
Assignment 3: Molecular Biology Page 1

600.112: Intro Programming
for Scientists and Engineers

Assignment 3: Molecular Biology∗

Peter H. Fröhlich
phf@cs.jhu.edu

Joanne Selinski
joanne@cs.jhu.edu

Due Dates: 3pm on Wednesdays 9/30 and 10/7

Introduction
The third programming assignment for 600.112: Introductory Programming for Scientists and Engineers
delves into a new application area: basic molecular biology. Instead of cutting up frogs and pigs, we will
mostly cut up and otherwise manipulate strings: sequences of characters. And as far as anyone knows,
strings do not feel pain.

There are three things to do:

• First you’ll write a program that both validates DNA sequences and then computes their reverse
complements (complement.py). You’ll also create your own sample input file to use in testing this
program (complement.txt).

• Second you’ll write a program that both validates DNA sequences and then simulates the process
of “cutting” DNA using restriction enzymes (cuts.py). You’ll again create your own sample input
file to use in testing this program (cuts.txt).

• Third you’ll write a program that both validates mRNA sequences and then computes the primary
structure of the protein a ribosome would construct for it (ribosome.py). And yes, you must create
a sample input file for this part too (ribosome.txt).

You must submit complete zips file with all *.py and *.txt files needed to run your solutions as
detailed below, on Blackboard before the deadlines. Also, don’t forget to include descriptive doc strings
for all your programs and the functions in them. It’s best to write these as you go along. Improperly
written doc strings (missing the closing characters for example) can result in a 0 for your program!

Background
Molecular biology tries to understand the various chemical and biological processes that make cells
work the way they do in living organisms. At the bottom of many of these processes we find two kinds

∗Disclaimer: This is not a course in physics or biology or epidemiology or even mathematics. Our exposition of the
science behind the projects cuts corners whenever we can do so without lying outright. We are not trying to teach you
anything but computer science!

600.112: Intro Programming for Scientists and Engineers Fall 2015

http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.cs.jhu.edu/~joanne/
mailto:joanne@cs.jhu.edu

Assignment 3: Molecular Biology Page 2

complex molecules: nucleic acids and proteins.1 Proteins are (roughly) responsible for what an organism
is and does, whereas nucleic acids are (roughly) responsible for encoding the information necessary to
produce proteins.

There are many different kinds of proteins: Structural proteins are found in skin and hair; ligand-
binding proteins facilitate, for example, oxygen transport; enzymes speed up certain chemical reactions,
for example as part of the digestive system. Proteins are chains of simpler molecules called amino acids
(or residues). Despite the wide variety of biological functions that proteins serve, most of them are built
from only 20 different amino acids. Typical proteins contain about 300 of these amino acids.

There are two kinds of nucleic acids: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
DNA is a double-chain made up of two simple chains called strands. Each strand is in turn made up
of simpler molecules called bases (or nucleotides). There are only four different bases: adenine (A),
guanine (G), cytosine (C), and thymine (T). The two strands hold together because each base in one
strand bonds to a base in the other strand: A bonds to T, C bonds to G. We say that A and T (C and G)
complement each other or that A and T (C and G) are complementary bases. Each strand also has an
orientation which by convention starts at the 5’ end and finishes at the 3’ end.2 RNA is similar to DNA
in some respects, however RNA is typically single-stranded and thymine (T) is replaced with uracil (U).
Also there are several different kinds of RNA that serve different purposes.

On a given DNA molecule, certain contiguous stretches called genes encode information for building
proteins. Three bases of the DNA molecule correspond to one amino acid for the protein to be built,
and each such “triplet” is called a codon. There are 43 = 64 possible “triplets” but only 20 amino
acids. So while some amino acids have multiple codons, other “triplets” correspond to no amino acid
at all: instead they indicate the end of a gene. A promoter region before the gene allows proteins that
synthesize RNA to recognize where to start. The protein then makes a copy of the gene onto an RNA
molecule called messenger RNA (mRNA).3 The mRNA molecules are built from their 5’ end to their 3’
end while the DNA strand is read from the 3’ end to the 5’ end. This process is called transcription. The
actual proteins are produced by “biomolecular machines” called ribosomes according to the instructions
carried by the mRNA. As you have probably guessed, ribosomes themselves are made out of proteins.
Ribosomes also use two other forms of RNA, ribosomal RNA (rRNA) and transfer RNA (tRNA). This
process is called translation.

