
Learning How to Ask: Querying LMs with Mixtures of Soft Prompts

Guanghui Qin and Jason Eisner
Department of Computer Science, Johns Hopkins University

gqin2@jhu.edu jason@cs.jhu.edu

Abstract

Natural-language prompts have recently been
used to coax pretrained language models into
performing other AI tasks, using a fill-in-the-
blank paradigm (Petroni et al., 2019) or a
few-shot extrapolation paradigm (Brown et al.,
2020). For example, language models retain
factual knowledge from their training corpora
that can be extracted by asking them to “fill
in the blank” in a sentential prompt. However,
where does this prompt come from? We ex-
plore the idea of learning prompts by gradi-
ent descent—either fine-tuning prompts taken
from previous work, or starting from random
initialization. Our prompts consist of “soft
words,” i.e., continuous vectors that are not
necessarily word type embeddings from the
language model. Furthermore, for each task,
we optimize a mixture of prompts, learning
which prompts are most effective and how to
ensemble them. Across multiple English LMs
and tasks, our approach hugely outperforms
previous methods, showing that the implicit
factual knowledge in language models was pre-
viously underestimated. Moreover, this knowl-
edge is cheap to elicit: random initialization is
nearly as good as informed initialization.

1 Introduction

Pretrained language models, such as ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
BART (Lewis et al., 2020a), have proved to pro-
vide useful representations for other NLP tasks. Re-
cently, Petroni et al. (2019) and Jiang et al. (2020)
demonstrated that language models (LMs) also con-
tain factual and commonsense knowledge that can
be elicited with a prompt. For example, to query
the date-of-birth of Mozart, we can use the
prompt “MozartMozartMozartMozartMozartMozartMozartMozartMozartMozartMozartMozartMozartMozartMozartMozartMozart was born in ,” where we have
filled the first blank with “Mozart,” and ask a cloze
language model to fill in the second blank. The
prompts used by Petroni et al. (2019) are manu-
ally created, while Jiang et al. (2020) use mining

and paraphrasing based methods to automatically
augment the prompt sets.

Finding out what young children know is diffi-
cult because they can be very sensitive to the form
of the question (Donaldson, 1978). Opinion polling
is also sensitive to question design (Broughton,
1995). We observe that when we are querying
an LM rather than a human, we have the opportu-
nity to tune prompts using gradient descent—the
workhorse of modern NLP—so that they better
elicit the desired type of knowledge.

A neural LM sees the prompt as a sequence of
continuous word vectors (Baroni et al., 2014). We
tune in this continuous space, relaxing the con-
straint that the vectors be the embeddings of actual
English words. Allowing “soft prompts” consisting
of “soft words” is not only convenient for optimiza-
tion, but is also more expressive. Soft prompts can
emphasize particular words (by lengthening their
vectors) or particular dimensions of those words.
They can also adjust words that are misleading, am-
biguous, or overly specific. Consider the following
prompt for the relation date-of-death:

x performed until his death in y.

This prompt may work for the male singer Cab
Calloway, but if we want it to also work for the
female painter Mary Cassatt, it might help to soften
“performed” and “his” so that they do not insist on
the wrong occupation and gender, and perhaps to
soften “until” into a weaker connective (as Cassatt
was in fact too blind to paint in her final years).

Another way to bridge between these cases is to
have one prompt using “performed” and another
using “painted.” In general, there may be many var-
ied lexical patterns that signal a particular relation,
and having more patterns will get better coverage
(Hearst, 1992; Riloff and Jones, 1999). We there-
fore propose to learn a mixture of soft prompts.

We test the idea on several cloze language mod-
els, training prompts to complete factual and com-

mon sense relations from 3 datasets. Comparing on
held-out examples, our method dramatically out-
performs previous work, even when initialized ran-
domly. So when regarded as approximate knowl-
edge bases, language models know more than we
realized. We just had to find the right ways to ask.

2 Related Work

Factual knowledge is traditionally extracted from
large corpora using a pipeline of NLP tools
(Surdeanu and Ji, 2014), including entity extrac-
tion (Lample et al., 2016), entity linking (Rao
et al., 2013) and relation extraction (Sorokin and
Gurevych, 2017).

