactly the number
of bigrams in the training data denoted as B. The running time for the second

summation over Y; is thus O(B) for all histories.

e The sum over Y3 depends on both w;_s and w;_;. Each Y; for a given history

class w; o and w; | contains only a few words that have trigram constraints, i.e.,

41

those words following w; o, w; 1 in the training data. The cumulative size of all
Y3’s for different w;_o, w;_1 is thus no more than the number of seen trigrams
started by w; o, w; 1, denoted as T. The running time of the third summation

for all histories is thus O(T).

Overall, the complexity of the implementation (3.5) is therefore O(U + B + T) for

one iteration.

Discussion

In language modeling, training an interpolated trigram model (1.1) or a back-off
trigram model (1.2) takes exactly O(U + B+T) time because the empirical frequency
for all unigrams, bigrams and trigrams must be collected.

Even though the value of feature functions g is binary in language modeling, the
implementation (3.5) does not require g to be binary. The equation still holds when

g is a real function and can be rewritten as

Z(wi72a wiﬂ)

= Z ai(iwi) + Z (agw(:fﬁ}b’lw’) _ 1) . azj(,-wi)

w; EV wWi;EY2

+ Z (ag(’wi—%wi—l;’wi) _ 1) . a!](’wi—lawi)) . a&(iwi).

Wi—2,Wi—1,W; Wi—1,Wq
w;€Y3

3.2.2 Extension for N-gram Models

The training method discussed in the previous section can be extended to N-gram
models with any arbitrary value of N. Without the loss of generality, we can assume
each N-gram seen in the training data corresponds to a feature function?.

In an N-gram model,

N

1 e
p(wilwin1, - wisa) =~ [Tt (3.6)
j=1

2If some N-grams are not included in the feature set, we can simply assume that they correspond
to features gr whose parameters equal oy = 1.

42

where
z = z(wi Ny1, W) (3.7)
N
_ g(wi—j-l-la'"awi)
= E Hawi—j+1a"';wi :
w; €V j=1

We first apply unigram-caching to (3.7) and rewrite z as

N
2= Y o)+ 3 [admtint) — 1| agles, (3.8)

wieV wieY, Li=2
Now we use the computational trick for the trigram model recursively to the N-gram

model. We split the word set Y; into Y> and Y, = Y, — Y, where
Yo = {w; : g(w;—1,w;) =1 for some bigram feature}

as we have done in the previous section. However, instead of defining a subset Y3 as

we have done for trigram models, we define
Yy = {w; : g(wi ny1,- -+ ,w;) =1 for some n-gram features, n > 3}

instead. Y, can be split into Y5 and 73’ =Y, -Y].
Obviously, Y, = YU Y] and Yo NYJ = ¢. Y, is split into three disjoint subsets:
Y, NY], YoNYJ and Y, N Y/. This splitting shown in Figure 3.3 is similar to the one

for training trigram models.

Figure 3.3: Splitting Y, according to Y3 and Y7. The value of [T gwimjop1,me wiz1Wi)

=2 Cwiji1, wi1,wi
1 is shown.

Words in Y5 N ?3’ have only bigram features g(w;_1,w;) activated, while words in

Y, N Y] have only order 3 or higher features g(w;_s, wi_1,w;), g(wi_s, wi_o, wi_1,w;),

43

-+, or g(w;_ny1,- -+ ,w;) activated. Only words in Y,NY; have both bigram features
and some higher order features are activated.
By taking advantage of the fact that all feature functions ¢’s are binary, the value

of the term in the second sum in (3.8) can be rewritten as

N
9(wi—j 41, w;) g(w;)
LH Qw; i1, 5w 1 - Qy, '

=2
(awi—lywi - 1) T Oly; w; € YoN ?3'
- (H;V:?, Qu;jy1yeywi — 1) - a, w; € Yy N Yy, (3.9)

N !
(awi—ly’wi Hj:g Qo g1, wi — 1)- oy, Wi €YoNY,

in different cases. Note that g(w;_j11,--- ,w;) = 01is equivalent to setting o, ., .. w; =
1 in the equations above.

The second summation in (3.8) is thus calculated as

N
> [H o) — 1] g (3.10)

w; €Yy j:2

= Z (awi—l,wi - 1) " Oy,

wiEYQO?SI

[N
+ E : Ha’wi—j+lz'"s’wi -1 Oy

w;€Y2NY] Li=3 i

[N
+ E : Hawi—j+1:"'7wi -1 Qy;

wieYany] Li=2 i

= Z (awi—hwi — 1) - o,

w;EY2NY]

[N
3
+ E : Ha’wi—j+17'"7’wi -1 Qw1 w; *~ O

w;eYanyy Li=3

[N
+ E : H Qg1 ywi — Cw;qw; + Qu;_yw; — L - o,

’l,UiGYQﬂYé Lj=2

3Note: aw, ; w: = 1 here.
i—1,W3i

44

- Z_(awi—hwi — 1) o, (3.11)

+ E | | Qo _jyr,w; — Lf- Qw;_1,w; *~ Cw;

+ § : | | Qw;_ji1,w; — L - Oy gy - Ot

w,EYgﬂYS’
= Z (awi—lzwi —1) - (3.12)
w; €Y?
N
+) [H Qi oy gon — 1|~ Quog_ys * Qa- (3.13)
w;eYy Lj=3

The summation (3.12) for all histories takes O(B) time as we have shown in the
previous section. Even if we stop here, the above implementation with the complexity
of O(B + |X| - |Y{|) is already much more efficient than that of unigram-caching
(O(|X| - [Y])) because |Y{| << |Y| on average. However, we can further optimize
the training algorithm. The second summation (3.13) has the same form as (3.10),
and can be computed recursively by applying the same strategy.

In the remainder of this section, we formally state the hierarchical training method
and prove its correctness. We begin with the following lemma that gives the recursive

equation for the second summation above.

Lemma 1

In the N-gram model (3.6), g(w;_pny1,---,w;) forn = 1,--- | N, denotes an n-gram

feature function and o, ., w;

2

is its corresponding parameter. Let

Y, =Y, (x) = {w;:g(wins1, - ,w;) =1}, and (3.14)
Y=Y (z) = {w;:g(wgy1, - ,w;) =1, for some k > n}, (3.15)

45

forn=1,2,---, N. Then, for any given history class w; ni1,--- ,w;,
N
(Wi j1,m,w5) (Wi jy1, W)
> A emliitimt - H A (3.16)
weY) Lj=n
n—1
— 9(Wimnt1,m5wi) _ 9(Wi—jp1y wi)
= E :(O‘wi_lfl,---’,w’i V1) | | Qu;_j11, w;
weYn j=1
N n
E : | I (Wi 1, wi) (Wi 15 wi)
+ aw’i—j-}-l;'"ﬂ”i -]' aw’b JH1s Wy
wi€Yy, ; Lj=ntl J=1

Proof: Y =Y, UY,,, and ¥,,NY/ | = ¢ according to the definition of ¥;, and Y.

Y, can be decomposed to three disjoint subsets: ¥, Y, 1, ¥, NY, ;, and Y, NY, |
Note that words in Y, NY/, | +1 have no order n 4 1 or higher features activated, those
in ¥, NY,,, do not have n™ order features activated and only words in Y, NY,_,

have both activated. Therefore,

§ Wi—j+15" awz) | | w’L —j+1,)w’b)
Hawl —j+1 Wy awl —j+1 Wy (317)

’wiEY,,’l
= E (ag(wl n+1:' 7w’L) | | g(Wi—j1,m :'“%)
Wi—n+1,,W Wi—j+1, Wi
wi€YRNY, | =1
§ | | 'wz j+1s" "awz) o . | | wz j+1, 7wz)
+ awz jH1,, Wi 1 awz JH1sm W4
’wiEYnﬂYn_,’_l L j=n _
§ : | | g(w;— —j+1sr W;) _ | | g(w;i— —j+1 ,wl)
+ aw’b F+1, Wi]‘ awz —j+1 Wy
w; EY,NY! | j=n _

n+1

46

n—1
_ (Wi j 11, w;) 9(wi—jq1,w;)
= E (Qtwi_ Ty = 1) - Qi oo
wi€YnNY, 3=1
N n—1
9(Wi—j 1, w5) (Wi j 11, ,w;)
+ E | | ol Qw;_j 41, wi
N n—1
§ 9(Wi—j+1, wi) I(Wimn g1, wi) I(Wimn g1, W) 9(Wi—j 41, wi)
+ Qw;_j 1,0 w; - a'wz'—n+1,"',;'w,i + awi—n+17"',yw,i -1 Owi_j 1, wi
wi€Y,NY,, Li=n j=1
n—1
_ I Wi g1, wi) 1Y . 9(wi—jy1,me w5)
= E (awi_n%__:’w’i 1) I I Qi o i (3.18)
wieYn .7:1
N n
9(wi—jy1,m,w;5) 9(wi—jy1,m,w;)
+ E | | Qw,; ity = 1| || Qwygyi - (3.19)
wieY?,, Lj=n i=1

This proves the assertion of the lemma.
Note the first summation (3.18) takes O(#[n-gram]) time, and the second one
(3.19) has the same form as (3.17) does and can be computed recursively.

