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600.112: Intro Programming for Scientists and Engineers

Assignment 5: Recursion and Backtracking∗

Peter H. Fröhlich
phf@cs.jhu.edu

Joanne Selinski
joanne@cs.jhu.edu

Due Dates: 3pm on Thurs 10/15 & Weds 10/21

Introduction

This project for 600.112: Introductory Program-
ming for Scientists and Engineers is all about re-
cursion and backtracking search. It’s one of the
few assignments that doesn’t have a specific appli-
cation from science or engineering as its basis, just
to mix things up. It does however focus on key
concepts in computer science.

There are three things to do: First you’ll write
a program to solve the Knight’s Tour problem on
a chess board. Second you’ll write a program to
solve instances of the well-known Sudoku puzzle.
Third, for optional extra credit, you’ll write pro-
grams to draw some interesting recursive structures
using turtle graphics once again. As usual, submit
a complete zip file on Blackboard including some
text input files for testing your knight.py and su-
doku.py solution.

We’ll continue working with lists in this project,
expanding their use to two-dimensional matrices.
Starting with this assignment we will be using the
pep8 tool to insure our programs follow standard
style guidelines. We will also continue to use the
doctest tool to do unit testing of our functions. See
part 5 of the posted Installing Python Tools docu-
ment for instructions on installing the pep8/doctest
plugin for IDLE, as well as class slides on using
them. Part of your grade for each program will be
based on your testing and styling.

You must submit a complete zip file with all
*.py and *.txt files needed to run your solutions
as detailed below, and on Blackboard before the
deadlines. Don’t forget to include descriptive doc
strings for all your programs and the functions in
them. Also, you should provide doctests for as
many functions as possible, continuing the testing

techniques developed in the last assignment. It’s
best to write these as you go along. Improperly
written doc strings (missing the closing characters
for example) can result in a 0 for your program!
Remember that you can use the “Check Program”
option in the IDLE Run menu to see if your pro-
gram has any syntax errors. If it does, you must fix
them in order to avoid a 0 grade.

Background: Recursion
The factorial function n! shows up in a wide variety
of places in mathematics and therefore also in sci-
ence and engineering. Consider, for example, the
Taylor expansion of a trigonometric function:

sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

Or consider, in probability theory, the number of
possible permutations of a finite set: A set of n el-
ements has n! permutations. The factorial function
is often defined informally as the product 1 × 2 ×
3×· · ·×n−1×n, but “the dots” leave something
to be desired: the definition is not entirely explicit.
Of course we could use a notation such as

∏n
i=1 i

instead, but now we’re “hiding” something under
the

∏
symbol instead of the . . . symbol. There

is, however, a completely explicit definition of the
factorial function:

n! =

{
1 if n ≤ 1,
n× (n− 1)! otherwise.

∗Disclaimer: This is not a course in physics or biology
or epidemiology or even mathematics. Our exposition of the
science behind the projects cuts corners whenever we can do
so without lying outright. We are not trying to teach you
anything but computer science!
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If we want to compute 3! according to this defini-
tion, we have to compute 3×2! which in turn leads
us to 3×2×1! which is 3×2×1 which is (of course)
6. This is a recursive definition because we define
the factorial function in terms of itself. At first this
may seem a bit circular, but it is not: we can only
subtract 1 from n a certain number of times before
reaching 1, and the result for n ≤ 1 does not rely
on the factorial function anymore. Roughly speak-
ing a recursive definition is well-founded if (a) the
recursive cases lead to “smaller and smaller” prob-
lems and (b) we eventually reach a “base case” that
is not recursive. In the definition above, the first
case for n ≤ 1 is our base case, the second case
is our recursive case. Regardless what n we start
with, sooner or later we’ll reach the base case and
the recursion stops.

