
Assignment 6: Heat Transfer Page 1

600.112: Intro Programming for Scientists and Engineers

Assignment 6: Heat Transfer∗†

Peter H. Fröhlich
phf@cs.jhu.edu

Joanne Selinski
joanne@cs.jhu.edu

Due Dates: 3pm Wednesdays 10/21 & 10/28

Introduction

The sixth assignment for 600.112: Introductory
Programming for Scientists and Engineers is all
about heat transfer and how to simulate it.

There are three required things to do: First you’ll
write a program to solve a simple one-dimensional
heat transfer problem for a metal rod (rod.py,
10 points). Second you’ll write a program
to solve a more complex two-dimensional heat
transfer problem for a metal plate (plate.py,
22 points). Third you’ll write a faster ver-
sion of the two-dimensional heat transfer problem
(plateFast.py, 18 points).

We’ll continue working with vectors and matri-
ces in this assignment - exploring cell level ma-
nipulations and also whole array manipulations.
We’ll also introduce two new Python libraries! The
first is for plotting images: matplotlib. This li-
brary has many features and functions, including a
set common to MATLAB. The matplotlib webpage
contains many examples as well as links to sev-
eral tutorials if you’re interested in learning more.
The second library we’ll use is the NUMPY li-
brary for scientific computations. This will allow
us to speed-up the matrix computations for the heat
plate problem by moving many computations from
PYTHON down closer to the machine itself. Make
sure that you have installed the necessary packages
(PYTHON-MATPLOTLIB and NUMPY) through the
synaptic package manager before beginning.

You must submit complete zip files with all *.py
and *.txt files needed to run your solutions as de-
tailed below, and on Blackboard before the dead-
lines. Also, don’t forget to include descriptive doc-
strings and doctests for your functions, and make
sure that your programs are all pep8 compliant with

regard to style.

Background

What is heat? It’s probably in bad taste to start with
a joke about the miserably humid 100◦F Baltimore
summer or refer to a popular 2009 tune by Nelly,
so let’s be more scientific.

Thermodynamics tells us that heat—on a macro-
scopic level—is energy: the internal energy of a
system is the sum of heat supplied to the sys-
tem and the amount of work done on it. Statisti-
cal mechanics tells us that heat—on a microscopic
level—is movement: the atoms of a system move
(or vibrate) faster the hotter the system happens to
be.

Heat can be transferred in various ways: by con-
duction (coal heats oven), by convection (flame
heats pan), or by radiation (sun heats earth). We’ll
only consider heat transfer by conduction for this
project, and we’ll also restrict our attention to
solids.

Join us in a Gedankenexperiment! Imagine two
copper cubes of equal size and mass. One of them
has a has a temperature of 25◦C while the other
has a temperature of 75◦C. Imagine further that
these copper cubes are perfectly insulated from the
surrounding world and that there is no heat trans-
fer by convection or radiation. What will happen

∗Special thanks to Jimmy Su and William Yu for helping
us develop this project.
†Disclaimer: This is not a course in physics or biology

or epidemiology or even mathematics. Our exposition of the
science behind the projects cuts corners whenever we can do
so without lying outright. We are not trying to teach you
anything but computer science!

600.112: IPSE Summer 2015

http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.cs.jhu.edu/~joanne/
mailto:joanne@cs.jhu.edu
matplotlib.org

Assignment 6: Heat Transfer Page 2

when we bring the two cubes into “perfect” physi-
cal contact?

Along the area of contact, the atoms of the 75◦C
cube will vibrate faster than those of the 25◦C
cube. Every now and then a 75◦C atom will “hit” a
25◦C atom and transfer its “kinetic energy” in the
process, creating a 75◦C atom in the 25◦C cube and
vice versa. Since this happens all along the area
of contact, pretty soon we’ll have an even mixture
of 75◦C and 25◦C atoms wiggling around in these
two “layers” of each cube. So on average, across
all the atoms along the area of contact, we have a
temperature of (25◦C + 75◦C)÷ 2 = 50◦C.

What about the “next two layers” of atoms in
each cube? They will in turn “exchange” equal
amounts of 75◦C and 25◦C atoms with the contact
layers, and so on. Eventually the average tempera-
ture of both cubes will be 50◦C, and it will remain
50◦C even if we separate them again.