The so-called “central dogma” of molecular biology explains why all of this is important:

DNA makes RNA,
RNA makes proteins,

proteins make us.

So by understanding DNA, RNA, proteins, and the processes between them, we can understand—and in
theory even improve—“us”.

1 Reverse Complements [10 points]
The program you will write first validates a DNA sequence and then computes and prints its reverse
complement. Please call your program complement.py and nothing else! Figure 1 shows what the
output of your program will look like given the input above it.

This assignment requires the use of decision statements, string methods, and functions. It also will
use plain text files for input. Recall that you can create a plain text file in Lubuntu using Emacs (pro-
gramming menu) or Leafpad (accessories menu). Lastly, we will continue to develop your basic under-

1A molecule is a group of atoms held together by chemical bonds. Although it won’t matter for this assignment, we’ll
assume that you know what an atom is.

2If you want to know why these things are called “the 5’ end” and “the 3’ end” you should take a course in molecular
biology. All we care about here is that an orientation exists.

3Strictly speaking this mechanism is only valid for some organisms. Again we defer the details to a real course in
molecular biology.

600.112: Intro Programming for Scientists and Engineers Fall 2015

Assignment 3: Molecular Biology Page 3

Figure 1 Output of the complement.py program.
Input in file complement.txt:

ACTA
XENON
GATTACA
GGGGAGGAGGGTTTTAGGAAGTT

Output:

TAGT
invalid input
TGTAATC
AACTTCCTAAAACCCTCCTCCCC

standing of expressions, variables, loops, etc. We will, however, lead you through the problems rather
slowly and with a lot of advice on how to proceed, so you should be okay as long as you follow along
diligently.

Before you can do anything else, you’ll need a plain text input file called complement.txt.
Create this using Emacs or Leafpad, and for now put in it exactly the input shown in Figure 1. Next
we’ll create a very basic first version of your program. We’ll have to read input data from the file
complement.txt and just to see that we’re doing the right thing, we’ll print each line of that file
back out. Remember that for now we can only read plain text files, not things like .doc formatted files.
So here is what that first version could look like:

d e f main () :
data = open (” complement . t x t ”)
f o r line i n data :

p r i n t line
data .close ()

main ()

If you run this version, you will notice that we have a blank line between each potential DNA sequence.
The reason for this is that there is an “invisible” character at the end of each line we read that represents
the end of that line in the file. When we read a file line-by-line using a for loop, that special character
will be included at the very end of the string called line in our program. The print instruction adds
another “end-of-line” on its own, resulting in those empty lines you see in the output.

Since the “end-of-line” character is considered whitespace, we can use the strip operation on
strings to get rid of it as follows:

d e f main () :
data = open (” complement . t x t ”)
f o r line i n data :

line = line .strip ()
p r i n t line

data .close ()

main ()

Now the output should be more what we expected initially: just exactly the same as the input.
With this basic program working, we can think about what else we have to do for this problem.

There are two remaining tasks: We need to check each line of input and see if it represents a valid DNA
sequence. If the input is not a valid DNA sequence, we just print out invalid input for it and go on
to the next input. If the input is a valid DNA sequence however, we need to compute and print its reverse

600.112: Intro Programming for Scientists and Engineers Fall 2015

Assignment 3: Molecular Biology Page 4

complement. Just looking at these two things we have left to do, we can guesstimate that we need at least
two functions: one to decide whether an input is valid, and one to compute the reverse complement:
d e f valid (dna) :

p a s s

d e f complement (dna) :
p a s s

d e f main () :
data = open (” complement . t x t ”)
f o r line i n data :

line = line .strip ()
p r i n t line

data .close ()

main ()

We did something strange here: we defined the two functions valid and complement but we only
put a pass instruction into their bodies. In Python, pass is an instruction that does nothing at all,
but you can put it into places where you don’t know what to do yet; if we didn’t put pass into those
functions, Python would complain that there is no code to go into the functions and we wouldn’t be
able to run our program. This way, however, we can still run it to at least see that we didn’t make any
programming errors: the program, while not doing anything new, at least still works as before.