We can translate both definitions of the factorial
function into PYTHON code in the obvious way:

d e f iterative (n ) :
result = 1
f o r i i n r a n g e ( 2 , n + 1) :

result = result ∗ i
r e t u r n result

d e f recursive (n ) :
i f n <= 1 :

r e t u r n 1
e l s e :

r e t u r n n ∗ recursive (n − 1)

The call of recursive(n - 1) in the last line
is a recursive call since we call the very func-
tion we are defining. Both of these functions are
valid PYTHON code, and both of these functions
will compute the correct result. However, there
is one very important difference between them:
The iterative function needs memory for ex-
actly three variables: n, result, and i. The
recursive function, on the other hand, needs
memory for n variables: one n for the first call,
one n for the second call, . . . , and one n for the nth
call. So if we compute 10! the recursive func-
tion will use more memory (10 variables) than the
iterative function (3 variables).1 Since both
functions are otherwise identical in their behavior,
nobody in their right mind would suggest using the
recursive factorial function in an actual program:
why waste more memory than we have to? Even in
terms of how complicated the functions are to read,
there is really no significant difference. There are,
however, certain problems for which a recursive
solution is much simpler than the equivalent itera-

Figure 1 Backtracking search in a simple maze.

tive solution would be. It’s for those problems that
recursion really begins to shine as a programming
technique. Sadly we had to explain it with some-
thing simplistic like the factorial function first.

Background: Backtracking
Consider the task of solving a maze like the one
in Figure 1: Starting from the entrance on the left,
what sequence of steps will get you to the exit on
the right? There are many possible solution strate-
gies but let’s focus on one in particular:

• At any point in the maze, arbitrarily decide on
one possible direction we have not tried be-
fore.

• If we reach a dead end (a point where we can-
not pick a new direction anymore), a previous
decision was flawed; undo as many steps as
necessary to make a different decision.

• If we reach the exit, we are done.

This process is illustrated with different colors in
Figure 1 above. We begin in blue at the entrance
where we only have one option, namely to go right.
After that first step we have a choice: We can ei-
ther go up (green) or continue right (orange). We
decide to go up, which leads to a number of addi-
tional steps up because there are no other options,
at least until we get to the next intersection. Here
we can decide again: We can either continue up

1. Furthermore PYTHON limits the number of recursive
calls we can make to some fixed number. On most systems
we can only make 1000 recursive calls, so the recursive
function can only be used to compute 1000! or thereabouts.
The iterative function has no such limitation.
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(pink) or go right (yellow). We decide to go up
again, but after a few steps we are at a dead end:
the last decision to go up was bad, so we return
to it (green) and go right instead (yellow). I don’t
want to belabor this process, suffice it to say that
we won’t ever find the exit after that decision ei-
ther. So eventually we are back (once again) at the
last green decision and we are out of options here
as well. So we have to return to the last decision
before that one, which was our initial “going up”
decision at the last blue square. We now make that
decision differently and go right instead (orange).
And so on and so forth.

The process of making different decisions at dif-
ferent points and “undoing them” if they don’t lead
to the goal is called backtracking and recursion is
particularly well-suited to it because the “last deci-
sion made” is not something we need to explicitly
remember anywhere, the recursive calls remember
that information automatically.

1 A Knight’s Tour [15 points]

This problem deals with a lonely knight on an oth-
erwise empty chess board. Knights move in a
peculiar way: either one square north-south and
two squares east-west or two squares north-south
and one square east-west. A knight in (roughly)
the center of the board can reach eight different
squares from the one it is sitting on; the closer it
gets to a border, the fewer moves are possible since
some would take it outside the board. The ques-
tion we are going to address is the following: How
can we move a knight in such a way that it will
visit each square of the chess board exactly once?
A sequence of moves that achieves this is called
an open knight’s tour.2 Obviously the size of the
chess board is relevant for this problem.3 On a 1-
by-1 board we’re done immediately since we have
only one square to visit and we do that by placing
the knight there. On a 2-by-2 board, however, we
can never actually move the knight after placing it
on the first square, thus no knight’s tours exist. On
a 3-by-3 board we can move the knight around the
outer 8 squares, but we can never move it into the
center square; if we start at the center square, how-
ever, we cannot move anywhere else; so again no
knight’s tour exists. On a 4-by-4 board no knight’s
tour exists either, but on a 5-by-5 board there are
suddenly 304 possible open knight’s tours if we

Figure 2 Open knight’s tour on 5-by-5 board.
1 12 3 18 21
4 17 20 13 8
11 2 7 22 19
16 5 24 9 14
25 10 15 6 23

Figure 3 Open knight’s tour on 6-by-6 board.
1 20 3 18 5 22
36 11 28 21 30 17
27 2 19 4 23 6
12 35 10 29 16 31
9 26 33 14 7 24
34 13 8 25 32 15

start in a corner of the board. There is actually a to-
tal of 1728 open knight’s tours on a 4-by-4 board,
but some starting squares do not lead to a tour. So
apart from the size of the board, the starting posi-
tion matters as well.