Mathematics

The basic mathematical model for one-
dimensional heat transfer by conduction is a
second-order partial differential equation:

∂2T

∂x2
= 0

Sometimes we can find analytical solutions to such
equations, but often all we can do is approximate
the solution numerically. One approach to a nu-
merical approximation is to transform the differen-
tial equations into finite difference equations:

df

dx
≈ f(x+ ∆x)− f(x)

∆x

We discretize the continuous x domain into n
points p1, p2, . . . , pn spaced ∆x apart; pick some
point pm and approximate the first derivatives at
pm − 1

2
∆x and pm + 1

2
∆x as follows:

∂T

∂x

∣∣∣∣
m−1/2

≈ Tm − Tm−1

∆x

∂T

∂x

∣∣∣∣
m+1/2

≈ Tm+1 − Tm
∆x

Then we can in turn approximate the second
derivative at pm like this:

∂2T

∂x2

∣∣∣∣
m

≈
∂T
∂x

∣∣
m+1/2

− ∂T
∂x

∣∣
m−1/2

∆x

≈
Tm+1−Tm

∆x
− Tm−Tm−1

∆x

∆x

≈ Tm+1 − Tm − Tm + Tm−1

∆x2

≈ Tm+1 − 2Tm + Tm−1

∆x2

Our approximation for one-dimensional heat trans-
fer by conduction becomes

Tm+1 − 2Tm + Tm−1

∆x2 = 0

which—when solved for the point pm—confirms
our earlier suspicion that heat transfer is averaging:

Tm =
1

2
(Tm+1 + Tm−1)

The obvious extension to the two-dimensional case
is also valid:

Tm,n =
1

4
(Tm−1,n + Tm+1,n + Tm,n−1 + Tm,n+1)

There’s a lot to say about the limitations of finite
difference equations, but we won’t worry about
that here. Also note that a full understanding of
this math background is not necessary for complet-
ing the assignment!

1 Metal Rod [10 points]
Imagine a metal rod of negligible thickness stick-
ing through a building’s brick wall. The inside of
the building is cooled to 70◦F while the outside of
the building is sweltering at 100◦F . To keep things
simple we’ll assume that the wall itself has no in-
fluence whatsoever on the temperature of the rod.

For this problem you will write a program that
computes the temperature distribution along the
rod inside the wall. Please call your program
rod.py and nothing else. Figure 1 shows what
the output of your program should look like: The
temperature along the rod increases linearly from
70◦F inside the building to 100◦F outside the
building.

We need to decide two things to solve this prob-
lem in Python: First, how should we represent

600.112: IPSE Summer 2015

Assignment 6: Heat Transfer Page 3

Figure 1 Correct temperatures along the rod.

the temperature distribution of the rod? Second,
how should we perform the “repeated averaging”
of temperatures along the rod?

The temperature at any given point in the rod is a
floating point number. Therefore the distribution of
temperatures along the rod is a sequence of float-
ing point numbers. The first and last temperatures
in this sequence are special because they represent
the fixed temperatures inside and outside the build-
ing.1 If we divide the rod itself into 100 equal-sized
segments, the total length of our sequence is 102
elements including the fixed endpoints. So we can
represent the rod with a vector of floats. The initial
temperature of “unknown” interior segments could
be set to anything, so let’s set those to 0.0 to be-
gin with. Here is a first version of the program
that simply sets up the initial temperature distribu-
tion along the rod and plots it using pyplot from the
matplotlib library:

i m p o r t matplotlib .pyplot as P

LENGTH = 100

d e f main () :
current = [0 . 0] ∗ (LENGTH + 2)
current [0] = 7 0 . 0
current[−1] = 100 .0

P .plot (current)
P .xlabel (” segment ”)
P .ylabel (” t e m p e r a t u r e ”)
P .show ()

main ()

Note the new form of import we’ve used here.
Since it would be rather tedious to keep writing

mathplotlib.pyplot over and over again we
abbreviate the imported module to a single capital
letter. For a larger program this convention of us-
ing a single capital letter may be confusing, but for
a rather short program we’ll be okay.

