
1

Searching for More Efficient Dynamic Programs

Tim Vieira, Ryan Cotterell, Jason Eisner

2

- finite-state transduction (Mohri, 1997)
- dependency parsing (Eisner, 1996; Koo & Collins, 2010)
- context-free parsing (Stolcke, 1995; Goodman, 1999)
- context-sensitive parsing (Vijay-Shanker & Weir, 1989; Kuhlmann+, 2018)
- machine translation (Wu, 1996; Lopez, 2009)

NLP Loves Dynamic Programming

It is the primary tool for devising efficient inference algorithms for
numerous linguistic formalisms

3

Designing an algorithm with the best possible running time is challenging.
- Bilexical dependency parsing: O(n⁵) → O(n⁴)
- Split-head-factored dependency parsing: O(n⁵) → O(n³)
- Linear index-grammar parsing: O(n⁷) → O(n⁶)
- Lexicalized tree adjoining grammar parsing: O(n⁸) → O(n⁷)
- Inversion transduction grammar: O(n⁷) → O(n⁶)
- Tomita’s parsing algorithm: O(G nᵖ⁺¹) → O(G n³)
- CKY parsing: O(k³ n³) → O(k² n³ + k³ n²)

Speed-ups

We ask a simple question:
Can we automatically discover these faster algorithms?

Cast program optimization as a graph search problem
- Nodes are program variations
- Edges are meaning-preserving transformations
- Costs of each node measures its running time

4

Our Approach

Represent algorithms in Dyna (Eisner et al. 2005), a domain-specific
programming language for dynamic programming

5

Step 1: Dyna

I K

X

I J

Y

K

Z

X

∑
J,Y,Z

Example (CKY parsing):
β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

β(X,I,K) += γ(X,Y) * word(Y,I,K).

total += β(“S”,0,N) * len(N).

We use a simpler analysis
O(v⁶) where v = max(n, k)

6

Step 2: Runtime Bound From Code

β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

Under some technical conditions, the running time of a Dyna program is proportional to the
number of ways to instantiate its rules

For example,

O(k³ n³)

→ degree = 6

Why not run the code? WAY TOO SLOW!

Each program transform maps a Dyna program to another Dyna
program with the same meaning and (hopefully) a better running time.

7

Step 3: Program Transformations

We turn to the playbook: Eisner & Blatz (2007)

8

β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

β(X,I,K) = ∑ γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
J,Y,Z

β(X,I,K) = ∑(∑ γ(X,Y,Z) * β(Y,I,J))* β(Z,J,K).
J,Z Y

β(X,I,K) += tmp(X,I,J,Z) * β(Z,J,K).
tmp(X,I,J,Z) += γ(X,Y,Z) * β(Y,I,J).

Fold Transform

Unfold

TransformO(n³ k² + n² k³) or O(v⁵)

O(k³ n³) or O(v⁶)

= tmp(X,I,J,Z)

9

Step 4: Search

Feed these ingredients to a graph search algorithm

We need search because the best sequence of transformations cannot be found greedily.
We experimented with beam search and Monte Carlo tree search.

10

Experiments

Stress testsUnit tests
100%

11

Summary

- Representing algorithms in a unified language allows us systematize the
process of speeding them up.

- We showed how to optimize dynamic programs with graph search on a
program transformation graph.

- We found that measuring running time efficiently was essential in order
to explore enough of the search graph.

https://arxiv.org/abs/2109.06966

https://twitter.com/xtimv/status/
1438611768868225026

Thanks!

https://arxiv.org/abs/2109.06966
https://twitter.com/xtimv/status/1438611768868225026
https://twitter.com/xtimv/status/1438611768868225026

13

14

Fold Transform

I J K

Y
Z

X

Generalizes the “hook trick”

∑
J,Z

Y

I J

Z

X

K

KI J

Y
Z

X

∑
Y

∑
J,Z

β(X,I,K) += γ(X,Y,Z)
 * β(Y,I,K) * β(Z,J,K).

β(X,I,K) +=
 tmp(X,I,J,Z) * β(Z,J,K).
tmp(X,I,J,Z) +=
 γ(X,Y,Z) * β(Y,I,K).

creates an intermediate
item tmp(X,I,J,Z)

