
Assignment 1: Turtle Graphics Page 1

600.112: Intro Programming for Scientists and Engineers

Assignment 1: Turtle Graphics

Peter H. Fröhlich
phf@cs.jhu.edu

Joanne Selinski
joanne@cs.jhu.edu

Due Date: Wednesdays 9/16 and 9/23

Introduction
The first actual programming assignment for
600.112: Introductory Programming for Scientists
and Engineers is meant to really get you going
with programming in Python. However, it does
not yet cover any specific application area in sci-
ence or engineering, it is only about programming.
We will focus on drawing things on the screen us-
ing Python’s Turtle Graphics module to make this
journey more entertaining.

There are three things to do: First you’ll write
a program that draws a number of basic geometric
shapes on the screen. Second you’ll write a pro-
gram that will plot one period of the cosine func-
tion. Third you’ll write a program that will plot a
parametric curve where the x and y positions are
derived from a single parameter in an interesting
way.

There are detailed submission instructions on
Blackboard which you should follow to the letter!
You can lose points if you create more work than
necessary for the graders by not following the in-
structions.

1 Geometric Shapes [5 points]
The first program you will write draws a number of
simple geometric shapes: triangles, diamonds, and
octagons (the eight-sided regular polygon). Please
call your program shapes.py and nothing else!
Figure 1 shows what the output of your program
will look like.

For this and the following programs, you will
need to use functions and for loops as discussed
in lecture. This is in addition to your basic un-
derstanding of expressions and variables. We will,

Figure 1 Output of the shapes.py program.

however, lead you through the problems rather
slowly and with a lot of advice on how to proceed,
so you should be okay as long as you follow along
diligently.

Before you can do anything else, you’ll need a
very basic first version of your program that sets
up the turtle module and properly waits for the
user to close the window. Here is what that first
version could look like:

i m p o r t turtle

d e f main () :
turtle .setup ()
turtle .done ()

main ()

This version will literally do nothing but open the
turtle window, wait for the user to close the win-
dow, and exit. Once you have this, you can write
your first function, probably the one to draw trian-
gles. As you can see from Figure 1, you will have
to draw triangles of different sizes, so your func-
tion should take a size parameter. After decid-

600.112: IPSE Fall 2015

http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.cs.jhu.edu/~joanne/
mailto:joanne@cs.jhu.edu

Assignment 1: Turtle Graphics Page 2

ing these two things, you can add the function and
some code to test it to your program:

i m p o r t turtle

d e f triangle (size) :
p a s s

d e f main () :
turtle .setup ()
triangle (1 0 0)
turtle .done ()

main ()

If you run this version, it will behave just like the
first one; however, you can now be sure that you
didn’t make a mistake in defining the function and
calling it. The next step is to develop the body of
the triangle function. Drawing a triangle re-
quires that we move forward three times and turn
left three times. We should move forward each
time by size; we need to turn left each time by
120 degrees (why?). So one step in the process of
drawing a triangle is to (a) move forward and (b)
turn; we need to perform this step three times, so
we put it inside a for loop:

i m p o r t turtle

d e f triangle (size) :
f o r _ i n r a n g e (3) :

turtle .forward (size)
turtle .left (1 2 0)

d e f main () :
turtle .setup ()
triangle (1 0 0)
turtle .done ()

main ()

When you run this version of the program, you
should see a single triangle on the screen. While
that’s a far cry from the final image you’re sup-
posed to draw, it’s certainly progress!

The process we just illustrated, starting with a
very simple program and testing it, adding a lit-
tle bit of code and testing again, adding a little
more code and testing again, etc. is very important.
It’s called iterative development, and we will be
emphasizing this technique throughout the course!
If you sit down and write code for two hours be-
fore ever testing your program, you will be over-
whelmed by all the things that are going wrong. If
instead you write code for only two minutes and
test your program again, there is much less code

that can go wrong, and therefore it will be a lot
easier for you to correct your mistakes. Always
program in baby steps!