Finding the temperature of a segment inside the
rod requires that we average the temperatures of
its two neighboring segments. It’s important that
we average the two neighbors from the old temper-
ature distribution into a new temperature distribu-
tion. Otherwise we would average the values in-
consistently: one would be from the next step in
the simulation while the other would be from the
previous step. So we write a function that “runs
through” the current rod and computes a new tem-
perature distribution by averaging the relevant ele-
ments of the old temperature distribution:

d e f distribute (old) :
new = old [:] # makes a copy
f o r i i n r a n g e (1 , LENGTH + 1) :

new [i] = (old [i − 1] + old [i +←↩
1]) / 2

r e t u r n new

Note that we only recompute the temperatures in-
side the rod, the boundary conditions never change.
Clearly if we only call the distribute function once,
only the temperatures at the ends of the rod will
change. If we keep averaging, this process will
“grow” successive approximations to the final tem-
perature distribution from those endpoints toward
the center of the rod.

But when do we stop the computation? After
distributing the temperatures across the rod again
and again, we will eventually reach a “steady state”
in which none of the temperatures change signif-
icantly anymore. So ideally we’d simply check
if the temperature distribution before averaging is
equal to the temperature distribution after averag-
ing. However, since our temperatures are floats we
cannot compare for “exact” equality. Instead we
have to figure out if two floating point values are
“close enough” so we can consider them “equiva-
lent” as far as our simulation is concerned. Let’s
write a function that performs this “approximate
equality check” given a bound ε (epsilon); we’ll
use the absolute error version here (for other ap-
plications the relative error version may be more
appropriate):

1. In the language of partial differential equations, these
two temperatures are our boundary conditions.

600.112: IPSE Summer 2015

Assignment 6: Heat Transfer Page 4

d e f floats_equiv (a , b , epsilon) :
’ ’ ’
Re tu rn True i f two f l o a t i n g p o i n t
v a l u e s a and b a r e w i t h i n some
e p s i l o n d i f f e r e n c e , F a l s e ←↩

o t h e r w i s e .
’ ’ ’
r e t u r n abs (a − b) <= epsilon

So we consider two floats “equivalent” if they don’t
differ by more than ε. Note that you must add
doctests to this function!

Now we can write a function that compares two
temperature distributions in the same way and re-
turns True if they are “equivalent” for our pur-
poses:

d e f lists_equiv (a , b , epsilon) :
assert l e n (a) == l e n (b)
f o r i i n r a n g e (l e n (a)) :

i f n o t floats_equiv (a [i] , b [i←↩
] , epsilon) :
r e t u r n False

r e t u r n True

Note how we extended the definition of “equiva-
lent” for two floating point values to a sequence:
two sequences are “equivalent” if all their corre-
sponding values are “equivalent.” Make sure you
add a docstring with doctests to this function also.

We can now rewrite the main program to per-
form the appropriate number of averaging steps:

d e f main () :
current = [0 . 0] ∗ (LENGTH + 2)
current [0] = 7 0 . 0
current[−1] = 100 .0

after = distribute (current)
w h i l e n o t lists_equiv (after , ←↩

current , EPSILON) :
current = after # t h i s i s n o t←↩

a copy , b u t a r e l a b e l l i n g
after = distribute (current)

P .plot (current)
P .xlabel (” segment ”)
P .ylabel (” t e m p e r a t u r e ”)
P .show ()

Starting from the initial temperature distribution,
we keep averaging until two consecutive distribu-
tions are close enough. Once we reach that “steady
state” we plot the final temperature distribution.
Done!

Except for one thing: We never actually
said what ε should be for this simulation!
Play with different values for ε (for example

Figure 2 Incorrect temperatures, ε too large.

0.1, 0.01, 0.001, . . .) and find one that actually pro-
duces the correct result from Figure 1. For refer-
ence, Figure 2 shows what the wrong output for an
ε that’s too large looks like.

Challenge: Imagine that the rod touches a pipe
with a temperature of 40◦F at a single segment in
the middle of the brick wall. How hard is it to
modify our existing program to compute the cor-
rect temperature distribution for this new problem?
Can you think of a way to reorganize the program
that would have made this change easier? Can you
think of a way to generalize the program to the
point where any number of boundary conditions
for a one-dimensional heat transfer problem could
be handled by the same exact program? You can ei-
ther discuss these issues in a README file (make
sure to include it in your zip), or write and sub-
mit a more general version of the solution called
rod2.py. Just make sure that no matter what,
you submit the original rod.py solution without
enhancements.