What we can do now is “programming by wishful thinking” which is actually a better idea than
what it first sounds like (at least if you do it correctly). Let’s simply assume that the functions already
work as expected! So let’s assume that valid returns True if the string dna is a valid DNA sequence
and False otherwise. Further let’s assume that complement returns the string that’s the reverse
complement of the sequence we pass in as dna. Under those assumptions, what would the rest of the
main program look like?
d e f valid (dna) :

p a s s

d e f complement (dna) :
p a s s

d e f main () :
data = open (” complement . t x t ”)
f o r line i n data :

line = line .strip ()
i f valid (line) :

p r i n t complement (line)
e l s e :

p r i n t ” i n v a l i d i n p u t ”
data .close ()

main ()

Note that this is simply an almost literal translation of what we said earlier: if the input is a valid DNA
sequence, we print its reverse complement, otherwise we print invalid input.

If we run this version of the program, it will print invalid input for every single line of input.
Since we didn’t actually write any code for valid and complement yet, this is actually better than we
could expect. However it’s still a good idea to understand why this happens. Python has a special value
None, which stands for “no value”. What happens is that when we call valid inside the if instruction,
Python needs to replace that call with some value. But since our version of valid just contains a pass
and no return statement, the function doesn’t produce a value. So Python “slips in” the value None for
us, and it turns out that in a boolean expression like the one expected as the condition of an if or while,
None means the same thing as False.

600.112: Intro Programming for Scientists and Engineers Fall 2015

Assignment 3: Molecular Biology Page 5

Let’s fix this by actually writing the proper valid function. The function gets a string and it has
to decide whether the string represents a DNA sequence or not. A string that is a valid DNA sequence
can only consist of the characters ACTG and nothing else. So what we can do is go through the string
dna one character at a time; if we find any character that’s not one of ACTG we can return False even
before we are finished with the string; if, one the other hand, we get to the end of the string and never
saw anything but ACTG, the we can return True. Here is the code:

d e f valid (dna) :
f o r c i n dna :

i f n o t c i n ”ATGC” :
r e t u r n False

r e t u r n True

d e f complement (dna) :
p a s s

d e f main () :
data = open (” complement . t x t ”)
f o r line i n data :

line = line .strip ()
i f valid (line) :

p r i n t complement (line)
e l s e :

p r i n t ” i n v a l i d i n p u t ”
data .close ()

main ()

If we run this version of the code, it’ll print invalid input for the second input and None for
the remaining three inputs. This again makes sense: When we call complement for a valid DNA
sequence, the function doesn’t yet produce a value so Python once again “slips in” the value None for
us. But at least we’re now doing the correct thing for the invalid input!

This leaves the complement function. To complement a DNA sequence we have to replace each
base by its complementary base, so we replace A by T and vice versa, as well as C by G and vice versa.
The reverse complement of a DNA sequence is the complement in reverse, so we also have to turn the
resulting string around: what used to be the end is now the beginning and vice versa.

This is complicated enough to once again write a new function. Let’s write a function partner that
given a base will return the complementary base; if what we’re given is not a valid base, we’ll just return
the base X for “invalid base”. Here’s the code (we’ll see how to write this much nicer in the future):

. . .
d e f partner (base) :

i f base == ”A” :
r e t u r n ”T”

e l i f base == ”T” :
r e t u r n ”A”

e l i f base == ”C” :
r e t u r n ”G”

e l i f base == ”G” :
r e t u r n ”C”

e l s e :
r e t u r n ”X”

. . .