Now that you have a working triangle func-
tion, you can write and test a diamond function a
similar manner. Your diamond function will also
have a single parameter which is the length of each
side. Each diamond will have 4 sides, and the an-
gles between them should be 90 degrees each. Es-
sentially our diamond is a square rotated so that the
point is at the top and bottom.

First you may want to write the code to draw a
square. This will be very similar to the triangle
function. However, in order to turn it into a dia-
mond, you must turn the turtle 45 degrees to the
left before it starts to draw the shape.

We’ll leave the function empty in the follow-
ing so you have something to experiment with
on your own, especially since it’s very similar to
triangle anyway. Remember to write it in baby
steps and test as you go along.

This brings us to the third shape you need to
draw, the octagon. We could write a function that
draws just an octagon, but you’ve probably noticed
by now that the main difference between all regu-
lar polygons is (a) how many lines to draw and (b)
how much to turn left between each line. So in-
stead of writing an octagon function, let’s write a
polygon function that can draw any regular poly-
gon we desire. This is an example of abstraction,
generalizing a problem and developing a solution
to an entire class of problems instead of one spe-
cific instance. It’s a feature of programming that
we should take advantage of and learn to do well.

Obviously it’s not enough to tell the polygon
function how big of a polygon to draw, we also
have to tell it how many sides the polygon is sup-
posed to have:

i m p o r t turtle

d e f triangle (size) :
f o r _ i n r a n g e (3) :

turtle .forward (size)
turtle .left (1 2 0)

. . .

d e f polygon (size , sides) :
p a s s

d e f main () :
turtle .setup ()
triangle (1 0 0)

600.112: IPSE Fall 2015

Assignment 1: Turtle Graphics Page 3

diamond (1 0 0)
polygon (1 0 0 , 8)
turtle .done ()

main ()

Looking back at the structure of our previous func-
tions, it should be clear that the for loop in
polygon has to run sides times: it ran three
times for a triangle, should run four times for a
square or diamond, so it has to run eight times for
an octagon, five times for a pentagon, and so on.
The angle by which we turn after each line has to
depend on the number of sides as well: If we add
up the angles for the triangle and the rectangle, we
get 360 each time; so for an arbitrary polygon, the
angle should be 360/n where n is the number of
sides. We can put the expression to do this calcula-
tion directly into the function call like this:

d e f polygon (size , sides) :
f o r _ i n r a n g e (sides) :

turtle .forward (size)
turtle .left (3 6 0 . 0 /sides)

However, that causes it to be recalculated each time
that statement is executed by the loop. Instead, we
can give that value a name such as angle before
the loop starts, and then refer to it as such in the
function call. So here we go:

i m p o r t turtle

d e f triangle (size) :
f o r _ i n r a n g e (3) :

turtle .forward (size)
turtle .left (1 2 0)

. . .

d e f polygon (size , sides) :
angle = 360 .0 / sides
f o r _ i n r a n g e (sides) :

turtle .forward (size)
turtle .left (angle)

d e f main () :
turtle .setup ()
triangle (1 0 0)
diamond (1 0 0)
polygon (1 0 0 , 8)
turtle .done ()

main ()

Note that it is very important that we write 360.0
when calculating the angle and not just 360
(why?).

At this point we can draw all the required shapes,
so what we have left to do is draw them multiple
times, in different colors, and at different positions.
Colors are the easiest thing to get a handle on, so
let’s start there. The turtle module provides a
color function that we can use: we simply say
turtle.color("red") for example. Figure 1
indicates that we need green, blue, and red for tri-
angles, diamonds, and octagons respectively, so we
change our code as follows:

i m p o r t turtle

. . .

d e f main () :
turtle .setup ()
turtle .color (” b l u e ”)
triangle (1 0 0)
turtle .color (” r e d ”)
diamond (1 0 0)
turtle .color (” g r e e n ”)
polygon (1 0 0 , 8)
turtle .done ()

main ()

