Online Semantic Parsing for Latency Reduction in Task-Oriented Dialogue

Jiawei (Joe) Zhou, Jason Eisner, Michael Newman, Emmanouil Antonios Platanios, Sam Thomson

jzhou02@g.harvard.edu,

{jason.eisner,mike.newman,anthony.platanios,samuel.thomson}@microsoft.com

Harvard University, Microsoft Semantic Machines

Task-Oriented Dialogue

Task-Oriented Dialogue

Task-Oriented Dialogue

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Can we start generating the program and executing it **before** the user finishes speaking?

Online Prediction/Decision Problems

E.g.:

- Simultaneous translation
- Text Auto-completion
- Uber pool
- Etc.

Online Prediction/Decision Problems

E.g.:

- Simultaneous translation
- Text Auto-completion
- Uber pool
- Etc.

Beneficial to start making decisions before seeing all the input!

Online Prediction/Decision Problems

E.g.:

- Simultaneous translation
- Text Auto-completion
- Uber pool
- Etc.

Beneficial to start making decisions before seeing all the input!

Ours:

- Online Semantic Parsing
- Learn the anticipation?
- How to formally evaluate?

Offline System

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Parse at the end of the utterance

Offline System

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Parse at every utterance prefix

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Execution

Execution

Online Semantic Parsing

Assumptions:

- Execution time dominates \Rightarrow predict early
- Consistent parsing history unnecessary (unlike simultaneous MT) ⇒ reparse from scratch after each token (like *re-translation*: Arivazhagan et al., 2020)

Online Semantic Parsing

Assumptions:

- Execution time dominates ⇒ predict early
- Consistent parsing history unnecessary (unlike simultaneous MT) ⇒ reparse from scratch after each token (like *re-translation*: Arivazhagan et al., 2020)

We propose a two-step approach

- Propose: predict a complete graph from the current utterance prefix
- **Select**: select the graph nodes (function invocations) that are worth executing at this time

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Approach (a)

LMComplete + FullToGraph utterance prefix ↓ full utterance ↓ full program

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Add a pool party with Barack Obama <MASK> ↓ (fine-tuned BART) Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM ↓ (full parser)

Approach (a)

LMComplete + FullToGraph

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Approach (b)

PrefixToGraph

utterance prefix ↓ full program

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Add a pool party with Barack Obama <MASK> \Downarrow (specialized parser)

PrefixToGraph

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Yi el d

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Yield CreatEvent

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Yield CreatEvent - RA- (0, : arg0)

Yi el d	CreatEvent	- RA- (0, : arg0)	subj ect
0	0	0	6

Add a pool party with Barack Obama and Joe for tomorrow at 9 : 00 AM

Model: Transformer with self-pointing mechanism, similar to Zhou et al. (2021)

Subgraph Selection

Subgraph Selection

Final Latency Reduction (FLR)

Offline System

Utterance Utterance Execution Start End End Add a pool party with Barack Obama and Joe for tomorrow at 9:00 AM Create "pool Event party" (Yield) subject Tomorrow FindPerson DateAt start Create Event… "Joe" Time "Barack Obama" (attendees)→(contains) FindPerson...

Final Latency Reduction (FLR)

Online System

Data and Base Models

Dataset	SMCalFlow	TreeDST
# utterances in training # utterances in validation	121,024 13,496	121,652 22,910
Best reported accuracy [†]	80.4	88.3
FULLTOGRAPH accuracy	80.7	90.8
Prefix BLEU (no completion)	38.04	37.54
LMCOMPLETE BLEU	53.51	55.93

† both from Platanios et al. (2021)

 $\operatorname{PrefixToGraPH}$ performance on SMCalFlow validation data of varying prefix lengths

Final Latency Reduction vs. Cost

Timing measured by the number of source tokens

Final Latency Reduction vs. Cost

Faster Execution

Final Latency Reduction vs. Cost

Slower Execution

Average Latency Reduction per Function

FindEventWrapperWithDefaults Yield DeletePreflightEventWrapper DeleteCommitEventWrapper CreatePreflightEventWrapper CreateCommitEventWrapper RecipientWithNameLike UpdatePreflightEventWrapper UpdateCommitEventWrapper FindManager EventAttendance RecipientAvailability FindReports

Function Call

 $52 \, / \, 55$

Conclusion

- We propose a new task: Online Semantic Parsing, with a rigorous **latency reduction** evaluation metric
- We show it is possible to reduce latency by 30% 63% using a strong graph-based semantic parser, either
 - trained to parse the prefix directly, or
 - combined with a language model for utterance completion
- Similar approaches could be applied to other executable semantic representations.

Thanks

References I

- Arivazhagan, N., Cherry, C., Te, I., Macherey, W., Baljekar, P., and Foster, G. (2020). Re-translation strategies for long form, simultaneous, spoken language translation. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 7919–7923. IEEE.
- Platanios, E. A., Pauls, A., Roy, S., Zhang, Y., Kyte, A., Guo, A., Thomson, S., Krishnamurthy, J., Wolfe, J., Andreas, J., and Klein, D. (2021). Value-agnostic conversational semantic parsing. In *Proceedings* of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3666–3681, Online. Association for Computational Linguistics.

References II

Zhou, J., Naseem, T., Fernandez Astudillo, R., Lee, Y.-S., Florian, R., and Roukos, S. (2021). Structure-aware fine-tuning of sequence-to-sequence transformers for transition-based AMR parsing. In *Proceedings of the* 2021 Conference on Empirical Methods in Natural Language Processing, pages 6279–6290, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.