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- finite-state transduction (Mohri, 1997)
- dependency parsing (Eisner, 1996; Koo & Collins, 2010)
- context-free parsing (Stolcke, 1995; Goodman, 1999)
- context-sensitive parsing (Vijay-Shanker & Weir, 1989; Kuhlmann+, 2018)
- machine translation (Wu, 1996; Lopez, 2009)

NLP Loves Dynamic Programming 

It is the primary tool for devising efficient inference algorithms for 
numerous linguistic formalisms
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Designing an algorithm with the best possible running time is challenging.
- Bilexical dependency parsing: O(n⁵) → O(n⁴)  
- Split-head-factored dependency parsing: O(n⁵) → O(n³)
- Linear index-grammar parsing: O(n⁷) → O(n⁶)
- Lexicalized tree adjoining grammar parsing: O(n⁸) → O(n⁷)
- Inversion transduction grammar: O(n⁷) → O(n⁶) 
- Tomita’s parsing algorithm: O(G nᵖ⁺¹) → O(G n³)
- CKY parsing: O(k³ n³) → O(k² n³ + k³ n²) 

Speed-ups

We ask a simple question: 
Can we automatically discover these faster algorithms?



Cast program optimization as a graph search problem
- Nodes are program variations
- Edges are meaning-preserving transformations
- Costs of each node measures its running time
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Our Approach



Represent algorithms in Dyna (Eisner et al. 2005), a domain-specific 
programming language for dynamic programming
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Step 1: Dyna
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Example (CKY parsing):
β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

β(X,I,K) += γ(X,Y) * word(Y,I,K).

total += β(“S”,0,N) * len(N).



We use a simpler analysis
O(v⁶) where v = max(n, k)
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Step 2: Runtime Bound From Code

β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

Under some technical conditions, the running time of a Dyna program is proportional to the 
number of ways to instantiate its rules

For example,

O(k³ n³)

→ degree = 6

Why not run the code? WAY TOO SLOW!



Each program transform maps a Dyna program to another Dyna 
program with the same meaning and (hopefully) a better running time.
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Step 3: Program Transformations

We turn to the playbook: Eisner & Blatz (2007)
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β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

β(X,I,K) = ∑ γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
J,Y,Z

β(X,I,K) = ∑(∑ γ(X,Y,Z) * β(Y,I,J))* β(Z,J,K).
J,Z Y

β(X,I,K) += tmp(X,I,J,Z) * β(Z,J,K). 
tmp(X,I,J,Z) += γ(X,Y,Z) * β(Y,I,J).

Fold Transform

Unfold 

TransformO(n³ k² + n² k³) or O(v⁵)

O(k³ n³) or O(v⁶)

= tmp(X,I,J,Z)
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Step 4: Search

Feed these ingredients to a graph search algorithm

We need search because the best sequence of transformations cannot be found greedily.
We experimented with beam search and Monte Carlo tree search.
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Experiments

Stress testsUnit tests
100%



11

Summary

- Representing algorithms in a unified language allows us systematize the 
process of speeding them up.

- We showed how to optimize dynamic programs with graph search on a 
program transformation graph.

- We found that measuring running time efficiently was essential in order 
to explore enough of the search graph.



https://arxiv.org/abs/2109.06966

https://twitter.com/xtimv/status/
1438611768868225026

Thanks!

https://arxiv.org/abs/2109.06966
https://twitter.com/xtimv/status/1438611768868225026
https://twitter.com/xtimv/status/1438611768868225026
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Fold Transform
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Generalizes the “hook trick”
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β(X,I,K) += γ(X,Y,Z) 
  * β(Y,I,K) * β(Z,J,K).

β(X,I,K) += 
  tmp(X,I,J,Z) * β(Z,J,K). 
tmp(X,I,J,Z) += 
  γ(X,Y,Z) * β(Y,I,K).

creates an intermediate
item tmp(X,I,J,Z)


