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Abstract
Interoperability is key to widespread adoption of sensor

network technology, but interoperable systems have tradi-
tionally been difficult to develop and test. We demonstrate
an interoperable system development and performance diag-
nosis environment in which different systems, different soft-
ware, and different hardware can be simulated in a single
network configuration. This allows both development, verifi-
cation, and performance diagnosis of interoperable systems.
Estimating the performance is important since even when
systems interoperate, the performance can be sub-optimal,
as shown in our companion paper that has been condition-
ally accepted for SenSys 2011.
Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-
working—Standards; D.2.12 [Software]: Interoperability;
D.4.8 [Software]: Performance—Simulation
General Terms

Experimentation, Performance, Measurement
Keywords

IETF, IPv6, 6LoWPAN, RPL, Interoperability, Sensor
Network, TinyOS, Contiki, Cooja
1 Interoperability Development and

Performance Diagnosis
The Internet Protocol (IP), which has proved its interop-

erability and extensibility in the global Internet, is seen by
many as a promising solution to the interoperability problem
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in low-power and lossy networks (LLNs) [1, 3, 6]. The Inter-
net Engineering Task Force (IETF) has recently specified a
number of protocols and adaptation layers that allow IPv6 to
run over IEEE 802.15.4 link layers. The 6LoWPAN work-
ing group specified header compression and fragmentation
for IPv6 over IEEE 802.15.4 and the IETF RoLL working
group designed the RPL protocol as a proposed standard for
IPv6 routing in LLNs.

Industrial standard practices with IPSO Alliance bake-off
events or conformance testing against reference implementa-
tions are essential to attaining interoperable systems, but do
not address performance problems that may arise [5]. The
ability to run large-scale networks and to have a fully con-
trolled environment is important for performance diagnosis.
Network simulation provides both.

Our interoperability performance diagnosis environment
consists of the Contiki simulation environment. The Contiki
simulation environment consists of the Cooja network simu-
lator, which provides bit-level network simulation of abstract
motes and the MSPsim Tmote Sky emulator. The motes can
be implemented in either Java, C, or even emulated versions
of hardware motes. The MSPsim emulator provides cycle
accurate emulation of the MSP430 and bit-level accurate em-
ulation of the CC2420 radio transceiver.

The interoperability development and performance diag-
nosis framework complements but does not replace inter-
operability testing events. The interoperability diagnosis
framework can be used both for the initial functional testing
and diagnosis of performance problems. But to capture the
effects of real wireless channel environments, physical inter-
operability testing events or testbed validation of the simula-
tion results are essential.

2 Different Software: Contiki and TinyOS
Contiki and TinyOS both have their own, non-

interoperable, protocol frameworks to allow for research and
development without the constraints of a standardized frame-
work. Contiki has long used the IP protocol framework [1, 2]
but since there were no standards for IP routing and transmit-



Figure 1. The Contiki simulation environment with Con-
tiki Tmote Sky nodes (green and yellow) and TinyOS
nodes (purple). Serial output from all nodes is shown in
the Log listener window. The TimeLine pane at the bot-
tom shows radio events from both Contiki and TinyOS
motes.

ting IP packets, achieving interoperability was impossible.
With the introduction of the new IETF standards, both

TinyOS and Contiki now support IP [1, 2, 4, 5]. Both stacks
implement the IPv6 protocol, including ICMPv6, with sup-
port for the UDP and TCP transport protocols. Underneath
the IPv6 layer, both software stacks implement the 6LoW-
PAN header compression and fragmentation layer. For rout-
ing, both Contiki and TinyOS implement the IETF RPL
routing protocol as ContikiRPL and TinyRPL. Both RPL
implementations support routing policies such as OF0 and
MRHOF based on the ETX metric.

In the interoperability testing and performance diagno-
sis environment, motes with different software can be freely
mixed. The simulator does not care whether it simulates
Contiki or TinyOS systems, but treats them as black boxes.
Nodes run the exact same binary images as the real hardware
does. This allows the interoperability environment to run any
operating system, both open source and proprietary.

3 Different Hardware: Tmote Sky and MicaZ
Interoperability is both about software and hardware. To

allow cross-platform interoperability testing, we leverage the
Contiki simulation environments platform independence fea-
ture where different hardware can be mixed in the same sim-
ulation. Specifically, in additional to the MSPsim Tmote Sky
emulator, the Contiki simulation environment includes the
AvroraZ MicaZ mote emulator. The Cooja simulator treats
both as black boxes, which means that MicaZ and Tmote
Sky motes can be freely mixed in the same network config-
uration. This makes it possible for us to test interoperability
between Tmote Sky and MicaZ motes.

The Tmote Sky and the MicaZ both use the same IEEE
802.15.4 radio standard; therefore, interoperability at the
physical and data link layers are possible. The simulation
framework also supports other radio layers, such as the one
used by the TR1001 radio, but since they do not interoperate

with the 802.15.4 they cannot be ran in conjunction.
4 Next Step: Low-power Interoperable Sys-

tems
Interoperability has thus far been demonstrated without

considering power efficiency. To attain low-power operation,
radios must be duty cycled. Even though duty cycling mech-
anisms are being standardized through the IEEE 802.15.4e
effort, interoperable implementations have yet to be demon-
strated. Developing interoperable duty cycling mechanisms
is difficult due to the precise timing requirements needed.
Software with such timing requirements typically needs ex-
tensive hardware support for development, such as oscillo-
scopes. In the Contiki simulation environment, the Time-
Line view makes it possible to inspect the behavior of duty
cycling protocols at the microsecond level in a controlled en-
vironment. This ability allows us to achieve the next goal:
low-power interoperability.
5 Demo Setup

As part of our demonstration we present a Contiki Sim-
ulation Environment with TinyOS and Contiki nodes. Fig-
ure 1 presents an example network configuration. We
demonstrate how simulations are set up, how performance
problems can be detected and debugged, and how timing-
sensitive message exchanges can be studied in detail with the
TimeLine view. For this portion of the demonstration we em-
phasize on how a simulation environments can be well-suited
for sensor network interoperability performance testing.

To demonstrate interoperability outside of the simulator,
we also show a small testbed environment where TinyOS and
Contiki Tmote Sky nodes coexist to cooperatively exchange
messages with an existing IPv6 infrastructure.
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