We summarize the above ideas in the following theorem.

Theorem

In the N-gram model of (3.6), the normalization factor z(x) may be computed as

N N n—1
z(z) = Z O, + Z Z LH Qi oo s — 1] . H Qw1 e w; (3.20)
j=1

w; EV n=2 w;€Y, Lj=n
for all z in O(Zgzl #[n-gram|) time, where Y,,, n = 2,--- | N, are defined in (3.14)

and o’s are set to unity if the corresponding g’s are zero.
Proof:

N
o(a) = Y [T ol
w; j=1
Define Y,, and Y, as in (3.14) and (3.15). Start from
N
2@) = Y o™+ Y ([[aliu 1] aff™,

w; EV w;€Yy j=2

47

apply Lemma 1 recursively N — 1 times with n = 2,---, N — 1 to the second term
in the right hand side of the equation above and take advantage of g being binary to
derive (3.20).

The n'* inner summation > in (3.20) has exact #[n-gram] terms for all

wEY;,
histories. The overall complexity for computing z for all histories in |X| is strictly
bounded by O(3°Y_| #[n-gram]).
I
In the algorithm above, the first summation involves unigram features only; the
second one involves unigram and bigram features, etc. The normalization factors are

thus computed hierarchically. We call this method, the hierarchical training method.

Time Complexity

In language modeling, the computation time for all denominators z per iteration
is O(Zfzv:1 #[n-gram|) for alln = 1,2, --- , N, which is the same as that for training a
corresponding interpolated or back-off N-gram model. However, a maximum entropy
model needs several iterations, whereas interpolation and back-off models need only

one.

Space complexity

The theorem above gives a constructive algorithm for computing the normaliza-
tion factors z hierarchically. First, the summation over V is computed, then that
over Ys, etc. This algorithm needs some extra space to save the intermediate sum-
mations over V', Y, Y3, etc. If N-grams are sorted lexicographically according to
Wi, Wi 1, W; 9, ,W;_N+1, the algorithm requires only O(N) extra space more than

that needed for unigram-caching.

The theorem above also holds when ¢’s are real-valued functions. The following

corollary extends the theorem for the case when the ¢g’s are not binary.

48

Corollary

In a maximum entropy model
1 N
ply|z) = @ [T os s (3.21)
§=0

where the feature functions are defined as

#0 (x1,---,z;,5y) in the training data
g9(z1,-++ ,2,y) (o) forj=1,---,N, (3.22)

=0 otherwise

the normalization factor z(x) can be computed as

Z 9(y) Z Z H 9(z1,,x5,y) 9(x1,,25,y)
« + 1317 yTjY 1] amlv 5 T5,Y

yey n=1 Ly€Y, j=n

where
Y, = {w:g(x, - ,24_1,w) # 0 for some n-gram feature g}.

Time to compute the normalization factors z for all histories is O(3>~_S,,) for all
x where Sy = V and S, is the number of n + 1-tuples (z1,---,2,,y) seen in the
training data. This time is exactly the same as that to gather empirical counts from

the training data.

3.3 Exploiting the Feature Hierarchy for Comput-
ing Maximum Entropy Models

N-gram models are a particular kind of ME model. Obviously if a word w; has
the n-gram feature activated for a given history w;_,41, -+, w;—; then it must have
(n — 1)-gram, (n — 2)-gram, ..., unigram features activated too. Therefore, for a
given history, Yy C Yy_1---Yo CY; =V, as we have shown in the previous section.
The efficiency of the hierarchical training method introduced in this previous section

comes from this nested relation among N-gram features.

49

In the real world, however, many models have non-nested features in addition to
nested ones. The training of these models is more complicated than that of N-gram
models. The complexity of computing model parameters depends on the hierarchical
structure of feature types in the model. Before we address the training methods for
maximum entropy models in general, we need to describe the feature hierarchy of ME

models in this section.

3.3.1 Relations between Features

We have shown that N-gram features are nested. Here we give a more formal definition
for the nested relation between features.

Definition 1 (Nested Features):

Let ' = xy,, -,z be a history class and 2" = z;,,--- ,z;,,,m < [be a subse-
quence of z'. g1(2',y) is identified by z' and y and go(z",y) is identified by z" and y.
If it holds that g =1 = g, = 1, then we say that ¢, is nested in go.

Example 1

The trigram feature function g(w; 2, w; 1,w;) is nested in the bigram feature
function g(w;_1,w;), and both the trigram and the bigram features are nested in the
unigram feature g(w;). However, the topic-dependent feature g(#;, w;) and the trigram
feature function g(w; s, w;_1,w;) are not nested in either direction since neither t; is

a subsequence of w;_s, w;_1 nor vice verse.

Definition 2 (Nested Feature Types):

We say feature type-I is nested in feature type-II if any feature in the feature

type-I is nested in a feature in type-II, i.e.,

V g1 € type-1, 3 g5 € type-1I such that g; is nested in gs.

20

Example 2

The trigram feature type (pattern) is nested in the bigram feature pattern because
for each trigram feature g(w; 2, w; 1, w;), there is a bigram feature g(w; 1, w;) that
nests it.

Obviously, transitivity holds for the nested relation, i.e., if g(w; 1, w;) is nested in
g(w;) and g(w;_o, w;_1,w;) is nested in g(w;_1,w;), then g(w;_o, w;_1, w;) is nested in
g(w;).

We further classify features that are not nested as either non-overlapping features

or overlapping features.

Definition 3 (Non-overlapping Features and Overlapping Features):

Two features g; and g, are non-overlapping if g;(z,y) and gx(x,y) cannot be
active simultaneously for any y € V a given history x € X’; otherwise, they are

special overlapping features.

Example 3

For example, if w; and w; only occur in topic ¢; and ¢;, respectively, the features
g(t;, w;) and g¢(t;,w;) are non-overlapping features. However, the bigram feature
g(w;_1,w;) and the topic feature g(t;, w;) may be overlapping features, because for
a given history (¢;, w;_1), some words w; may have both the topic feature and the
bigram feature activated.

We can also define the non-overlapping and overlapping relations between feature
types (patterns). If none of the features in type-I overlap with any features in type-II,
then we say type-I and type-II are non-overlapping feature patterns.

Pure non-overlapping feature patterns are rare in an ME model, but some features
may be treated as non-overlapping features in practice if their overlapping parts are
very small. Readers will see that N-gram features and topic-dependent features are
treated as non-overlapping features in Chapter 7.

Figure 3.4 shows a Venn diagram of sets of words Y; and Y5 (for a given history

x) activating two nested, non-overlapping and overlapping features, respectively.

o1

Non-Overlapping

@D Overlapping

Figure 3.4: Nested, non-overlapping and overlapping features

@ Nested

3.3.2 Representing the Feature Hierarchy of ME Models in
a Digraph

After defining the relations between features, we can now draw the feature hier-
archy of a maximum model in a digraph. In this digraph, nodes are feature patterns.
Two feature patterns g(z”,y) and g(2',y) are connected by a directed edge (or arc)
(9(z",y),g(2',y)) if g(z",y) is nested in g(z',y). Figure 3.5 shows the structure of
the topic model (1.8).

If all feature patterns of an ME model are ordered by the nested relation as are
those in N-gram models, then the structure of this model is a unary tree as shown in

Figure 3.6.

3.4 Expansion for Models with Non-Nested Fea-

tures

Many maximum entropy models have some non-nested (overlapping) features.

Therefore, they cannot be trained by the hierarchical method described in the previous

92

g(w,)

g(w., ,w,) gt \w)

Q g(V\{—z ’\Ni—l W i)

Figure 3.5: Structure of a topic-dependent model

O gw)

() gw.,,w,)

S

C’> g(\N\fN+2 """ Wi)
O g(Wi—N+1 """ Wi)

Figure 3.6: Structure of N-gram models

section. However the idea of sharing computation is still applicable. In this section
we extend the ideas in Section 3.2 to ME models with non-nested features. We focus
on a model whose conditional features are in the same order, or, in other words,
the same layer in the feature hierarchy, as shown in Figure 3.7. None of conditional

constraints in this kind of model are nested.