For this problem you will write a program that
computes one possible knight’s tour for a chess
board of a given size.4 Please call your program
knight.py and nothing else. Figure 2 shows
what the output of your program should look like
for a 5-by-5 chess board, Figure 3 shows the out-
put for a 6-by-6 chess board. As you can see we
start in the upper left corner of the board and then
make our way around following the movement pat-
tern for a knight. We number the squares indicating
the order in which they were visited.

We need two essential pieces of information to
find a knight’s tour: the size of the board and the
valid moves of a knight. Since we are trying to get
a version of this program working quickly and un-
derstand scoping rules better, we’ll use global vari-
ables for a change. Both of these values should be
defined at the top of your program exactly as shown

2. A closed knight’s tour is one in which the knight ends
up in the same square it started from, so that square is visited
twice (once at the beginning and once at the end). We will
ignore closed tours for this problem.

3. Computer scientists have a tendency to generalize every-
thing as far as possible (something we obviously learned from
mathematicians). Hence we are not going to limit ourselves
to just “regular” 8-by-8 chess boards. We will, however, stick
to square chess boards.

4. Computing all possible tours from a given starting po-
sition is actually not much harder, but it would take way too
long to print them all for n ≥ 6.
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here in the first draft:

SIZE = 6
MOVES = (

(−2 , −1) , (−2 , 1 ) ,
( 2 , −1) , ( 2 , 1 ) ,
(−1 , −2) , (−1 , 2 ) ,
( 1 , −2) , ( 1 , 2 ) ,

)

d e f main ( ) :
p r i n t ”No s o l u t i o n ! ”

main ( )

The moves are being stored in a tuple of pairs.
Each pair is also a tuple, and represents the differ-
ence in row and column indices between the cur-
rent position of the knight on the board, and the
position after the move. For example, (-2, -1) will
move the knight two rows up (north) and one col-
umn to the left (west). Likewise, (1, 2) would move
it one row down and 2 columns to the right. There-
fore, the MOVES collection of pairs represents all
possible legal moves for a knight.

Of course we need to represent the actual chess
board as well, and we’ll use a matrix (nested lists)
to do that. Concretely we’ll use a matrix of inte-
gers, all of which are 0 initially which we’ll take to
mean “not yet visited” in the program; if a cell of
the matrix contains a positive integer, it’s the “step”
in the tour we’re currently investigating. So when
we first place the knight in the upper left corner of
the board, we’ll set matrix element (0, 0) to 1 to
represent the first move. The next square we jump
to will be labeled 2, the next 3, and so on; if we
ever label a square with n2 (where n is the size of
the chess board) that was our last move. The tech-
nique we will use to find a knight’s tour is back-
tracking as we’ve explained above. Suppose we
are at some square and we are trying to “finish”
the tour from that square; there may be a number
of possible moves we can make, so we’ll pick one
which leads us to a new square from which we in
turn try to finish the tour again. If we can’t fin-
ish the tour because we are not done yet, but we
have no more possible moves to make from a given
square, then we “undo” as many decisions as nec-
essary to pick a different option earlier and try to
finish the tour again. We’ll do this for as long as
we’re not out of options at all squares; if we run
out of options and have never finished a tour, we
give up. So our main program will look like this:

d e f main ( ) :

board = zero_matrix (SIZE , SIZE )
finish_tour (board , 0 , 0 , 1 )
p r i n t ”No s o l u t i o n ! ”

We first create a zero matrix to represent the
board. Once the board is initialized, we call the
function that will (recursively!) finish the tour from
the given starting position; we always start in the
upper left corner of the board, and that square will
be labeled with 1 as indicated in the call. So why do
we still print “No solution!” after we return from
that function? We will write the function in such
a way that if it actually succeeds in finding a tour,
it’ll print the tour and then stop the program; in
other words, if we are successful, the function will
not actually return to main at all! The only time
we do return to main is if we could not find a tour,
and in that case printing the message is the correct
thing to do.

