Direct Plane Tracking in Stereo Images for Mobile Navigation

Jason Corso, Darius Burschka, Greg Hager
Computational Interaction and Robotics Lab
The Johns Hopkins University
The Problem

- **Input:**
 - Stream of rectified stereo images, known intrinsics.
- **Assumptions:**
 - Indoor scene with many well-textured planes.
- **Output:**
 - Compute relative motion for a mobile robot. (3 DOF)
- **How:**
 - Extract and track planes in view.
 - Compute motion relative to planes.
Typical Solution

• Fully calibrated system
• Solve with stereo (1 eg. algorithm)
 – Image scene and compute disparity.
 – Build list of significant features in view.
 – For each subsequent frame,
 • Match significant features
 • Compute motion against them.
• Pros - General Approach
• Cons - Expensive correspondence search.
 – Sparse, error prone results.
 – Pixel Accuracy, typical
Our Proposed Solution

- Exploit properties of the planar scene when viewed under rectified stereo cameras.

\[
\begin{align*}
ax + by + cz &= d \\
x/a + y/b + c &= d/z \\
D(u,v) &= \frac{Baseline}{z} \\
a'u + b'v + c' &= D(u,v)
\end{align*}
\]

\(D\) is a linear map
Tracking Algorithm

• Track 3 parameters per plane.
 – localize w.r.t. the tracked planes.

• Brightness Constancy Assumption
 \[L(u,v) - R(u - D^*(u,v),v) = 0 \]

• Define Error Function
 \[e(u,v) = L(u,v) - R(u - D(u,v),v) \]

• Least Squares Equation
 \[\arg\min_{(a,b,c)} \sum_{u,v} e(u,v)^2 \]
Tracking Algorithm

- First order Taylor Expansion about (a,b,c)

\[
\arg\min_{\delta_a, \delta_b, \delta_c} \sum_{u, v} \left[e(u, v) + e'(u, v) \begin{bmatrix} \delta_a & \delta_b & \delta_c \end{bmatrix}^T \right]^2
\]

where \(x^* = x + \delta_x, x \in \{a, b, c\} \)

- Stack up these equations and solve by SVD.

\[
\begin{bmatrix}
 e(u_1, v_1) \\
e(u_2, v_2) \\
 \vdots \\
e(u_n, v_n)
\end{bmatrix} =
\begin{bmatrix}
 u_1 R_x(u_1, v_1) & v_1 R_x(u_1, v_1) & R_x(u_1, v_1) \\
u_2 R_x(u_2, v_2) & v_2 R_x(u_2, v_2) & R_x(u_2, v_2) \\
 \vdots & \vdots & \vdots \\
u_n R_x(u_n, v_n) & v_n R_x(u_n, v_n) & R_x(u_n, v_n)
\end{bmatrix}\begin{bmatrix}
 \delta_a \\
 \delta_b \\
 \delta_c
\end{bmatrix}
\]
Binary Weighting Matrix

• Multiple planes are needed to localize.
• Include a mask for each plane.
• No need to maintain explicit boundary.

\((\xi) \ \arg \min_{(a,b,c)} \sum_{u,v} \left[\delta_{\{W(u,v) = 1\}} e(u,v) \right]^2 \)

• Fully recompute mask each frame.
 – Normalized Cross Correlation.
 – Horizontal Texture Variance.
Tracking Initialization

• Must compute a set of seed parameters for each plane.
• Use disparity calculation to detect significant planes (constant gradient).
• Fit a plane in 3D via PCA on points.
• If error in planar fit is small, keep plane.
• Else repeat search.
Tracking Algorithm Summarized

1. Compute an initial guess of (a,b,c)
2. Build binary weighting mask, W
3. For each subsequent frame
 1. Compute Derivative of Right Image (Rx)
 2. Solve (§) and update (a,b,c)
 3. Re-compute W
Plane Tracking Video
Results

• Two sets of experiments
 – Convergence Radius
 – Parameter Estimation Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Z Mean</th>
<th>Z Std Dev</th>
<th>Normal Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1064.8mm</td>
<td>2.2359mm</td>
<td>0.2947°</td>
</tr>
<tr>
<td>2</td>
<td>1065.3mm</td>
<td>1.7368mm</td>
<td>0.2673°</td>
</tr>
<tr>
<td>3</td>
<td>1065.2mm</td>
<td>1.5958mm</td>
<td>0.2258°</td>
</tr>
</tbody>
</table>
Error in Seed Depth Experiment
Error in Seed Angle Experiment
Depth Accuracy Experiment
Orientation Accuracy Experiment

![Graph showing orientation accuracy over time](image)

- **Estimation**
- **Odometry**

Y-axis: Robot Orientation Angle (radians)

X-axis: Time Step (frames)
Conclusions

• Novel plane tracking algorithm
• Direct Method (not feature-based)
 – Sub-pixel accuracy
• Super frame-rate
 – 2 iterations per frame at 30 Hz
• Extension to higher order surfaces
• Applications to augmented reality
 – 3D Registration
• Thank You.
• Questions/Comments?
• Acknowledgements:
 - Partially funded by the MARS project.
 - This material is based upon work supported by the National Science Foundation under Grant No. 0112882. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.