93

g (W)

7

O O

g(XiuW,) 9(Xy,W,;)
Figure 3.7: The model with a flat feature hierarchy

3.4.1 Training Models with Non-Nested and Overlapping Fea-

tures

We again start from a simple model: a model with unigram features g(w;), bigram

features g(w;_1,w;) and the topic features g(¢;, w;). For this model

9(wi) | g(wi—1,wi) g(ti,wi)

Ol w;-1,w; t; Wi
p(wilti, wi 1) = — (3.23)
Z(t,’,’wi_l)
where
E : w; Wi 1,W; g(t;,w;)
tzawz 1 ag 0. w(z 21,1111 i) atiﬂj)i e
w; eV

The feature hierarchy of the topic-dependent bigram model is shown in Figure 3.8.

g(w)

g (W.,wW) g(t,,w)

Figure 3.8: Feature hierarchical of the topic-dependent bigram model

The normalization constant z can be computed as

Z(tz‘,wi—l) — Z ag(w'], + Z w:ull é},lwz) Z(ﬁz,iwi) _ 1) ; ai}(iwi) (3_24)

w; €V w; €Yy

04

by unigram-caching in roughly O(}_ ¢ |Yz|) time for all seen (t;,w;_;) pairs. We
notice that for w € Y, many of them have either regular bigram constraints or topic
constraints but not both. We take advantage of this fact and simplify the computation
of calculating z.

Similar to splitting Y, in (3.24) according to bigram and trigram constraints, when

training trigram models, we split Y} into subsets Yy, and Y,, = Y, — Y,,, where
Y = {w; : g(w;_1,w;) =1 for some bigram features },
and also into Y; and Y; = Y, — Y}, where
Y, = {w; : g(t;, w;) = 1 for some topic features }

Table 3.2 shows the values of g(w;_1, w;) and g(t;, w;) for words w; in Y, N Yy,
Y, NY, and Y,, NY, respectively.

‘ word set ‘ g(w;_1,w;) ‘ g(ti, wi) ‘

Y, NY, 1 0
Y,NY, 0 1
Y,NY, 1 1

Table 3.2: Value of g(w; 1, w;) and g(t, w;)

Figure 3.9 shows the value of aﬁ,(;fi_,é,’iwi) -0 Sffi’w") — 1 in the three subsets of Y.

Yun Yy YwNYe Yun Y
| | /
Oy w—1
W-1.W ati,wi_l<— YX
WﬂvWalt :Wi_l
‘\ P 1
A 4\ A
Yw \ Yt

Figure 3.9: Division of Y, according to bigram and topic constraints

95

Therefore,
(awi—h’wi - 1)a’wi w; €Yy, ﬂ?t
(O“/Z)(;fil_,b’iwo) atgi(,ifl,iwi) B Dail(iwi) - (atiﬂlh' - 1)C¥wi w; € ?w nYy; (3.25)

(awi—lywi T Oy 1)0411% w; € Yw N Y;f

The second sum of z(z) in (3.24) can thus be re-written as

D (o - o = 1) - ol (3.26)
weY,
= Z (awi—lawi - 1) “Quy; t Z (ati;wi - 1) " Q;
wi €YYy w;€YuwNYe
+ Z [(a’wi—lawi - 1)(0%;,1111' - 1) + (awi—1,wi - 1) + (ati;’wi - 1)]awi
w; €Yy NYy
= Z (awi—l,wi —1) - o, + Z (ati/wi —1) - o,
w; €Yy w; €Yy
+ Z (awi—l;’wi - 1)) (ati,’wi - 1) " Oy - (3'27)
w; €Yy NYy

Analysis of Complexity

e The first summation in (3.27) depends only on w; ;. It can be computed in

O(B) time for all histories and cached for re-use.

e The second one depends only on ¢;, and can be computed in O(B;), where B; is
the number of topic unigram constraints, and then shared by the histories with
the same t;. Note that these two numbers are strictly smaller than the size of

training data L.

e The complexity for the last summation is O(|Y,, NY%|) time for each history and
O (ws_1.1)ex |Yw NYy]) for all histories.

In summary, computing z for all “seen” histories by (3.27) will take O(U + B + B, +
> i tex |[YwNYy]) time. U, B and B, are very small compared to 3. e ¢ [YuU

Y;| and thus can be omitted. Since the baseline unigram-caching method takes

o6

O (w1 myex |Yw U Yy|) time, on average, the speed-up of using (3.27) is roughly
the ratio of |Y,, UY;| and |Y,, NY;|.

Y, NY;| is very small if g(w; 1, w;) and g(t;, w;) are almost non-overlapping fea-
tures. On the other hand, the size of this intersection can be as large as min(|Y,|, |Y;|)
if g(w;_1,w;) is almost nested in g(¢;, w;) or vice versa. This implementation is practi-
calt if |Y,,NY;| << |Y,,UY;| . For example, in Switchboard, | X| ~ 700,000, Y, ~ 200,
Y;| ~ 200 and |Y,, UY;| = 330, so | X|- |V, UY,| ~ 2-10°. However, |V, NY;| = 50,
B =~ 300,000 and B, ~ 15,000, so |X| - |Y,, NY,| + B+ B, ~ 4-10%. Using (3.27)
to train the model will result in a five- to six-fold speed-up compared to using (2.30)
directly. In Broadcast News, the speed-up from (3.27) is roughly fourfold. Since the
gain of this implementation comes from sharing the computation among the “non-
overlapping” part of Y,, and Y}, we will refer to (3.27) as non-overlapping sharing in
the remainder of this dissertation.

Unlike N-gram models whose training complexity is strictly bounded by L, i.e.,
the size of training data, non-nested models usually cannot be trained in O(L) time
because }

training data, Y,,NY; contains words w; where (w;_1, w;) occur and (#;, w;) occur in the

wi_1tex |YwNY:| may exceed L. For a given history class (w;-1,;) in the
training data no matter whether the 3-tuple (w;_1, t;, w;) occurs or not. For example,
the phrase “a big dog and a small cat” appears in the topic pets, but “big cat” does
not occur in the topic pets even though it does appear in other topics. However, “cat”
still needs to be considered in |Y,, NY;| when the history is “w;_; =big, t;=pets.” As
a result, many triples (w;_1, w;, ;) not seen in the training data have to be considered

in computing z.

Extra Space Requirement

One minor drawback of non-overlapping sharing is the added space complexity.
Summations over Y; and Y,, must be saved for all topics and words respectively in
order to compute the summation over ¥; N'Y,,. Therefore, extra space of O(|V|) plus

O(|T)) is required where T is the number of topics. This drawback is minor for only

4Although |V, NY;| < |V, UY;| always holds since intersection is smaller than union, this
implementation is not necessary if the speed-up is not substantial.

o7

two kinds of overlapping features. However, it may become a severe problem when a

large number of overlapping features are active simultaneously.

3.4.2 Model with M Kinds of Bigram Constraints

The method above can be extended to a model with a unigram feature g(w) and

M bigram-like features g(uy, w), g(ug, w),- - -, g(upr, w):
g(w) _ g(u1,w) g(ur,w)
Ol . aul,w < Oy w
bplwuy,---,u = , 3.28
(‘ 1 M) Z(Ul,"',UM) ()
where
z(x) = z(u1,---,un)
= Zaz)(il)) + Z ozz)(“’) [az(l%;w) .. .ags\jf\gm —1].
w wEYy

We again take advantage of the fact that the intersection of sets is smaller than
their union and split the summation over Y, into several summations over smaller

subsets. We first define “base” word subsets as
Yn:{wg(un,w) =1 fOI"n,: 1’ ,M}

Y, can be thus split into Y,, and Y, — Y, in M ways, one for each n. There are 2™

different intersections I of sets Y7, Y5, -+, Yy, as listed in Table 3.3.

IO - Yx

L = Y

L = Y,

I3 = Y1 Ny,
Lu_s = Y nyz -+ Yy,
Iu_y = Yo NYz - Y,
Ly = Y1 NY; o Yy,

Table 3.3: All 2M intersections of M subsets.

o8

Let Y,,, NY,,, N---NY,,, be the intersection of P base subsets Y,,,,, Yy,, -+, Y,

of Y, where mq,--- ,mp € {1,2,---,n} are their indices respectively. We choose a

subscript k£ for this intersection as

find which subsets are needed to construct the intersection I.

P
k= Z 2mq71’
g=1

and denote Y,,,, NY,,, N---NY,,, by I} for simplicity. From the subscript £ we can

Table 3.4 illustrates the bijection between the intersection I and the binary num-

ber k.

base sets
I

Y,

Y,

Y3

Yar—2

Y-

Yu

1

0

1

0

1

1

Table 3.4: The mapping between intersections and binary numbers. Ij is the intersec-
tion of subsets with value 1 under them. k is a binary with value 1 in corresponding

bits.

For instance, when M = 3,

Iy, = Y,
L =Y
L =Y,
I = YInY,
I = Y3
I; = Y1NY;
Iy = YoNY;
I = YINnY,NY;
Now we examine the value of aigqfﬁ,’w) —1 (for j = 1,---, M) for words w €
Y1, --+, Yu and find it is non-zero only for w € Y;. In more general cases, the

product Hle(aisg;fﬁ,’w) — 1) is non-zero only for word w € I, where k = 25:1 omq—1

99

Therefore,

9(um ; ,w) 9(Um ; ,w)
)0} (RIS 93 | (Tt
weV j=1 wel}, j=1
This property is very useful in deriving the algorithms for computing the normaliza-

tion factors z in the model with M overlapping bigram constraints.