To create the board, we can use a mixture of
loops and list comprehensions, similar to some of
the matrix operations we explored in lecture. We
want to write the function more generally than we
will be using it, by giving it a parameter for the
number of rows and the number of columns. Here
is a starting point with documentation and tests; ex-
amine some of the special cases carefully:

d e f zero_matrix (rows , cols ) :
’ ’ ’
C r e a t e a m a t r i x wi th t h e s p e c i f i e d←↩
number o f rows and columns ,
w i th a l l v a l u e s i n i t i a l i z e d t o 0 .
>>> z e r o m a t r i x ( 0 , 0 )
[ ]
>>> z e r o m a t r i x ( 1 , 1 )
[ [ 0 ] ]
>>> z e r o m a t r i x ( 2 , 4 )
[ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ]
>>> z e r o m a t r i x ( 3 , 3 )
[ [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] ]
’ ’ ’
p a s s

Now we can continue to the function statements,
building the matrix one row at a time. We use a
simple list comprehension to create one row, and
then append a copy of each row to the matrix we
are creating.

d e f zero_matrix (rows , cols ) :
# d o c u m e n t a t i o n and t e s t s h e r e . . .
# make an empty l i s t t o s t a r t
mtrx = [ ]
# c r e a t e one row
arow = [ 0 ] ∗ cols
# r e p e a t f o r each row
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f o r _ i n r a n g e (rows ) :
# use [ : ] t o c r e a t e c o p i e s o f ←↩

t h e row
mtrx .append (arow [ : ] )

r e t u r n mtrx

Now to the tricky part - recursion! Our first draft
of the finish tour function is as follows:

d e f finish_tour (board , x , y , move ) :
board [x ] [y ] = move
i f move == SIZE∗SIZE :

p a s s
e l s e :

p a s s

The first thing we do is record the move we are
supposed to make on the board. Then we check if
this was the last move; if it was, we need to print
the tour and exit the program; if it wasn’t, we need
to make a move from the current square and finish
the tour given that move. Filling in the first part is
easy:

d e f finish_tour (board , x , y , move ) :
board [x ] [y ] = move
i f move == SIZE∗SIZE :

print_board (board )
exit ( )

e l s e :
p a s s

You’ll need to add one doctest to this function that
matches the output given in Figure 3.

Next we need to write a function to print the
board in the nice format illustrated in Figures 2
and 3:

d e f print_board (board ) :
f o r i i n r a n g e (SIZE ) :

f o r j i n r a n g e (SIZE ) :
p r i n t ”%4d ” % board [i ] [j ] ,

p r i n t

We simply run over the matrix as we’ve done sev-
eral times before, printing each element. However,
in order to get a nicely formatted “square” we use
PYTHON’s string formatting operator % to force a
width of 4 for each integer we print; if the integer
is not “long enough” PYTHON will “fill in” enough
spaces at the front to line everything up nicely.

The second part of finish tour is a little bit
more complex. First we have to figure out what the
valid moves are that we can make from the square
we are currently on, then we have to pick one of
those moves and try to finish the tour using it; but
if we cannot finish the tour, we have to try the next
possible move and try to finish again. So we’ll first

write a function that given the current state of the
board and the current position of the knight, will
return a list of possible squares to move to next:
d e f possible_squares (board , x , y ) :

result = [ ]
f o r move i n MOVES :

dx , dy = move
nx = x + dx
ny = y + dy
i f valid (nx , ny ) and board [nx←↩

] [ny ] == 0 :
result .append ( (nx , ny ) )

r e t u r n result

In other words, we’ll try every legal move a knight
can make from the current square; if the move stays
within the board, and if we have not visited the re-
sulting square yet, then we’ll include that position
in the list of possible squares to jump to. Due to
the size of the board in this version of the prob-
lem, you do not have to write doctests for the pos-
sible squares function. However, we strongly sug-
gest using a smaller board size to work through this
part of the problem if you don’t understand all the
steps.