Once we have the partner function, writing the complement function becomes rather straightfor-
ward: We start with an empty string for our result; we then go over the reverse string character by
character; for each character in dna we append the complementary partner to the result string;
and once we’re done, we return that result. If you run the program now, it should produce the ex-
pected output. Here is the code:

600.112: Intro Programming for Scientists and Engineers Fall 2015

Assignment 3: Molecular Biology Page 6

Figure 2 Output of the cuts.py program.
Input in file cuts.txt:

ATGGATCCATTGGATCCGGG
XENON
ATTATTATTATTATTGGGGG
GAA
GGACCGGGATCCGGTCGGGGGG

Output from program cuts.py:

ATGGATCCATTGGATCCGGG
\3

\12
invalid input
ATTATTATTATTATTGGGGG
GAA
GGACCGGGATCCGGTCGGGGGG

\7

. . .
d e f complement (dna) :

result = ” ”
f o r c i n r e v e r s e d (dna) :

result = result + partner (c)
r e t u r n result

. . .

Once you have this part of the assignment working, change your input file complement.txt for
more thorough testing so that it has at least 5 different DNA sequences in it - some valid, some invalid.
Your Blackboard submission for p3a must be a zip file with this new complement.txt input file and
your solution to this part of the assignment, complement.py.

2 Cutting DNA [20 points]
The second program you will write first validates a DNA sequence and then simulates the process of
“cutting” DNA using restriction enzymes. Please call your program cuts.py and nothing else! Fig-
ure 2 shows what the output of your program will look like given the input above it.

There are various restriction enzymes that end up cutting DNA at different places. The enzyme
we’ll simulate here is called BamHI and cuts DNA at recognition sites with the pattern GGATCC. If the
enzyme “finds” such a pattern, it “cuts” between the first two bases in the pattern, which in this case is
the two Gs in the enzyme. For a DNA sequence such as GGGATCCGG this means that one cut exists, and
that cut seperates the DNA into GG and GATCCGG.4

The basic structure of the program is similar to Problem 1, indeed you can even copy the valid
function from there. The main difference is what we do once we have a valid DNA strand to process:
before we complemented the strand, now we have to find and print all cuts that EcoR1 would make.
Here’s some code to start with:

d e f valid (dna) :
f o r c i n dna :

i f n o t c i n ”ATGC” :

4We should actually consider both strands of the DNA to do this “properly” but we’ll just ignore that complication here.

600.112: Intro Programming for Scientists and Engineers Fall 2015

Assignment 3: Molecular Biology Page 7

r e t u r n False
r e t u r n True

. . .

d e f main () :
data = open (” c u t s . t x t ”)
f o r line i n data :

line = line .strip ()
i f valid (line) :

print_all_cuts (line)
e l s e :

p r i n t ” i n v a l i d i n p u t ”
data .close ()

main ()

It’s probably a bad idea to start with the print all cuts function without first thinking about the
problem a little more. First, how do you find the position of the recognition site itself? In lecture we saw
the find function on strings that comes in handy here. Carefully look at the following Python Shell
interaction:

>>> "GAATCC".find("GGATCC")
-1
>>> "GGGATCCC".find("GGATCC")
1
>>> "GGGATCCCCGGATCCA".find("GGATCC")
1
>>> "GGGATCCCCGGATCCA".find("GGATCC", 2)
9
>>> "GGGATCCCCGGATCCA".find("GGATCC", 10)
-1

If the pattern we’re looking for is not in the string, we get −1 from find. If the pattern is in the
string, we get the position of the first matching character so 1 in this case. But what if there are multiple
places in the string where the pattern matches? To account for this case, find takes an optional second
parameter to indicate at what position in the string to start looking for a pattern. So if we find the first
matching pattern at position 1, we can ask find to search again starting from position 2 to see if there
is another match. In this case we find another match at position 9, so we ask again starting from position
10; now we get back −1 so we know that there are no further matches for the pattern in the string.

This process is rather similar to finding all the “cuts” in a given strand of DNA. As an exercise
in abstraction, you could write and test a function cut(dna, enzyme, start) that gets a string
representing a DNA sequence as dna, a string representing the enzyme with which to make the cut,
and a start position in that string from where to find the next cut. The function will return the position
of the next cut starting at the start position; if there is no further cut, it will return −1 just like find
does. Remember that the position of the cut is one greater than the position of the recognition site in the
dna string! For this particular assignment, you would call this cut function with the BamHI enzyme
GGATCC as the second parameter each time. But if you decided to use this program with a different
enzyme in the future, the cut function would already be generalized for you.