We need to define another shorthand notation

Ap = (@20 — 1) (@™ — 1)ag) (3.29)
where £ is the index for the intersection of P subsets Y, , Yy, - -+, Y, ; for instance,

Ao = oy, the unigram parameters and

M
A2M_1 = Oy H(Oéuk,w - 1).
k=1

We can write the property about I using the notation A as

d A=) A (3.30)

weV wely
There is also an important property of the A;’s. We can rewrite a2" 1Y, i)
as
M
o [[et = “”H[o) —1) + 1 (3:31)
i=1

= Z Ay
k=0

We now can derive the following lemma, which is an extension of Equations (3.26)-
(3.27), from the two properties above.

Lemma 2: In the model (3.28), the normalization factor can be computed as

= 22_1 D Ay (3.32)

k=0 ’U)EIk

60

proof:

Using the property (3.31), z(z) can be rewritten as

M
2(x) = 7 ad™ . [agle
=1

weV %
2M 1
= 2 [2 A
weV k=0
Using the property (3.30), it can be rewritten as

oM _q

z(z) = Z Z Ap.

k=0 wEIk

3.4.3 Analysis of Complexity

First we analyze the complexity when M = 3:

z(ur, ug, u3) = Z Ao+ ZA1+ ZAer ZA4

wEYy weY1 weYs wEYs3
LD DERE D DR LE D DR

weY1NYs weY1NYs weYaNYs
+ E As.

weY1NY>2NYs

The first four summations can be done in O(U), O(B;), O(By) and O(Bs) time,
respectively, where B;, B, and B3 are numbers of bigram constraints of the kind
(u1,w), (us, w) and (ug, w), respectively. The three following sums require the time
of O(Y 4, mpext [Y1NYa]), O(X,, woex 1Y1NY3]) and O(3,, u.cx 1Y2NY3]), respectively
as analyzed in Section 3.3.1. The last one needs O(_, ., y.ex [Y1 N Y2 N Y3|) time.
O(U + B; + By + Bs) is small comparative to the rest and thus may be ignored. This

implementation, therefore, is more efficient than unigram-caching when

Yoo omn+ Y VinYl+) BnY+) MinYany

u1,up€X u1,us€X u2,us€X u1,u,us€X

<<). Muvuyl

u1,u2,u3€EX

61

Obviously, each sum on the left-hand side is strictly less than that on the right-hand
side. However, it is not guaranteed that the four sums together on the left-hand side
are still significantly less than the right-hand side if the intersections Y; NY,, Y1 N Y3,
YoNnY; and Y7 NY; NY; are large. Therefore, this implementation is useful only
when the extent of overlap between features is small. In practice, it will reduce the
computation by about 50% in training syntactic models.

Now we analyze the training time for the model with M arbitrary kinds of bigrams.
Y we L, Agk_q for k =1,--- , M is fixed for all histories sharing the same symbols
uy at positions k, and it needs to be computed only once and may then be reused.
One can easily check that this sum needs only O(By) time, where By is the number
of “bigrams” (uy,w;) seen in the training data.

It is difficult to precisely enumerate the complexity of other terms, whose complex-

ity depends on two factors, the number of different history subsequence ty,,, - - , Um,
denoted as Hy, k = Zle 2™i and the average size of I;. Usually, the larger the

size of Iy, the smaller is Hy, and vice versa. If, fortunately, all features are almost
non-overlapping features, i.e., if Nyl &~ ¢, then the computational load is quite low.
On the other hand, if some features are heavily overlapping, this implementation may
not save computation. In the worst case, this implementation could be even more
expensive than a direct implementation of (3.29).

Next we provide an upper bound of the running time of this non-overlapping shar-
ing method and give a sufficient condition for using this method instead of unigram-

caching in training maximum entropy models. Let

T, = # of terms in Z A, for all seen histories.

wely

E.g., Ty =U, T, = By, etc. Let
Traz = max Ty. (3.33)

The overall complexity is then less than O(2M - T, ...
If this number 2 - T},,, is less than the number of terms in unigram-caching,

then non-overlapping sharing is worth applying. 7}, is usually close to Thx_;. Care

62

must be taken regarding two factors when using this method. First, the size of M
should be small because 2™ increase exponentially in M. In practice, M should be
less than four in language modeling. Second, redundant features should be avoided
so that the intersections of two or more Y} subsets are kept small in size. We will
show in Section 5.5 that dropping some redundant syntactic features will not degrade

the precision of the syntactic model.

Concerning Extra Space Requirement

Summations over I for k = 1,---,2™ — 1 must be pre-computed and stored in
order to compute the summation over Y,. Therefore, the extra space of O(,2;4; " 1)

is required.

More Discussion

This approach can be extended easily to train a model with only M “order n”
conditional features. As we will show in subsequent sections, it can also be used with
other simplifications in training methods.

In general, the training of models with overlapping features is less efficient than
that of the N-gram models because, as stated before, of the need to consider many
tuples that do not appear in the training data; specifically,

1. the right hand side of the Equation (3.32) has 2 summations instead of N as in
(3.20), and

2. the computational load for each summation » Ay, over the overlapping parts

wely,
may be enormous if feature patterns are heavily overlapping.

It is worth mentioning here that cluster expansion in Lafferty & Suhm (1996)
works similarly and has the same complexity as this method for models with one
kind of unigram features and M kinds of bigram features. The difference is that we
only use non-overlapping sharing for the features in the same hierarchy, while they
applied the idea to all features. Therefore, non-overlapping sharing can be regarded

as a special case of cluster expansion.

63

3.5 (Generalized Hierarchical Training Methods

Section 3.2 shows the best cases of maximum entropy models whose features are
all nested. Their training time of O(L) has already reached the lower bound of the
empirical estimation. Section 3.4 shows the worst cases in which none of conditional
features are nested. Most maximum entropy models lie in the middle between these
two extreme cases: they have both hierarchically nested features and non-nested fea-
tures. In this section, we will combine the ideas earlier shown for these two cases, and
achieve a more general approach for ME models that we call generalized hierarchical
training (GHT).

Most of maximum entropy models are designed to combine several sources of
information together. It is natural to assume that these information sources are
mutually non-redundant, even though the maximum entropy method does not require
this assumption.

Let M be the number of information sources from which the constraints of the
model are selected, and let N be the highest order of constraints. We first derive

generalized hierarchical training methods based upon the following two assumptions:

i. independence assumption: all information sources are non-overlapping.
(The subsets of the “history” x representing each information source from
a disjoint partition of z.), and

ii. hzerarchy assumption: all feature patterns within an information source
are nested.

Later, we extend GMH to models where these two assumptions need not hold.

3.5.1 Training MN-gram Models Hierarchically
MN-gram Model

Let M be the number of information sources, and N be the highest order of
constraints. We call the maximum entropy model an MN-gram model if it satisfies
the independence and hierarchy assumptions. For example, a regular N-gram model

can be regarded as a 1N-gram model, and the model in (3.28) is an M2-gram model.

64

We need to introduce some notation before we discuss the training of MN-gram

models. Let

M,N—1 .
ull =T = <u1,17u1,27' L ULN-1, U210, U N1, UM, " ;UM,N—1>

be a history equivalence class. If the order of constraints from some information source

¢ is less than N — 1, we simply set the corresponding high order u; ji1,--- ,u;n—1 to
null.

Let g(w) be the unigram feature function, g(u; 1, w), - -, g(wi1, - - -, in—1,w) for
1=1,2,---, M be bigram, -- -, N-gram features from information source 1.

The maximum entropy MN-gram model can be written as

()
Hz IH] =2 g:jlll ,w

M,N—1
p(w|u1,1) = M,N—1) (334)
Z(“n)
where
uz{ Y= g, uij,l, and
M,N— w g(up] ™! w)
z(uyy H = Z@g)HHOtu” llw : (3.35)
wev i1 j=2

Note that we use subscript ¢ for the information source, and j for the order. The left
digraph in Figure 3.10 shows the feature hierarchy of MN-models. Now we hierarchize
this MN-gram model to a model that looks like N-gram models.

Hierarchizing

Let U; = (u1, - -upny) for j =1,2,--- | N — 1°. We define a super feature f as

1 ifg(us, -+, uij-1,w) =1 for some ¢,
(U, Ujg,w) = . ")

0 otherwise

5If the highest order of constraints from some information source i is less than j, we simply let
the feature corresponding u; ; be empty.

65

and its parameter:

M

3 _ a.‘](ui,ly"' Ui j—1,W)
Uy, Uj—1,w — Ug, 1y 54,5 —1,W *

i=1
We call this procedure hierarchizing. For example, in the model (3.23), the bigram
feature g(w;_1,w;) and the topic feature g(¢;,w;) are compounded to generate the

super bigram features

0 if g(wi_1,w;) =1 or g(t;, w;) =1,
Fwi—1, ti, w;) =
0 otherwise.