2 Metal Plate [22 points]

Imagine a metal plate of negligible thickness that
we apply heat sources or cooling agents to. Fig-
ure 3 shows what happens to a plate that started
out at 25◦C when we apply a single heat source of
100◦C: Eventually the entire plate will have a tem-
perature of 100◦C. Figure 4 shows a slightly more
interesting scenario: If the plate is surrounded by
a cooling agent that keeps the edges at 25◦C, then
only a relatively small part of the plate will actu-
ally get warm. Figures 5 and 6 illustrate how heat

600.112: IPSE Summer 2015

Assignment 6: Heat Transfer Page 5

Figure 3 One heat source, no boundary conditions.

Figure 4 One heat source, all boundaries cooled.

from our heat source spreads through the plate if
two boundaries or only one boundary are cooled to
25◦C.

Figure 5 One heat source, two boundaries cooled.

Figure 6 One heat source, one boundary cooled.

Figure 7 Sample input to the plate.py program.
10
CCCCCCCCCC
.........C
.........C
.........C
.........C
.........C
.........C
..H......C
.........C
.........C

For this problem you will write a program that
computes the “steady state” temperature distribu-
tion of a square metal plate to which a number of
heat sources and cooling agents are being applied.
Please call your program plate.py and nothing
else.

The input for your program will be a text file
plate.txt of the form illustrated in Figure 7.
The first line of the text file will give the size of the
plate, so in the case of Figure 7 we are dealing with
a 10-by-10 plate.2 This is followed by lines de-
scribing the boundary conditions: For a 10-by-10
plate there must be 10 lines of 10 characters each.
A capital “C” stands for a “cooling agent” which
has a temperature of 25◦C whereas a capital “H”
stands for a “heat source” which has a temperature
of 100◦C. Cells marked as heat sources or cool-
ing agents are “fixed” once and for all, just like the
boundary conditions for the metal rod were. A pe-

2. The size is given as the number of “cells” on each axis;
each “cell” is comparable to a “segment” of the metal rod
from the previous problem.

600.112: IPSE Summer 2015

Assignment 6: Heat Transfer Page 6

riod “.” simply means that the temperature of that
cell is not fixed but computed as part of the simu-
lation; it’s probably easiest if you set those cells to
0◦C initially.

Conceptually the program you need to write for
this problem is very similar to the one we wrote
for the metal rod before: Once again you’ll have to
set up a representation for the temperature distribu-
tion, once again you’ll have to average that distri-
bution repeatedly until you reach a “steady state,”
and once again you’ll plot the final temperature
distribution. Nevertheless, the program for metal
plates is significantly more complicated, so think-
ing things through ahead of time is a very good
idea.

Let’s talk about the representation of the temper-
ature distribution first. Obviously you cannot use
a one-dimensional representation anymore, instead
you’ll have to use a matrix—i.e. a list of nested
lists—that you can index with a row and a col-
umn. We have written some code for matrices be-
fore, and if you have it in your notes or download
it from the course schedule, you can put it to good
use here. Your choices for using it are to cut and
paste the necessary functions into this program file,
or to put our matrices.py module in the same folder
as these programs and import it into your plate.py
program. If you do it the second way, make sure
that you include matrices.py in your submission
zip!

You’ll definitely need a function to create a new
matrix of a given size as it would be tedious to re-
peat the code for that every time you need a new
matrix. A function like

new matrix(rows, columns, value)

that returns a new matrix with the given number of
rows and columns—and with each cell initialized
to the given value—seems about right. When you
pass a matrix to another function, that function will
also have to be able to find out how many rows and
columns the matrix has. So two more functions like

numRows(matrix)
numCols(matrix)

that return the number of rows or columns of the
given matrix are probably a good idea as well.
Consider these examples:

>>> new_matrix(2, 2, 0.0)
[[0.0, 0.0], [0.0, 0.0]]

>>> new_matrix(3, 1, False)
[[False], [False], [False]]
>>> numRows([[1], [2]])
2
>>> numCols([[1], [2]])
1

You can reuse floats_equiv(a, b) from
the previous problem, but you’ll have to write
a new matrices_equiv(a, b) function for
this one.

One matrix for the temperature distribution is
not enough however. You’ll also have to somehow
keep track of which positions in your matrix are
fixed by boundary conditions and which positions
are free in the sense that you need to compute their
temperature. We suggest that you use two matri-
ces. The first one (called current in the sam-
ple listing below) is a matrix of floating point val-
ues and contains the temperatures in each “cell”
of the metal plate we’re simulating; this includes
the temperatures for boundary conditions as well.
The second one (called fixed in the sample list-
ing below) is a matrix of boolean values, True and
False; an entry in this matrix is True if it’s tem-
perature is specified by a boundary condition and
therefore fixed; an entry in this matrix is False if
the corresponding temperature cell is one you have
to compute.

