Ray-Tracing

Misha Kazhdan

Ray-Tracing

In graphics, we often represent the surface of a 3D shape by a set of triangles.

Ray-Tracing

Goal:

Take a collection of triangles representing a 3D scene and render a detailed image.

Physical Pinhole Camera

The film sits behind the pinhole of the camera.
Rays come in from the outside, pass through the pinhole, and hit the film plane.

Virtual Camera

The film sits in front of the pinhole of the camera. Rays come in from the outside, pass through the film plane, and hit the pinhole.

Ray-Casting

We invert the process of image generation by sending rays out from the pinhole.

Ray-Casting

We invert the process of image generation by sending rays out from the pinhole.
For each pixel in the virtual file plane, we:
-Compute the ray: pinhole \rightarrow pixel
-Figure out what object in the scene is hit first -Set the pixel to the color of the object

Ray-Casting

Image RayCast(Camera camera, Scene scene, int width, int height)
Image image $=$ new Image $($ width , height $)$; for (int $\mathrm{i}=0$; i width ; $\mathrm{i}++$) for (int $\mathrm{j}=0$; j <height ; $\mathrm{j}++$) \{

Ray ray = ConstructRayThroughPixel(camera, i, j); Intersection hit = FindIntersection(ray , scene); image $[i][j]=$ GetColor(hit);
\}
return image:

Ray-Casting

If we ignore the color computation, we get the silhouettes of the scene:

Outline

Ray-Tracing

- Direct Illumination

Modeling Surface Reflectance

Surface color is determined by the lights and the way different surfaces reflect the light. Ideally, we would model the surface reflectance properties at p :

$$
R_{p}(\theta, \phi, \lambda, \gamma, \psi)
$$

R_{p} is the fraction of incident light:

- arriving from direction (γ, ψ)
- with wavelength λ
- leaving in direction (θ, ϕ)
- Too much storage
- Difficult in practice

Simple Reflectance Model

Simple model:

- diffuse reflection +
- specular reflection +
- emission +
- "ambient"

Based on model proposed by Phong

Surface

Simple Reflectance Model

Simple model:

- diffuse reflection +
- specular reflection +
- emission +
- "ambient"

Based on model proposed by Phong

Surface

Diffuse Reflection

Assume surface reflects equally in all directions

- Examples: chalk, clay

Diffuse Reflection

How much light is reflected?

- Depends on angle of incident light

Diffuse Reflection

How much light is reflected?

- Depends on angle of incident light

Physically motivated:
(Surface color) $=($ Light color $) * \cos \theta^{*}$ (Diffuse)

Diffuse Reflection

Assume surface reflects equally in all directions

- Examples: chalk, clay

Simple Reflectance Model

Simple analytic model:

- diffuse reflection +
- specular reflection +
- emission +
- "ambient"

Surface

Specular Reflection

Reflection is strongest near mirror angle

- Examples: metals, shiny apples

Specular Reflection

How much light is seen?
Depends on:

- angle of incident light
- angle to viewer

Viewer

Works well in practice:
(Surface color) $=($ Light color $) * \cos ^{k} \alpha^{*}$ (Specular)

Specular Reflection

Reflection is strongest near mirror angle

- Examples: metals, shiny apples

Simple Reflectance Model

Simple analytic model:

- diffuse reflection +
- specular reflection +
- emission +
- "ambient"

Surface

Emission

Represents light emanating directly from polygon

Simple Reflectance Model

Simple analytic model:

- diffuse reflection +
- specular reflection +
- emission +
- "ambient"

Surface

Ambient Term

Represents accumulation of indirect illumination
Locations that are not directly illuminated are still not black because of indirect illumination.

Simple Reflectance Model

Simple analytic model:

- diffuse reflection +
- specular reflection +
- emission +
- "ambient"

Simple Reflectance Model

Simple analytic model:

- diffuse reflection +
- specular reflection +
- emission +
- "ambient"

Surface Illumination Calculation

Single light source:

Surface Illumination Calculation

Multiple light sources:

Outline

Ray-Tracing

- Global Illumination

Shadows

Shadow term tells if light sources are blocked

- Cast ray towards each light. If the ray is blocked, ignore the light's contribution.

Shadows

Shadow term tells if light sources are blocked

- Cast ray towards each light.
$S_{i}=0$ if ray is blocked, $S_{i}=1$ otherwise

Shadows

Shadow term tells if light sources are blocked

- Cast ray towards each light.
$S_{i}=0$ if ray is blocked, $S_{i}=1$ otherwise

Shadows

Shadow term tells if light sources are blocked

- Cast ray towards each light.
$S_{i}=0$ if ray is blocked, $S_{i}=1$ otherwise

Ray Casting

Trace primary rays from camera

- Direct illumination from unblocked lights only

Recursive Ray Tracing

Also trace secondary rays from hit surfaces

- Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Mirror Reflections

Also trace secondary rays from hit surfaces

- Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Contribution from mirror reflection ray
$I=K_{E}+K_{A}+\sum_{L \in L \text { Lights }}\left(\cos \theta_{L} \cdot K_{D}+\cos ^{k} \alpha_{L} \cdot K_{S}\right) \cdot I_{L} \cdot S_{L}+K_{S} \cdot \stackrel{\downarrow}{R}$

Mirror Reflections

Also trace secondary rays from hit surfaces

- Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Mirror Reflections

Also trace secondary rays from hit surfaces

- Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Mirror Reflections

Also trace secondary rays from hit surfaces

- Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Transparency

Also trace secondary rays from hit surfaces

- Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Contribution from \rightarrow refraction ray

$$
I=K_{E}+K_{A}+\sum_{L \in L i g h t s}\left(\cos \theta_{L} \cdot K_{D}+\cos ^{k} \alpha_{L} \cdot K_{S}\right) \cdot I_{L} \cdot S_{L}+K_{S} \cdot R+K_{T} \cdot T
$$

Transparency

Also trace secondary rays from hit surfaces

- Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Refraction (Snell's Law)

Light bends as it passes through a transparent object $(\theta \neq \theta)$.

Refraction (Snell's Law)

Light bends as it passes through a transparent object $(\theta \neq \theta)$.

Contribution from

$I=K_{E}+K_{A}+\sum_{L \in L i g h t s}\left(\cos \theta_{L} \cdot K_{D}+\cos ^{k} \alpha_{L} \cdot K_{S}\right) \cdot I_{L} \cdot S_{L}+K_{S} \cdot R+K_{T} \cdot \underset{T}{\downarrow}$

Refraction (Snell's Law)

Light bends as it passes through a transparent object $(\theta \neq \theta)$.

Summary

Pixar

Discussion

- How do we make ray-tracing fast?
-What does this model fail to capture?