After hierarchizing, all super-features f; are now nested features by construction.
Model (3.34) becomes

w UJ
f(HJ 2ﬁf
(UI? ; UN—l)

p(w|Uy,---,Uy1) = (3.36)

where
Ufil = U17U27"' U] 1

2O Una) = B Hﬁful w

weVvV

Figure 3.10 shows the feature hierarchies of MN-gram model before and after this
transform. Now we show the hierarchical training method for model (3.36). We define

base word subsets
Yij={w:g(uiy, -, uij_1,w) =1},
and
Yj = Ui, Vi
We also define

N
Y}I - Uk:]Yk'

66

9 — 0k
)

9, 2,2 B f2

91,3 92,3 gM,3 —_— f3
O

gl,N—l gZ,N—l gM,N—l D fN»l
O

gl,N gz,N gM,N - fN

Figure 3.10: Converting the MN-gram model to the n-gram model with super features.
gn) = g(w) and gpj4 = g(usq,-- - ,us;-1) for simplicity.

We extend the recursive equation (3.16) in Lemma 1 as

> H ﬁ,’}n’]ﬁ w1 Hﬁ{j(fl (3.37)

weY’ n=j-+1
DA Hﬁ;}n’ﬂil + > [H Bl -] Hﬁf‘U"l
weYj wEYj'+1 n=j+2 n=1

Only the first summation on this right hand side in (3.37) need be calculated
directly; the second one will be evolved recursively. If M is small, We can use the
trick presented in Section 3.4 to compute the first summation.

We call this method generalized hierarchical training.

Analysis of Complexity

The computation of z is split into N summations Zweyj forj=1,---,N. We need

FnUP™Hw)

to mention here that the time needed for each summation) ev! T i ﬁUn_l

I | ,J;’Z(Ul) is no longer bounded by the size of the training data, and it is

roughly O(2M - T...) where T, is defined in (3.33) in Section 3.4.3. However, in

67

practice, this implementation of GHT is still much more efficient than the baseline.
In the baseline method, the time complexity can be estimated as O(|X| - |¥;|) where
|)2'| is the number of w;1,---,up n_1 seen in the training data and Y| > |Val.
In the generalized hierarchical method, the complexity can be roughly estimated as
O(Z;.V:2 | X;| - |Y;]) where | X;| is the number of history class w1, -- -, up;_1 Seen in

the training data. Since |Yy| < ---|Yj|--- < |V3| << |Va| and |X;| << |X],

N
D IXG| Y] < 1 Xo| - Yol + (N = 2)| X - |Va] << | X] - |Val. (3.38)
=2

We can approximate the running time by O(|X,| - [Ya| + (N — 2)|X| - |¥3). The
summation Zweyj in (3.37) can be computed directly or aggregated from the 2V
partial summations over intersections of Y; ;’s using the non-overlapping sharing de-
scribed in the preceding section, depending on which is more efficient. If distributed
to 2™ summations, the complexity is strictly less than O(N -2M . T;,,.) where M here

is the maximum number of overlapping features in any super-feature and 7,,,, is as

defined in Section 3.4.

3.5.2 Training a General ME Model Hierarchically

Now we show that the generalized hierarchical training method still applies with-

out the above independence and nested assumptions.

We need to define some terms and notation that will be used later.
Definition (partial order set POSET):
A partial order “<” is an order defined for some, but not necessarily all, pairs of
elements on a set S.
Partial order set (POSET) (S,<) is a set of elements that are subject to a partial
order <.
An element e, in a POSET (8, <) is a minimal element if there is no element e such
that e < e,,. It is also a minimum element if e,, < e for any element e in the POSET.

An element ep; in a POSET (S, <) is a mazimal element if there is no element e

68

such that ey < e. It is also a mazimum element if e < ep; for any element e in the
POSET.

Let x = wuy,us,---,u; be a history class determined by k& symbols, and s =
Uiy, Uiy, **+ , Ugy, be a subsequence of z determined by k' symbols. All subsequences s
of x create a partial order set (POSET) S of 2% elements with the ordering relation
s < s if s is a subsequence of s’. Any feature types in an ME model are a function
of a subsequence s and a predicted symbol y.

Let G be the set of features. Obviously, the nested relation is a partial order
relation on GG. Therefore, all feature types form a partial order set with the minimum
element (or feature) g(y). There are some mazimal elements (or features) in this
POSET, but the mazimum element may not exist®. The following (mazimal first)

algorithm provides a recursive way of hierarchizing ME models.

Algorithm (Hierarchizing)

Step 1: Create super-features f(s',y) from all common maximal features
9(s1,9),9(52,9), -+ ,g(sj,y) where s’ is the shortest super-sequence’ for
all s1,59,---, 5.

f(s',y) =1 iff some f(s;,y) =1fori=1,2,--- 7.

Note that f(s',y) is a super feature of the highest order.

Step 2: Construct the remaining feature set G’ by removing all maximal
features 9(31, y)7 9(827 y)7 o :g(8j7 y) from G i'e'f

G, =G - {9(817 y)7g(827 y)7 e ,g(Sj, y)}
Step 3: Set G = G'.
Repeat Step 1 and 2 recursively and create super-features f(s”,y),---, f(s", y).

See Figure 3.11 for an example of hierarchizing.
It can be easily checked that all these super-features f(s',y), f(s",y),---, f(s™,y)
are nested features. We need only to show that f(s',y) is nested in f(s",y). If

6Maximum element exists if and only if there is a feature g(s*,y) such that s < s* for all s € S.

Actually it is not important whether the maximum element exist here.

7s' is a super-sequence of s if and only if s is a subsequence of s'.

69

f(w)

O f(Xl1X2 1W)

O f (Xl X2 X3 ,X5 aW)

f (Xl ,X2 ,X3 ,X4 ;X5 1X6 !W)

Figure 3.11: Hierarchizing: non-nested to nested

f(s',y) = 1, there must exist a g(s;,y) = 1 where g(s;,y) is a maximal element.
9(s;,y) must be nested in a maximal element g(sx,y) € G’ according to the feature
hierarchical structure, and g(s, y) is contained in f(s”,y) according to the hierarchiz-
ing procedure above. g(s;,y) =1 = g(s,y) =1 = f(s",y) = 1. Therefore, f(s',y)
is nested in f(s”,y). Of course, there are other ways of creating nested super-features
from the original feature set. The algorithm above is only one example of hierarchiz-
ing. After hierarchizing, we can use the hierarchical training method in Section 3.2
together to train such an ME model.

The complexity analysis is similar to that of the MN-gram model. Let M be the
maximum number of features a super feature can contain and N be the highest of
order of a feature. We can use the non-overlapping sharing described in Section 3.4 in
addition to the generalized hierarchical training method to deal with the overlapping
features inside a super-feature, or use the generalized hierarchical training individually
if the number of interacting features is too large. The complexity of the former is
roughly O(|X,|-|[Va|+ (N —2)|X|-|V3]) and that of the latter is roughly O(N-2.T,,..).
Overall, we can roughly estimate the complexity as min(O(|Xy| - |Ya| + (N — 2)|X] -
Y3]), O(N -2 - Ty42) using the notation for MN-gram models. If M - N is a constant,

the model with a large N can be trained more efficiently than the one with a large

70

M because the former has better feature hierarchy.

It is again worth mentioning that the cluster expansion method of Lafferty &
Suhm (1996) does not take advantage of hierarchical structure among features, and
treats the features of all orders as if on a flat level. Therefore, it results in less
efficiency compared to GHT. The complexity for training an MN-gram model using
cluster expansion is O(2¥ - 2M . T!) instead of O(N - 2M - T, ,.), and it is easy to
check that 7

mazx

> Thaz-

3.6 Divide-and-Conquer

The generalized hierarchical training method is designed for general purposes, but
may not be the optimal method for some models. For instance, to train the following

topic model

g(wi) g(wi—1,wi) g(wi—2wi-1,wi) g(ti,w;)
Q; Wi—1,W; Wi—2,Wi—1,W; ti,w;

2(W;—2, w;—1,1;)

p(wilwi—g, wi1,t;) = ; (3.39)

using (3.37), we compound g(w;_1, w;) and g(¢;, w;) to generate a super-feature f(w;_1,
ti,w;). We also need to define f(w;—q, wi—1,t;, w;) = g(w;—1,w;—1,w;) so that super
trigram features can be nested within super bigram features. The computational
load corresponding to f(w;_1,%;, w;) depends on the number of words having a bi-
gram feature g(w; 1, w;) activated and a topic feature g(¢;, w;) activated, i.e., the size
of Y,,NY;. Even though Y,,NY; < Y,,UY;, and thus the generalized hierarchical train-
ing method, is more efficient than the baseline approach, it is still far more costly
than the optimal one we can reach for the topic model.

Therefore, we will introduce another efficient training method for topic-dependent
models. One may observe that within a given topic ¢; the value of the topic feature
g(t;, w;) is independent of w; 9, w; 1 and can be treated as a marginal feature. We
can take advantage of this and use a divide-and-conquer approach ® to train the

topic-dependent model at a very low cost. This approach involves five major steps:

8Divide-and-conquer here is slightly different from the concept in computer algorithms which
means dividing the computation recursively. Here the computation is only divided once.