The valid function is very straightforward, but
you must add doctests to it:
d e f valid (x , y ) :

r e t u r n 0 <= x < SIZE and 0 <= y < ←↩
SIZE

These functions make it rather straightforward to
complete the finish tour function:
d e f finish_tour (board , x , y , move ) :

board [x ] [y ] = move
i f move == SIZE∗SIZE :

print_board (board )
exit ( ) # q u i t t h e program ←↩

e n t i r e l y
e l s e :

f o r position i n ←↩
possible_squares (board , x , ←↩
y ) :
nx , ny = position
finish_tour (board , nx , ny ,←↩

move+1)
board [x ] [y ] = 0

So we try to finish the tour for every possible move
the knight can make from the current square; if we
succeed we won’t return, but if don’t succeed, we’ll
have to eventually “undo” the move we were told to
make when we were first called, which is why we
assign 0 to the current square after we exhaust all
possible ways to finish a tour from it: we’ll have to
go back and “undo” an earlier decision. And done.
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Figure 4 An easy Sudoku puzzle.

4 1 ? 3 7
6 2 9 8

5 9 2 1
2 7 3 4

5
1 4 6 9
4 3 8 6

2 5 4 3
9 6 1 2

Except for one thing: If you try to solve the 6-
by-6 board using this approach, you’ll notice that it
takes a rather long time. On a netbook, the 5-by-5
board is done in 1.3 seconds while the 6-by-6 board
takes over 4 minutes! The reason for this is that
there are many, many more possibilities to explore
on a 6-by-6 board, and our program will try all of
them until it finds a tour. If you want, you can look
up “Warnsdorff’s Rule” online which is a way to
restrict our search to only certain possible moves of
the knight. With that rule added, you can solve the
6-by-6 board in under 0.1 seconds on a netbook;
a 31-by-31 board takes roughly 0.3 seconds; for
a 32-by-32 board it runs out of memory though.
Amazing!

If you work on Warnsdorff’s Rule,
please hand in a separate program called
warnsdorff.py, the knight.py program
should not use the additional rule!

2 Solving Sudoku [25 points]

Sudoku is a well-known number-placement puzzle:
Fill a 9-by-9 grid with digits so that each column,
each row, and each 3-by-3 sub-grid (“block”) con-
tains all the decimal digits from 1 to 9 exactly once.
If you’re not familiar with this game, you can find
a explanation of it online at www.sudoku.com.

Consider the puzzle in Figure 4 and imagine it as
a 9-by-9 matrix with rows and columns numbered
from 0 to 8. If we want to solve Sudoku puzzles by
backtracking, we’d have to start at the first “free”
square, marked with “?” at position (0, 2) here.
In the most simplistic approach, we’d just put each
digit from 1 to 9 into that position and then try to
solve the rest of the puzzle under that assumption.

Figure 5 Input file for the easy Sudoku puzzle.

41.....37
62.....98
..59.21..
..27.34..
....5....
..14.69..
..43.86..
25.....43
96.....12

However, notice that the constraints of the puz-
zle restrict our choices rather severely: If we placed
a 1 for the “?” we’d immediately fail because
there’s already a 1 in row 0; if we placed a 2 in-
stead we’d fail again because there’s already a 2 in
column 2; same for 3, 4, and 5; if we placed a 6 in-
stead we’d fail once more because there’s already a
6 in the first block of the puzzle. The existing con-
straints make it so that the only possible options
for the “?” at position (0, 2) are 8 and 9, nothing
else is allowed. We’ll use this to our advantage: In-
stead of trying every possible digit from 1 to 9, we
start by computing the set of actually valid digits
for a certain position. We’ll then only pick from
that set, one at a time, and then try to solve the rest
of the puzzle recursively. If we ever get to a posi-
tion where we have no options whatsoever, so the
set of possible values at that position is empty, we
have run into a dead end and we need to backtrack.
If, however, we end up filling every last spot, we
have found a solution to the puzzle: we print that
solution and stop, just like in the knight’s tour prob-
lem.

For this problem you will write a program that
computes one possible solution to a given Sudoku
puzzle. Please call your program sudoku.py
and nothing else. Figure 5 shows what the in-
put to your program, which you’ll read from a file
puzzle.txt, will look like. Figure 6 shows
the corresponding output from your program, the
solution to the Sudoku puzzle given in Figure 5.