Drawing each shape repeatedly at different sizes
is obviously something a for loop can do. Each
shape already takes a size parameter, so all we
need to know is what sizes we are supposed to
draw them at. Let’s say we want to draw each
shape at a size of 10, 25, 40, and 55, so each
shape gets drawn four times. Creating a for loop
that goes through these values requires that we
use the three-argument form of the range func-
tion: range(10, 56, 15) Remember that the
lower bound is inclusive while the upper bound is
exclusive; if we would use 55 instead of 56, the
value 55 itself wouldn’t be included. Let’s write a
separate function for drawing our set of four trian-
gles as follows:

i m p o r t turtle

. . .

d e f triangles () :
f o r size i n r a n g e (1 0 , 56 , 15) :

triangle (size)

d e f main () :
turtle .setup ()
turtle .color (” b l u e ”)
triangles ()
turtle .color (” r e d ”)
rectangle (1 0 0)

600.112: IPSE Fall 2015

Assignment 1: Turtle Graphics Page 4

turtle .color (” g r e e n ”)
polygon (1 0 0 , 8)
turtle .done ()

main ()

Following this example, you can write the func-
tions diamonds and octagons to draw four of
each of those shapes, so our main becomes this:

i m p o r t turtle

. . .

d e f main () :
turtle .setup ()
turtle .color (” b l u e ”)
triangles ()
turtle .color (” r e d ”)
diamonds ()
turtle .color (” g r e e n ”)
octagons ()
turtle .done ()

main ()

Remember that thing called abstraction? As an ex-
tra challenge, think about how to generalize the
process of drawing multiple copies of a shape, each
of a different size. Generalize the triangles,
diamonds and octagons functions by replac-
ing them with one that looks likes this, where sides
is the number of sides and number is how many
copies of the shape you want:

d e f multiples (sides , number) :

Now we’re pretty close to what the program is
supposed to draw, all that’s left is to move the turtle
with the pen up before we draw each set of shapes.
The turtle starts at position (0, 0) after setup, so
we start by moving it a decent amount to the left
before we draw the triangles:

i m p o r t turtle

. . .

d e f main () :
turtle .setup ()
turtle .up ()
turtle .backward (1 5 0)
turtle .down ()
turtle .color (” b l u e ”)
triangles ()
turtle .color (” r e d ”)
diamonds ()
turtle .color (” g r e e n ”)
octagons ()

Figure 2 Output of the cosine.py program.

turtle .done ()

main ()

Before calling diamonds we move it to the right
(forward) by the same amount, and then again
to the right by the same amount before calling
octagons. Done!

2 Plotting Cosines [10 points]
The second program you will write plots one pe-
riod of the cosine function from 0 to 2π. Please
call your program cosine.py and nothing else!
Figure 2 shows what the output of your program
will look like.

You already know how to switch colors from the
first program you wrote, so drawing the axes in red
and the cosine curve in green should not be a prob-
lem. Here is some basic code to get you started
(with the important functions missing of course):

i m p o r t turtle

. . .

d e f main () :
turtle .setup ()

turtle .color (” r e d ”)

600.112: IPSE Fall 2015

Assignment 1: Turtle Graphics Page 5

axes ()

turtle .color (” g r e e n ”)
plot ()

turtle .done ()

main ()

Instead of using forward and left to draw a
certain line, it is more convenient for this program
to be able to draw a line from the current position
of the turtle to an arbitrary position on the screen.
Luckily the turtle module has a goto func-
tion that does exactly that: If we are currently at
position (-10, 10) and call turtle.goto(100,
100), the turtle will draw a line (provided the pen
is down!) from (-10, 10) to (100, 100)!

Let’s attack the axes we need to draw first. Both
axes should go from −200 to 200 in the respec-
tive coordinate, and they should cross at (-150,
0). Instead of writing the code for this twice, let’s
assume that there is a function line(x1, y1,
x2, y2) that gets the x and y coordinates of two
points to draw a line between (from the first point
to the second point). If we have such a function,
we can write the axes function as follows:
i m p o r t turtle

. . .

d e f axes () :
line(−200 , 0 , 200 , 0)
line(−150 , −200 , −150 , 200)

d e f main () :
turtle .setup ()

turtle .color (” b l u e ”)
axes ()

turtle .color (” r e d ”)
plot ()

turtle .done ()

main ()

You’ll have to write the line function in terms of
the up, down, and goto functions of the turtle
module to finish drawing the axes.