71

Step 1: Partition the training text into topics Dy, Dy, --- , D where K here is
the number of topics.

Step 2: For the training data of topic ¢ denoted as D, collect N-grams.

Step 3: Compute all normalization factors z in same topic ¢.

Define

fi(w;)) = g(w;) fort =1,--- | K

and
' a’wq; : a’ti,wi lf g(tza wz) = 1’
Xy, = (3.40)
Oty otherwise.
then
1 fi(wq) g(wi—1,w;) | g(wi—o,w;_1,w;)
2(Wiz, Wiy, ZO‘ COw s Qs
weV

Step 4: Now fi(w;), g(w;_1,w;), and g(w;_s,w;_1,w;) are nested features. Use

the formula (3.20) to compute all z(w;_y, w;—1,1;) for fixed t.

t(w;) g(wi—1,w;) 1 fe(wg)
Z(’LU«L 2, Wi— 1) E C\f + E : 'u)l 7’1,1111 Y= 1) : a’wi
w; eV w;EYs
E g(wi—1,w5) | . g(wi—2,wi—1,w;) 1 fe(wi)
+ (awi—l,ﬂh' awz’—z,wi—hwi 1)aw¢)
wiEY,g

Step 5: Collect partial feature expectations by topics. Details of this step will
be given shortly in Section 3.7.

Analysis of Performance

The number of multiplication in (3.40) in Step 3 is exactly the number of topic features
denoted as Upypic’. The running time in either Step 4 or Step 5 is roughly O(U +
Bj +1Ty) for each topic k, where Bj is the number of the combinations of words w;_;
in topic £ and words w; following w;_; in the training data, and 7} is the number of

combinations of bigram w;_s, w;_; in topic k& and their following words in the training

9 Assuming that Uzppic > U.

72

data. It should be noted that B; here and Bj used in non-overlapping sharing and
generalized hierarchical training are slightly different, because the subscript & in the
former represents the order, whereas it represents the information source in the latter.
B; and Ty are usually of the same order as the numbers of bigrams and trigrams in
topic k respectively. The total time is thus less than O(U - K + Zfi By +Ty) *° for
all topics. This time is about the same as obtaining K individual different empirical

estimates for K topics.

This method can also be applied to other models similar to the topic-dependent
model (3.39) that have N-gram constraints and one other kind of constraint not nested

in N-grams, e.g., the model with part-of-speech tag constraints:

g(wi) g(wi—1,wi) g(wi—zwi—1,wi) g(posi—1,w;)
Qw; wi—1,W; Wi, Wi 1,Wi POSi—1,W;

Z(wi—2, Wi—1, pOSi—l)

P(w;|w; g, w;_1,pos;_1) = .

where pos;_; is the part-of-speech tag of the previous word w;_;.

To train this model, we need only to partition the training data according to
pos; 1 instead of t; and then follow the steps of training the topic-dependent model.
It should be noted that this method cannot be used when the number of partitions
is too large, since the overhead time in Step 1, Step 2 and Step 3 would then be
considerable.

It is worth mentioning that divide-and-conquer (DC) can be regarded as a vari-
ation of GHT. In the generalized hierarchical training, the regular bigram feature
and the topic feature are combined into a bigram super-feature, while in divide-and-
conquer the unigram feature and the topic feature are combined to create a unigram
super-feature. This slight difference in organizing the computation results in different
efficiencies for topic models between divide-and-conquer and the generalized hierar-
chical training. Figure 3.12 illustrates the differences between these two approaches
in hierarchizing the topic model.

In Section 3.8, we will show that both divide-and-conquer and generalized hier-

archical training can also be used together to train language models with both topic

10 Actually no more than O(U + Uyopic + Zfil By 4+ T};) because o' needs to be computed only
for words with topic constraints in Step 3.

73

f 1]
f [2]
f [2
f
[3]
Oy f 18]
Generalized Hierarchical Training
R f f 1]
a f
g[2,1] - 9[2,2] f 2
f
[3]
Oy f 18l

Divide—and-Conquer
Figure 3.12: Generalized hierarchical training vs. divide-and-conquer

and syntactic constraints.

3.7 Feature Expectation

In previous sections, we focused exclusively on the computation of the normaliza-
tion factor z in previous sections. In this section, we briefly describe the computation
of feature expectations.

Any simplification in computing z in the previous sections can be applied to the
computation of feature expectations. We will show, by the example of the topic model
(3.39), how to compute the expectation of the N-gram features g(w;), g(w;—1,w;),
g(w;—9, w;—1,w;) and the topic feature g(¢;,w;). The computation of other feature
expectations is similar. We will use the computational tricks of hierarchical training

and divide-and-conquer in calculating the feature expectation.

74

The expectation p[g(w; o, w; 1,w;)] of trigram features g(w; o, w; 1, w;) is rela-

tively easy to compute according to

P(Wim2s Wim1,6) gwn) gltiws) glws vwn) - g(ws 2w 1,08)
Wi—9, Wi—1, W; = Lo € Y € €
p[g(1—2 i—1 Z)] tziz(wi—Qawi—lati) w; 7, Wi i—1,W; 1—2,Wi—1,W;
It is easy to check that the time complexity for trigrams is only O(#[w; o, w; 1, w;, t;]).
Computing the expectation of bigram features g(w;_1, w;) needs to use the idea
of hierarchical training. It should be noted that w;_; and w; here can be regarded as

fixed coefficients instead of variables.

plg(wi—1, w;)]

o p(wi—27 Wi—1, tz) ag(wl) . ag(ti,Wi) . ag(wi_l,wi)ag(wi_z,wi_l,wi) . g(w 1 w)
— i - aps 1— 1
: : Z(wi72, w;_1, tz) Wi 7, Wi Wi—1,W;5 Wi—2,Wi—1,W; ’

Ly wi—2

P(Wivo, Wint, 8i) | o) | gltiwn) | glwi—s,m)
= wi) . \hWi) Wz— ;'u}z . 1, W 3.41
Z Z Z(wi—Q’wi—l,ti) Qpy; O, w; Olu;Z_l,u;z g(w, 1 wz) ()

t; Wi—2
Z P(Wim2s Wis13) gws) atiws) _g(ws1ws) (. g(ws2wi1w:)
+ Ofg, i ay. i a.‘]' zflav i (Ozg, 172’, 7,71;4 i) 1) (342)
Z(Wi_Q, Wi_1, tz) w; 1 Wi Wi—1,W; Wi—2,Wi—1,W;

ti,wi—2

Wi—2 2(wi—2,w;—1,t;)

[Z w} in (3.41) can be pre-computed for all bigram features in
O(#[w;—2, w;_1,t;]). The remaining of computation in (3.41) takes roughly O(#[w;_1,
wy, t;]) time for all bigrams. For all bigrams w; 1, w;, the computation in (3.42) takes
O(Z,ﬁ{:1 Ty) where K is the number of topics and 7}, as defined in the previous sec-
tion, is the number of combinations of bigram w; 1, w; in topic k£ and their preceding
word w;_o in the training data. The overall complexity is the same as computing z
for all histories.

Computing the expectation of unigram features g(w;) may take very long time if

improperly implemented. We use a similar computational trick to that we have used

75

in computing the normalization factor z.

plg(w;)]
ﬁ(w'_z,w‘—lat') ti,w; i—1,W; i—2,Wi—1,W;
= 2 X Calares el atrimaltnoim (343
t; wi_2,wi_1 z_2’wz_1’ '
2(Wi—g, wi—1, ;) ' o

[P(wi_g, wi_1, ;) ws) gt w; S
+ Y > [Zz .) 1 g g9 (qetui—sw) _ 1) (3.45)

ﬁ(wi—%wi—l,ti) (w;) - 9(tiwi) _ g(w;) (g(wi .)
+ ad g T i LW (A Wi-2Wi-1Wi) _ 1)(3 46
Z (wi727wi717ti) i tiyw; i—1) (i—1,W;)()
Formula (3.43) shows the straight-forward implementation, and (3.44)-(3.46) illus-
trate the improved version. In particular, Formula (3.44) takes advantage of unigram-
caching, while (3.45) and (3.46) take advantage of hierarchical training. It should be
noted that

LD D % in (3.44) is fixed given t; = k, so it can be computed
once in O(|Xy|) and then reused for unigram features g(w;) within the same

t; = k, where |Xj| is the number of histories in topic ;

P(wi—2,wi—1,t;) Plwi—2,wi—1,t;

* >, e in (3.45) is a byproduct of >°, m and so
needs no extra computation, and the number of terms to be summed for all
g(w;) is Z,le B;, where By, as defined in the previous section, is the number
of the combinations of words w; in topic £ and words w;_; preceding it in the

training data; and
e in (3.46), the number of terms to be summed for all g(w;) is Zle Ty

Therefore, the overall time complexity is roughly O(Yr_, Bf + .1, T¢), which, as
shown in Section 3.6, is the same as computing the normalization factor z for all

histories in the training data.