With this in mind, here is a possible main pro-
gram that illustrates how closely related the “big
picture” of the metal rod and the metal plate are:

d e f main () :
current , fixed = read_config (”←↩

p l a t e . t x t ”)

after = distribute (current , fixed)
w h i l e n o t matrices_equiv (after , ←↩

current) :
current = after
after = distribute (current , ←↩

fixed)

P .imshow (current , origin=” uppe r ”)
P .axis (” o f f ”)
P .tight_layout ()
P .colorbar (ticks= r a n g e (0 , 126 , 25)←↩

) .set_label (” t e m p e r a t u r e ”)
P .show ()

We’re plotting the results differently now because
we have to display two-dimensional data using
imshow; the axis and tight layout func-
tions simply reduce the “wasted space” around the
image, and the colorbar function creates the bar

600.112: IPSE Summer 2015

Assignment 6: Heat Transfer Page 7

on the right side that explains which color corre-
sponds to which temperature.

The new distribute function needs both the
temperature distribution current and the ma-
trix fixed telling it which cells are “not to be
touched” as it were. So when you’re about to com-
pute the average for a given cell, you check first
if that cell is a boundary condition; if so, you skip
it; otherwise you actually compute its new aver-
age. Computing the average for a given cell re-
quires that you get the temperatures of the 2–4
neighboring cells (north, south, east and west); this
is more complicated than in the case of the metal
rod, and you probably don’t want to do it in the
distribute function itself; instead you should
write a helper function neighbors that returns a
list with 2–4 temperatures depending on the posi-
tion you pass in (think about “cells” at the “edge”
of the plate).

What’s left is the read config function
which has to read the data file and create both of
the matrices. After opening the file you should read
a single line first to find out how big you need to
make your matrices and to know how many more
lines to expect:

data = open(name)
line = data.readline()
size = int(line)
...

After that step you just read line-by-line as we’ve
always done it; for each line, you have to go
through the characters on that line and initialize in-
dividual elements of your matrices as appropriate.
Add any other helpful functions you may think of
to simplify the coding in this one. Note that the
way we’ve written and used this function, it returns
a tuple of both matrices!

Lastly, update main() so that it prompts the user
for the name of the input file. That way you can
easily run your program with many different plate
configurations. We’ve created a starter file for you
to use, plateStart.py, which has the skeleton
of each method described here, along with some
documentation and a few of the harder new state-
ments as well. Don’t forget docstrings, doctests
and pep8 style for all parts of your finished pro-
gram!

3 NumPy Heat Transfer [18
points]

For this problem you’ll re-write the program for
the heat-plate simulation, but this time using the
NUMPY library for scientific computations. That
is, your new program should produce the exact
same results as the previous program (as far as pos-
sible with floating point numbers), but it should
be faster because NUMPY allows you to move
many computations from PYTHON down closer
to the machine itself. Please call your program
plateFast.py, nothing else.

The last step of the program to draw the resulting
steady-state heat distribution using matplotlib
will be exactly the same in this version of the pro-
gram. The part of the program that sets up the tem-
perature and fixed matrices from an input file will
be enhanced to create a third matrix necessary to
perform the revised computation as described be-
low. Also, the function to determine if two matri-
ces are equivalent should be rewritten to take ad-
vantage of NUMPY’s fast operations.

However, the main difference will be in the part
of the program that repeatedly averages the tem-
peratures around each cell to compute the new tem-
perature of a cell using something like this equa-
tion:

Ti,j =
1

4
(Ti−1,j + Ti+1,j + Ti,j−1 + Ti,j+1)

At the edges and corners of the plate where we have
only 2 or 3 neighbors instead of 4, the formula is
adjusted accordingly. This is the part we’ll tackle
rewriting first.