Drawing the cosine wave itself requires a for
loop to create the successive x values that we want
to calculate the cosine for. You can access the co-
sine function using turtle.cos(x) where x is
measured in radians, not degrees. If you look at

Figure 2, we are obviously plotting the cosine func-
tion between 0 and 2π; however, in terms of screen
coordinates, 0 is actually at −150 on our x-axis.
Also, the result of turtle.cos(x) is always be-
tween −1 and 1 but the extrema in terms of screen
coordinates are −100 and 100. So you will have to
shift and scale the arguments to the cosine function
(as well as the result you get back from it) suitably
to make the plot have the right dimensions on the
screen.

Set up the for loop inside your plot function
so that the x coordinate takes the values from −150
to 150 in increments of 5. (Review the 3 argument
version of the range function in order to do this.)
So the first value will be −150, the next will be
−145, the next will be −140, and so on, up to 150
at the other end. Inside the for loop, calculate the
actual x value for the cosine function from these
values; you’ll have to divide and multiply with the
correct factors to make this happen. When you
get back the result, multiply it by the correct fac-
tor to make the extrema of the cosine −100 and
100. How do you achieve the plot itself? Just use
the goto function in the right way!

3 Plotting Parametrics [10
points]

The third program you will write plots a para-
metric curve, a notion we’ll explain briefly below.
Please call your program parametric.py and
nothing else! Figure 3 shows what the output of
your program will look like. Note that the y axis
crosses the x axis in the center this time, at posi-
tion (0,0) in the graphics window.

When we talk about “plotting a function” we
usually think of something like y = sin x where
we determine the value for y from x and then plot
the coordinates (x, y). A parametric curve of the
kind shown in Figure 3 works a little differently:
there is some parameter t and both the x and the y
coordinate we plot depend on t. For example, here
is the parametric curve you are supposed to plot:

x = sin 2t

y = cos 5t

The values for t range from 0 to 2π. Since
we cannot write a for loop using floating
point numbers, you’ll have to write the range

600.112: IPSE Fall 2015

Assignment 1: Turtle Graphics Page 6

Figure 3 Output of the parametric.py pro-
gram.

Figure 4 The parametric heart curve.

using integers. Use this one: range(0,
int(2*turtle.pi*1000), 10) So instead
of going from 0 to 2π we go from 0 to 2000π in
terms of integer values; to get the correct floating
point value, you’ll have to divide t by 1000 before
you use it in the parametric equations. Also, you
need to scale the resulting x and y values by 150 to
get the plot from Figure 3. Enjoy!

Bonus Curve
Parametric curves are fun because they can produce lots of
interesting shapes. The parametric curve from above could,
for example, be used in a game to move alien space ships
across the screen in an interesting pattern. Figure 4 shows a
parametric curve that could be useful for a love letter instead.
The equation for the “heart curve” is as follows:

x = 16 sin3 t

y = 13 cos t− 5 cos 2t− 2 cos 3t− cos 4t

Figure 5 The house drawing challenge.

Once your program works for the basic parametric curve, it
will be able to plot all of them. So feel free to play around
and try to find a curve you like!

Final Challenge
As a final challenge, see if you can figure out how to draw
the “house” in Figure 5 on a piece of paper without lifting
the pen or retracing any lines. Once you have that down,
write a python program to do it with the turtle. Use the on-
line Python docs to look up some additional functions and
features you can use with turtle graphics (http://docs.
python.org/2/library/turtle.html). In particu-
lar, slow the turtle down so that you can really watch it draw
the figure.

600.112: IPSE Fall 2015

http://docs.python.org/2/library/turtle.html
http://docs.python.org/2/library/turtle.html

	Geometric Shapes [5 points]
	Plotting Cosines [10 points]
	Plotting Parametrics [10 points]