76

The expectation of the topic feature g(t;, w;) is computed similarly to that of

unigrams, but ¢; here is a fixed coefficient instead of a variable.

- Z Pwiz, Wiy, t) Q{g(lwi)ag('wifl;wi)ag('wifblwifl’wi)ag(ti’jwi)
Wi—2,Wi—1 Z(wi—Qa Wi—1, tz) wi Wi—1,w Wi—1,W; Wi
[P(Wi2 Wi 6) | o) altssun)
= . 3) Z!' 2 3.47
|"ll)' Z Z(wi_z, Wi—1, tz) a’llh, atuﬂh ()
i—2,Wi—1 i
P(Wia, Wic1, i) | gws) o 9ttiw0) (gwi-a,w0)
+ o9 Wi) o I\ W) (g(wi1,wi) 3.48
Z Z Z(wi_Q, 'U)Z'_]_’ t) wi tl »Wi (Wi—1,W;) ()

Wi—1 | Wi—1

+ p(wi—27 Wi—1, tZ) ag(wi)ag(ti:wi)ag(’wi_l,wi) (ag(wi_g,wi_l,wi) _ 1) (3 49)
t) Wi ti,w; Wi—1,W Wi—2,Wi—1,W;)
A~ z(wig, wi, 1)
Wi—2,Wi—1

All summations in (3.47), (3.48) and (3.49) can be obtained for free when computing
plg(w;)]. Tt can be easily checked that the time of computing all feature expectations
in the topic model (3.39) is the same as that of computing z for all seen histories as

shown in Section 3.6.

3.8 Examples: The Training of Several Practical
ME Models with Non-nested Features

We implement three kinds of ME models with non-nested features in this dis-
sertation: the topic-dependent model, the syntactic model and the composite model
with both topic and syntactic dependencies. The training of topic models has been
described in the previous section. In this section we provide some details of training

the syntactic model and the composite model.

3.8.1 Training ME Models with Syntactic Constraints

We can obtain meaningful syntactic information via parsing the sentence. For each

word we can use its last two exposed head words (h; o, h; 1) and their non-terminal

7

labels (nt; o, nt; 1) of the partial parse T as predictors. We use them in combination
with the immediate history (w;_s, w;_1) to predict w;. We will introduce details on
how to extract syntactic heads and show why they are helpful in language modeling
in Chapter 5. The syntactic heads are represented in the same form as N-grams. We

will build a syntactic model with the form

p(wi|wz’—2a Wi—1, hi_g, hi—1,nt;_a, nti—l) (3-50)
ag(wi)a.‘](wz‘f17wi)a9(wi72ywi717”11)0[‘](17'1‘717”11) g(hi—2,hi—1,w;) _g(nt;—1,w;) g(nt;—2,nt;—1,w;)
w; Wi—1,W; Wi—2,Wi—1,W; hi—1,w; hi—2,hi—1,w; nt;—1,w; nt;—2,nt;—1,w;

2(Wi—g, Wi—1, Ri—ay hi—1, nti_9, nt;_1)

This is a 33-gram model. The hierarchical structure of the syntactic model is shown

in Figure 3.13.
9(w)

T

9w, ,w) 9h.,.,w) d(nt., ,w)

9w, W, .w) 9(h,,h,w) g(nt,,nt, w)

Figure 3.13: Structure of syntactic model

We group three order 2 features g(w; 1,w;), g(h; 1,w;) and g(nt; 1,w;) in an
order 2 super-feature fo(w;_1, hi_1,nt;_1,w;), three order 3 features g(w;_o, w;_1, w;),
g(h;_o,h; 1,w;) and g(nt; o,nt; 1,w;) in the super-feature f3(w; o, w; 1, hi 2, hi 1,
nt;_o,nt;_1,w;), and set f1(w;) = g(w;). Thus the syntactic model (3.50) can be

rewritten as

P(w;|wi—g, wi—1, hi—9, hi_1,nt;_9,nt; 1) (3.51)

ﬁfl('wi) . ﬁf?(’wi—lyhi—laﬂti—ls’wi) . pl3(wi—2,wi—1,hi—2,hi1,nti_g,mti—1,w;)
1 2 3

2(Wi—g, Wi—1, hi—g, hi—1, nti_o, nt;_1)

78

where
ﬁl = ﬁwz = Oy,
P2 = /Bwi—lahi—lynti—lawi = O, 1w Oh;_yw; Ont;_yw;
B3 = ﬂwi—%wi—lyhi—2ahz’—17nti—27nti—1;wi = Cuw;_swim1,wi ®hi_o,him1,w; Ont;_onti_1,w;

and can be trained by the generalized hierarchical training method.

We also split the computation for bigram features to 23 parts according the method
for overlapping features in Section 3.4.!1 However, we do not split the computation for
trigram features for two reasons. First the straight-forward implementation is already
quite efficient since Y3 contains only a few words for each history. Furthermore,
even though using the method in Section 3.4 may still reduce the computational
load slightly, it requires an inordinate amount of space in experiments to save the

intermediate results.

3.8.2 Training Composite ME Model with Both Topic and
Syntactic Dependencies

Finally, we combine both topic dependencies and syntactic-structure dependencies

with N-grams in one language model:

p(wi|wi™) ~ p(wilwi_o, wi_1, hi_g, hi_1,nt;_9,nt;_1,1) (3.52)

where ¢; is a deterministic function of the history w}™.

We build the following ME model to estimate the probability above.

(Wi | Wi—1, Wi—g, hi—1, hi—g, nti_g, nti_1,1;)

ag(wi) g(w;—1,w;) g(wi—2,wi—1,w;) ghi—1,w;) _(hi—2,hi—1,w;) g(nti—1w; g(nti—2,nti—1,w;) _g(t;,w;)
ws Wi—1,Wq Wi—2,Wi—1,W; h;—1,w; hi—o,h;—1,w; nt;_1,w; nt;_o,nt;_1,w; ti w;

2(Wi—g, Wi—1, hi_g, hi_1,nt;_9, nti_1, ;)
All our training simplification methods described in the preceding sections can be
used in training this model. Since it is a topic-dependent model, we can use a divide-

and-conquer scheme. We collect N-gram and syntactic statistics from different topics

"1 This brings about a twofold speed-up.

79

and merge g(w;) with g(¢;,w;). Now, within each topic, it looks like the syntactic
model (3.50). Therefore, we can train this model as we did the syntactic model by
using the GHT method.

3.9 Experimental Results for Speed-up

The efficiency of training methods is evaluated by the Switchboard and the Broad-
cast News data. We use 2.1 million words in the form of 1100 conversations on about
70 different topics in the Switchboard corpus. The Broadcast News corpus contain
125,000 stories amounting to about 130 million words that are clustered into 100
topics. Table 3.5 provides some numbers to show the complexity of the Switchboard

and the Broadcast News tasks.

Switchboard Broadcast News

Vocabulary Size 22,000 64,000
General Info Training Size 2.1M 130M
Topics 70 100
N-grams (224300+180)K 64K+3.5M+5.6M
Trigram Model Histories 300K 7.6M
Tuples 830K 36M
Topic unigram +15K +250K
Topic Model Histories 770K 29M
Tuples 1.4M 73M
Syntactic N-gram 300K 2.6M 2
Syntactic Model '* Histories 760K 14M
Tuples 2.5M 2T™M
Composite Model — Histories 8.4M 23M 1
Tuples 10M 42M

Table 3.5: Comparison of Switchboard and Broadcast News.

12The syntactic model for Broadcast News is trained only on a subset of 14 million words of the
corpus.

13 Training size for syntactic models expands as multiple candidate parses are considered for each
sentence.

4Many low count histories have been merged into history equivalence classes.

80

3.9.1 Nominal Speed-up vs. Real Speed-up

The training time is roughly proportional to the number of terms to be summed
up for all z’s. We count this number and estimate the running time of a method

according to it. The nominal speed-up is defined as

#[terms in the baseline method]
#[terms in the new method|

nominal speed-up = , (3.53)

where the baseline method is the Improved Iterative Scaling with unigram caching.
We measure the training time of four kinds of maximum entropy models: the
trigram model, the topic dependent trigram model, the syntactic model and the com-
posite model for the Switchboard and Broadcast News tasks. The real running time
speed-up is the ratio of the training time of unigram-caching and that of the im-
proved methods. Since some models cannot be trained at all by the baseline method,
we do not know the real speed-up of them. The benchmark test for speed is based
on 300MHz Ultra-Sparc II 64-bit systems with 1GB memory*®. All numbers shown

in this section are in CPU-hours per iteration.

3.9.2 Hierarchical Training for N-gram Models

The computational loads of straight-forward implementation and unigram-caching
are first estimated for comparison. Table 3.6 illustrates that unigram-caching already
reduces the computational load by about two orders of magnitude compared to the
naive implementation. Therefore, we treat unigram-caching as the baseline method
in our evaluation and compare it with the hierarchical training method.