This part of the program takes the most time:
We repeatedly “run across” the rows and columns
of the plate to produce new values for all com-
puted cells, and all of the computation is carried
out “cell-by-cell.” So only the actual arithmetic is
performed directly by the machine (fast on aver-
age), most of the remaining code (loops, access of
matrix elements) is performed by PYTHON (slow
on average). Therefore this is the part where we
can improve performance the most if we are able
to express our solution in terms of matrix opera-
tions provided by NUMPY: each of those opera-
tions is fast (on average) and deals with all cells of
the matrix on the machine level without involving
PYTHON again.

We need to rethink the way we perform averag-
ing to get away from the idea of doing it “cell-by-

600.112: IPSE Summer 2015

http://www.cs.jhu.edu/~joanne/cs112/assign/plateStart.py.txt

Assignment 6: Heat Transfer Page 8

cell”, a relatively slow sequential approach. In-
stead of dealing with a single cell and it’s neigh-
bors, we want to deal with all cells at the same
time, a faster parallel processing approach. Obvi-
ously we have to still worry about the edges and
corners of the plate where the averaging computa-
tion needs to proceed differently than in the center,
but let’s focus on the center first.

If you consider a cell (i, j) for which we want
to compute a new temperature, we first need to
sum up the temperatures of the cells around it:
(i−1, j), (i+1, j), (i, j−1), (i, j+1). The key in-
sight is to realize that instead of looking at the left
(i, j − 1) neighbor, we could simply “shift the ma-
trix” one column to the right and use the cell (i, j)
of the shifted matrix. Of course the same is true
for the other neighbors: Each of which can equally
well be found at position (i, j) in some appropri-
ately shifted matrix. As soon as we “line up” the
elements correctly, we can use NUMPY’s element-
wise whole matrix addition operation to express the
averaging step as follows:

N =
1

4

(
↑ O + ↓ O +← O +→ O

)
Here N is the “new” matrix of (averaged) tem-
peratures while O is the “old” matrix of temper-
atures. Obviously this is not yet correct for edges
and corners: First we should only add 2 or 3 cells
there instead of 4, second we should divide by 2 or
3 instead of 4 to get the correct average.

Let’s focus on how we would shift the ma-
trix first; luckily NUMPY provides a function
roll that works as demonstrated in Figure 8:
We can “shift” a matrix by a certain number
of elements along a certain axis; for example,
numpy.roll(a, 1, 0) shifts all rows down
by one. In general, for a multi-dimensional array,
the roll function takes an array as the first parame-
ter, the shift amount as the second parameter, and
the dimension or axis along which to shift as the
third parameter. In the first example, note that the
row “shifted out” at the bottom re-enters the matrix
at the top.

That last aspect is what makes roll not quite
suitable for us: The only way to “ignore” a neigh-
bor when averaging (as we need to along the edges)
is to fill in a row or column of zeros instead! The
functions you need to shift the temperature matrix
for averaging will have to do that, but we can still
use roll to do the expensive part of moving ma-

Figure 8 The numpy.roll function in action.
>>> a
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

>>> numpy.roll(a, 1, 0)
array([[7, 8, 9],

[1, 2, 3],
[4, 5, 6]])

>>> numpy.roll(a, -1, 0)
array([[4, 5, 6],

[7, 8, 9],
[1, 2, 3]])

>>> numpy.roll(a, 1, 1)
array([[3, 1, 2],

[6, 4, 5],
[9, 7, 8]])

>>> numpy.roll(a, -1, 1)
array([[2, 3, 1],

[5, 6, 4],
[8, 9, 7]])

trix elements around. Once we roll, we need to
zero out the new row or column, and we can use
NUMPY’s convenient array slicing operations for
that. Here is one of the resulting functions - it’s up
to you to write the other three.

d e f up (matrix) :
””” Move m a t r i x up one row . ”””
new = N .roll (matrix , −1, 0)
new[−1 , :] = 0
r e t u r n new

d e f down (matrix) :
””” Move m a t r i x down one row . ”””
p a s s

d e f left (matrix) :
””” Move m a t r i x l e f t one column . ”””
p a s s

d e f right (matrix) :
””” Move m a t r i x r i g h t one column .←↩

”””
p a s s

Using these functions, we can shift our matrix
appropriately and add the shifted matrices together
to compute the sums we need in each new cell: for
cells in the center of the matrix, the four shifted
matrices will have the correct neighbors at position
(i, j); for cells on the edges of the matrix, three
of the four shifted matrices will have the correct
neighbors while one will have a zero; for cells in
the corners of the matrix, two of the four shifted
matrices will have the correct neighbors while two

600.112: IPSE Summer 2015

Assignment 6: Heat Transfer Page 9

Figure 9 The numpy.where function in action.
>>> a
array([[False, True, True],

[True, False, True],
[True, True, False]], dtype=bool)

>>> b
array([[4., 4., 4.],

[4., 4., 4.],
[4., 4., 4.]])