Instead of guiding you step-by-step through the
development of this program, we’ll just give you a
few hints about how to approach it:5

5. You’ll have to start thinking these things through your-
self at some point, and we’re now at a place in the course
where you should be comfortable enough with the basics
so you can concentrate on the harder parts of programming.
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Figure 6 Output for the easy Sudoku puzzle.

4 1 9 8 6 5 2 3 7
6 2 7 1 3 4 5 9 8
3 8 5 9 7 2 1 6 4
5 9 2 7 1 3 4 8 6
8 4 6 2 5 9 3 7 1
7 3 1 4 8 6 9 2 5
1 7 4 3 2 8 6 5 9
2 5 8 6 9 1 7 4 3
9 6 3 5 4 7 8 1 2

• Represent the puzzle as a matrix of integers.
Cells that are not constrained initially should
be 0, cells that are constrained should have the
value from the input file in them.

• You’ll need three functions that, given a ma-
trix, can return a certain row, column, or block
as a list. If you number the blocks from 0 to
8, left to right and top to bottom you can fig-
ure out which block a particular cell is in by
dividing the cell’s row and column indices by
3. Here is the exact formula, using integer di-
vision: block = x/3 ∗ 3 + y/3 where block is
the block number [0,8], x is the row number
of the cell and y is the column number of the
cell.

• Before you pick a digit for an empty cell at po-
sition (x, y), compute the set of possible val-
ues: Start with the set {1, 2, 3, 4, 5, 6, 7, 8, 9};
look at the values that are already fixed in row
x and remove them; then look at the values
that are already fixed in column y and remove
them; then look at the values that are already
fixed in the block that contains (x, y) and re-
move them. Use the resulting set as the pos-
sible values for your recursive backtracking
function.

• The simplest way to find the next cell to work
on is to always start from the first cell and
run through the matrix row-by-row, column-
by-column, until you find a cell that’s still 0
and therefore needs to be filled in. If you’re
looking for a 0 but don’t find one anymore,
it means that all your empty cells have been
filled in and you have (hopefully!) solved the
puzzle. There are, however, smarter ways of
accomplishing both of these tasks.

Figure 7 Recursive images with depth 5 and size
500.

If everything goes well, your program for the So-
duko solver should be just a little big longer than
the program for the knight’s tour. If you end up
with way more code than that, you’re probably do-
ing something wrong or overly complicated.

Remember that your solutions for this assign-
ment must be completely pep8 compliant. How-
ever, due to the nature of the problems, you do not
have to write doctests for them, except where spec-
ified for the first part (Knight’s Tour).

3 Recursive Images [20 points
extra credit]

Combining recursion with graphics leads to a wide
variety of interesting images. For the extra credit,
you will use recursion to create a drawing of vari-
ous polygons, in boxes of decreasing sizes. Please
call your program figures.py and nothing else.
The expected output of the program is shown in
Figure 7 for a starting depth of 5 and size 500.

As you can see, each polygon will be drawn
three times, in red, green and blue colors. As
the figures get smaller the number of sides also
decreases by one. We refer the total number of
repetitions (recursions) as the depth of the im-
age. The first (largest) set of polygons will have
depth+2 sides; this is sometimes called the order
of the polygon. So for example, if you start with a

Good luck!
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depth of 2, your program should draw two shapes -
squares and triangles.

The recursively smaller RGB process we are
creating here is actually used to represent im-
ages in computer graphics and is called ’mipmap-
ping’. There is a nice article in Wikipedia
explaining the process and its usage, with
a recursive image somewhat similar to ours:
https://en.wikipedia.org/wiki/Mipmap.

Your program must get the required depth of the
image as well as the starting size of the overall im-
age as input from the user when it begins. Then
simply draw the figures. You can and should reuse
code from the first turtle project to draw the poly-
gons and box borders (lines). You’ll have to play
around a bit with starting positions to figure out a
good starting point for drawing each polygon in-
side its box. They don’t have to be perfectly cen-
tered, but do your best. You should also experiment
a bit to figure out a good length for the sides of the
polygons so that they mostly fill their boxes.

Note that extra credit points are only applied to
your homework point total. However, when course
grades are calculated, the homework averages will
be capped at 100%. In other words, extra credit
homework only helps you recover from poor home-
work grades, not anything else.
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