The results for trigram models are illustrated in Table 3.6. Columns 3, 4 and
5 provide the number of terms in the straight-forward implementation, the baseline
method and the hierarchical method, respectively. The last column is the nominal
speed-up of (3.53). It is apparent that the hierarchical training method achieves a
nominal speed-up of more than two orders of magnitude for both corpora, and the

gain is greater as the size of the model increases.

15These machines were the fastest ones available when we started the work in this dissertation
four years ago. Readers may keep in mind that the real training time reported in this dissection can
be reduced by two-threefold using faster machines now available.

81

LM Model ME Algorithms Nominal
Task Size Naive | Baseline | Hierarchical | Speed-up
SWBD | 500K 6 - 107 1.6-108 9.10° 170
BN 9.1M | 3.6-10" | 2.4-10° | 4.3-107 560

Table 3.6: Number of operations and nominal speed-up of trigram models

We also estimate the nominal speed-up of four-gram models (in Table 3.7).

LM Model ME Algorithms Nominal
Task Size | Baseline ‘ Hierarchical | Speed-up
SWBD | 1.6M | 3.2-10° 2.1-10° 1600

BN 13M | 3.4-10" | 9.4-10° 3.6-10*

Table 3.7: Number of operations and nominal speed-up of four-gram models

The computational load of training four-gram models using unigram-caching in-
creases tremendously compared to that of training trigram models (20-120 fold), but
it only increases slightly if hierarchical training methods are used (in about twofold).
The nominal speed-up for four-gram models is much greater than that for trigram
models.

The real training time of using different methods is also measured based on trigram
models (Table 3.8). To train an ME trigram model for Switchboard, the baseline
method takes about two CPU-hours, while the hierarchical training method needs
only four CPU-minutes (with a speed-up of 30 fold)!¢. The speed-up for Broadcast
News (85 fold) is greater than that for Switchboard. It is worth mentioning that the
running time of less than one hour per iteration for such a huge corpus is quite fast

and is even comparable to the time of training a back-off model.

16Real running time speed-up is less than the nominal one because of the overhead time, and I/O
time are fixed no matter what training method is used.
17Using SRI LM toolkit V0.98.

82

LM ME Algorithms Real
Task Baseline ‘ Hierarchical | Speed-up
SWBD 2 0.06 30
BN 60 0.7 85

Table 3.8: Running time (in CPU-Hours) for ME trigram models

3.9.3 Generalized Hierarchical Training for Syntactic Model

The efficiency of generalized hierarchical training method is evaluated by syntactic
models, which have both nested features and overlapping features. The nominal
speed-up is shown in Table 3.9. For Broadcast News, we only provide statistics for
a subset of the corpus because parsing the whole corpus of 130M words and storing

the parsing results challenge our computer speed and storage capacity.

LM ME Algorithms Nominal
Task Baseline ‘ Cluster Expansion ‘ Hierarchical | Speed-up
Switchboard 6.9 - 10° 4.6 - 10° 7.5-107 9-10*

Broadcast News (14M) | 6.1 - 10" N/A 4.2-10° 1.4-10?

Table 3.9: Number of operations and nominal speed-up for syntactic models

The computational load increases considerably for the syntactic model (and will
be even more for the composite model) compared to trigram models. The cluster
expansion method described in Lafferty & Suhm (1996) is of little help here since the
number of interacting features is so large. The hierarchical training will reduce the
computational load by 90 fold in Switchboard and 140 fold in Broadcast News.

In Table 3.10, we compare the real running time of training syntactic models using
the generalized hierarchical training method and that using the baseline method. We
do not provide the baseline training time (without the speed-up) for Broadcast New,
because it is impractical to train the syntactic model on such a large corpus using
unigram-caching. It is apparent from the results in Switchboard that the hierarchical

method achieves a considerable speed-up. Nevertheless, we may expect the speed-up

83

in Broadcast News to be even greater than in Switchboard.

LM ME Algorithms Real
Task W /O Hierarchical ‘ W/ Hierarchical | Speed-up
Switchboard 100 6 17
Broadcast News N/A 480 18 N/A

Table 3.10: Training time (in CPU-hours) for syntactic models

3.9.4 Divide-and-Conquer and Topic-Dependent Model

Divide-and-conquer is designed for and evaluated on topic-dependent models (Ta-
ble 3.11). Comparing the trigram model (3.6) with the topic-dependent model (3.39),
one can see that the number of operations in the baseline method will increase by
about two orders of magnitude even though the model size increases by only 3%. This
load can be decreased in about one order of magnitude by the generalized hierarchical
training. However, this computational load is still heavy even for the Switchboard.
Divide-and-conquer strategy individually will cut the computational load in Switch-
board down to a manageable scale. Divide-and-conquer and hierarchical training can
be applied together to make the training of the topic-dependent model practical for
Broadcast News. Overall, the nominal speed-up for the topic-dependent model is
about 400 fold for the Switchboard and is more than 1000 fold for the Broadcast

News, if both divide-and-conquer and hierarchical training are used.

LM ME Algorithms Nominal
Task Baseline | Hierarchical | Divide-Conquer | H+DC | Speed-up
SWBD | 1.6-10° 1.9-108 6 - 107 4.1-10° 4-10?

BN 1.8- 10" 5.1-10° 6.6 - 10° 1.5-10% | 1.3-10°

Table 3.11: Number of operations and nominal speed-up for topic models

18The model is trained on 1.2GHz PIII machines in 180 ~ 200 CPU-hours per iteration. One
iteration was run on Sun Sparc machines to compare for the training speed with those of other
models.

84

The training of a topic dependent model without any speed-up takes a very long
time (160 CPU-hours) even for Switchboard and it is impractical for Broadcast News.
However, it needs only 0.5 and 2.3 CPU-hours, respectively, to train the topic models
in the corpora above. The real running time speed-up for Switchboard is more than
two orders of magnitude based on unigram-caching.

We do not report the baseline training time for Broadcast News because unigram-
caching is not practical here. However, we can expect that the real speed-up in
Broadcast News is greater than that in Switchboard. We roughly estimate the training
time of using generalized hierarchical training and divide-and-conquer individually by
using about 5% of the data and multiplying the resulting training time by 20. The
estimated time (numbers inside parentheses) is shown in Table 3.12.

It is also worth mentioning that the real running time of 2.3 CPU-hours per
iteration for the topic model with 100 topics is quite fast and is about the same as
that of training the corresponding interpolation topic models!®. Table 3.12 shows

detailed results.

LM ME Algorithms Real
Task Baseline | Hierarchical | Divide-and-conquer | Both | Speed-up
SWBD 165 21 8.3 0.5 3.3-10?
BN : (85) (100) 5.3 -

Table 3.12: Running time (in CPU-Hours) for topic models

3.9.5 Divide-and-Conquer Combined with Generalized Hier-

archical Training

If the topic model can still be trained using either divide-and-conquer or general-
ized hierarchical training, the composite model with both the topic and the syntactic
constraints must be trained using both of them. We train the composite model in less

than 10 CPU-hours per iteration in Switchboard. We can train this model without

19Using SRI LM toolkit V0.98 by Andreas Stolcke.

85

Task & ME Algorithms Real
Model DC, W/O Hierarchical ‘ DC + Hierarchical | Speed-up
| SWBD Composite | 150 | 9.5 | 15]

Table 3.13: Training time for composite model in Switchboard

generalized hierarchical training method in a much longer time (150 CPU-hours) but
cannot train this model without divide-and-conquer even in Switchboard. Therefore,
we only show the gain from the generalized hierarchical training method in Table
3.13.

We also implement a composite model on 14M Broadcast News data using both
speed-up methods above. The training time is roughly 400 CPU-hours per iteration,
which is quite long. However, this model is impractical to train without our speed-up

methods.

3.10 Summary

Several rapid training methods for maximum entropy models have been presented
in this chapter. In particular, N-gram models are trained hierarchically and almost as
efficiently as back-off models, whose training time is just linear in the size of training
data. Experimental results on Switchboard and Broadcast News show that com-
putational load and real training time reduce tremendously by hierarchical training
methods. The speed-up of a factor of tens has been achieved compared to the baseline
unigram-caching method.

Other models with overlapping features, e.g., syntactic models, can also benefit
from the hierarchizing of features and can thus be trained effectively by the generalized
hierarchical training. The time of training the syntactic model and the composite
model (with both the topic and syntactic constraints) reduces by more than one
order of magnitude after this method is used.

Divide-and-conquer can be used in addition to the generalized hierarchical training

method in any model with topic constraints. The combination of these two methods

86

makes it possible to train large topic-dependent models and composite models that
otherwise are intractable to train.

It is worth mentioning here that the computational load of training ME models
can be distributed among many computers using the idea of divide-and-conquer. The

speed-up is almost linear in the number of computers.