>>> c
array([[0., 0., 0.],

[0., 0., 0.],
[0., 0., 0.]])

>>> where(a, b, c)
array([[0., 4., 4.],

[4., 0., 4.],
[4., 4., 0.]])

will have zeros. However, to compute the averages
we still have to divide by the appropriate number
of neighbors. Luckily NUMPY allows us to per-
form element-wise division of a matrix, so if we
set up a corresponding divisors matrix of the same
size as the temperature matrics, with values 2 in the
corners, 3 on the edges, and 4 everywhere else, we
can divide the matrix of sums by the divisors ma-
trix to compute the proper averages. Building this
matrix is pretty straightfoward, using the functions
we’ve already built:

d e f make_divisor (size) :
base = N .ones ((size , size))
div = up (base) + down (base) + left←↩

(base) + right (base)
r e t u r n div

Note that you don’t want to use the old cell-by-cell
method of initializing a matrix so that you have the
most speed-up possible.

There’s one more thing to take care of though:
Our approach of averaging the entire matrix also
computes results for positions that should not be
changed because they are boundary conditions! In
other words, once we are done computing the av-
erages, we want to write only those into the re-
sult matrix that were not already fixed in the initial
problem. This is where NUMPY’s where func-
tion comes in handy, see Figure 9: We can select
between the elements of two matrices based on a
third bool matrix; if, for example, all elements
of cond are True, then numpy.where(cond,
a, b) is just going to be the matrix a; if they are
all false, it’s going to be the matrix b instead.

In the solution to part two you should have al-

ready used such a matrix to keep track of where
the boundary conditions are, but again you had to
process it one element at a time; now we can use
NUMPY to distinguish between boundary condi-
tions and computed cells in one go. So provided
we have three matrices, one with the current tem-
peratures (old), one with the boundary conditions
marked by True (clamped), and one with the ap-
propriate divisors (divs), our averaging step now
reads as follows:

d e f average (old , clamped , divs) :
sums = up (old) + down (old) + left (←↩

old) + right (old)
averages = sums / divs
new = N .where (clamped , old , ←↩

averages)
r e t u r n new

That was simple, wasn’t it? No more neigh-
bors to find, no more values to add up and average,
it’s all taken care of by NUMPY. The rest of the
program is mostly concerned with input and out-
put just like before. However, you must use the
NUMPY zeros function to create the initial matri-
ces. A NUMPY matrix is not the same data type as
a nested list - so all our fast operations and revised
functions will only work if we consistently use the
same data type throughout the program. Lastly,
we will also compare matrices using NUMPY of
course. This can be done very compactly with ma-
trix subtraction and the min and max functions, as
shown in the listing below.

i m p o r t matplotlib .pyplot as P
i m p o r t numpy as N

EPSILON = 0 .0001
HOT = 100 .0
COLD = 2 5 . 0

. . .

d e f matrices_close_enough (a , b) :
d = a − b
r e t u r n max (abs (d . min ()) , abs (d . max←↩

())) <= EPSILON

Let’s not forget the reason we did all this: so
our program would run faster! You’ll need to use
a pretty large input file in order to see a notice-
able difference between the original plate.py solu-
tion and the new plateFast.py solution. For an extra
challenge, write a program to randomly create arbi-
trarily large input files that simulate CPU cooling.

Submission Summary: Remember to include

600.112: IPSE Summer 2015

Assignment 6: Heat Transfer Page 10

all the following files in your final submission zip:
program files rod.py, plate.py, plateFast.py and in-
put file plate.txt for testing the plate programs.
Lastly, include our lecture matrix module matri-
ces.py if you import it to use in any of your pro-
grams, as well as any other modules you create and
import to avoid cutting and pasting of functions
into multiple programs. Also remember to make
all your .py files pep8 compliant, and include doc-
strings and doctests for all functions (except where
random data is used since the outcome can’t be pre-
dicted).

600.112: IPSE Summer 2015

	Metal Rod [10 points]
	Metal Plate [22 points]
	NumPy Heat Transfer [18 points]