Once you have the cut function, you can try your hand at the more complicated print all cuts
function. This function starts simply enough by just printing the DNA sequence itself because (check
the output in Figure 2 above!) the actual cuts will be printed on separate lines after the DNA sequence.
You have to find a first cut (if there is one) by calling cut. Then, if you did indeed find a cut, you have
to print the corresponding marker at the right indentation to line up with the first A in the recognition site
pattern. Note that printing a backslash might be tricky; review special characters or escape sequences to
get it right. Also recall that you can multiply a string by a number, so for example the expression "A"*4

600.112: Intro Programming for Scientists and Engineers Fall 2015

Assignment 3: Molecular Biology Page 8

Figure 3 Output of the ribosome.py program.
Input in file ribosome.txt:

AUUGAAUUCAUUGAAUUCGGG
XENON
GAA
GGGGGGAAUUCGGGGGGGG
GAAUUUUGAUUUUUU

Output of program ribosome.py:

IleGluPheIleGluPheGly
invalid input
Glu
GlyGlyAsnSerGlyGly
GluPhe

results in the string "AAAA"; this can be used for indentation. Lastly remember that you can convert
an integer into a string suitable for appending to another string using the explicit str type conversion
function. This should allow you to produce the correct output marking each cut. Note that if you don’t
find a cut, you print nothing else after the DNA sequence itself. The “tricky” thing about the loop you
have to write is that you need to keep track of the last cut position as well as the next cut position. You
may have to play with this for a while and maybe talk the correct approach through with your TA.

Once you have this part of the assignment working, create your own input file cuts.txt to use
for testing that has at least 5 different DNA sequences in it - some valid, some invalid, some with the
enzyme, some without. Be as thorough in your testing as possible. Include this file in your submission
zip.

As an extra challenge, can you write a second version of your program that gets the enzyme pattern
from the user as input? (Don’t change your original solution so that it can easily be graded, but call this
version cuts2.py instead.) Since you’ll be getting the enzyme pattern as input to the program, you’ll
need to also pass it to the print all cuts function to get the ball rolling. As a result, you’ll have
fully generalized your program to work for more than one possible enzyme.

3 Playing Ribosome [20 points]
The third program you will write first validates an mRNA sequence (remember that T’s are replaced
by U’s in RNA), and then computes the primary structure of the protein a ribosome would construct for
it. Please call your program ribosome.py and nothing else! Figure 3 shows what the output of your
program will look like given the input above it.

The protein structure is created by replacing each triplet of bases (codon) with the corresponding
amino acid, until the codon ’UGA’ is encountered which indicates the end of a gene, or you run out of
triplets. We’ll provide you with a module called protein that contains a single function also called
protein that can translate each codon of the mRNA into the correct amino acid or STOP indicator.
Here’s an example session demonstrating use of the protein module in the Python Shell:

>>> import protein
>>> protein.protein("AGU")
’Ser’
>>> protein.protein("UGA")
’STOP’

600.112: Intro Programming for Scientists and Engineers Fall 2015

Assignment 3: Molecular Biology Page 9

Please use this function in your program by importing the module as we’ve shown above (don’t
copy/paste the function into your code). In order for this to work, you will also need to download the
protein.py module into the folder where your other files for this project are stored. Make sure to include
protein.py in the zip file you submit for grading.

There’s not much advice for this problem. We recommend that you carefully plan out the algorithm
you will use in pseudocode before coding it! Make sure you rewrite valid to check for RNA and not
DNA bases, and make sure that your code runs down the codons only until it encounters a STOP codon
or until the mRNA string itself doesn’t have enough characters for another codon left. The rest, as they
say, is up to you.

Once you have this part of the assignment working, create your own input file ribosome.txt to
use for testing that has at least 5 different mRNA sequences in it - some valid, some invalid, some with
the STOP codon in the middle, some with extra bases, etc. Be as thorough in your testing as possible.
Include this file in your submission zip.

600.112: Intro Programming for Scientists and Engineers Fall 2015

	Reverse Complements [10 points]
	Cutting DNA [20 points]
	Playing Ribosome [20 points]