However, recent work has shown that simply
training a system to complete sentences—language
modeling—causes it to implicitly acquire non-
linguistic abilities from its training corpora (Rogers
et al., 2020), including factual knowledge (Petroni
et al., 2019; Jiang et al., 2020), common sense
(Bisk et al., 2019), reasoning (Talmor et al., 2020;
Brown et al., 2020), summarization (Radford et al.,
2019), and even arithmetic (Bouraoui et al., 2020).

Most of the previous work manually creates
prompts to extract answers from the trained lan-
guage model. We use LAMA (Petroni et al., 2019)
as a baseline. Building on LAMA, the LM Prompt
And Query Archive (LPAQA) method (Jiang et al.,
2020) searches for new prompts by either min-
ing a corpus or paraphrasing existing prompts.
AutoPrompt (Shin et al., 2020) searches for im-
proved prompts using a gradient signal, although its
prompts are limited to sequences of actual (“hard”)
English words, unlike our method. We compare
our novel soft prompts against all of these systems.

After we submitted the present paper in Novem-
ber 2020, three still unpublished manuscripts ap-
peared on arXiv that also investigated soft prompts.
Li and Liang (2021) considered the setting of gener-
ating text from a pretrained language model (GPT-
2 or BART) conditioned on a textual prompt. To
improve the results, they prepended a few task-
specific “soft tokens” to the prompt and tuned the
embeddings of only these tokens (at all embedding
layers). Liu et al. (2021) and Haviv et al. (2021)
adopted strategies similar to ours by tuning fill-in-
the-blank prompts in a continuous space, testing
on GPT-2 and BERT models, although they did not
use the enhancements we proposed in §§3.2–3.4
below. Like our work, both these papers achieved
strong gains.

In other work, Bouraoui et al. (2020) mine
prompts from a corpus, then fine-tune the whole
language model so that it more accurately com-
pletes the prompts. Schick and Schütze (2020a,b)
are similar but fine-tune the language model differ-
ently for each prompt. Our method complements
these by tuning the prompts themselves.

“Probing” systems that ask what language mod-
els know about particular sentences (e.g., Eich-
ler et al., 2019) usually use feedforward net-
works rather than further natural-language prompts.
Yet Shin et al. (2020) show how to use natural-
language prompts to ask about particular sentences.
Our method could potentially be applied to those
prompts, or to “few-shot learning” prompts that in-
clude input-output examples (Brown et al., 2020).

3 Method

Our experiments will specifically aim at extracting
relational knowledge from language models. We
are given a fixed pretrained LM, a specific binary
relation r such as date-of-death, and a train-
ing dataset Er consisting of known (x, y) pairs in
r, such as (Mary Cassatt, 1926). We will then train
a system to predict y from x, and evaluate it on
held-out (x, y) pairs of the same relation.

A prompt t is a sentence or phrase that includes
two blanks, as illustrated in §1. To pose the query,
we fill the x blank with x:

Mary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary CassattMary Cassatt performed until his death
in y.

We can ask the LM for its probability distribution
pLM(y | t, x) over single words that can now fill

y. The correct answer would be 1926.

3.1 Soft Prompts

Suppose the LM identifies the word types with
vectors in Rd. We also allow t to be a soft prompt,
in which the tokens can be arbitrary vectors in Rd:

x v1 v2 v3 v4 v5 y v6

We can initialize these vectors to match those of a
given hard prompt. (Each token of a hard prompt
may be a word, subword, or punctuation mark,
according to the tokenization procedure used by
the LM.) However, we can then tune the vectors
continuously. We do not change the number of
vectors or their positions. For the prompt shown
above, we have a 6d-dimensional search space.

3.2 Deeply Perturbed Prompts

For each token i of a prompt, the vector vi en-
ters into the LM’s computations that complete the
prompt. For example, a Transformer architecture
computes successively deeper contextual embed-
dings of the token, v

(`)
i : 0 ≤ ` ≤ L. Here

v
(0)
i = vi and the embedding v

(`)
i at layer ` > 0 is

computed from all tokens’ embeddings v
(`−1)
j at

the previous layer, using the LM’s parameters.
We can tune the prompt by additively perturbing

each v
(`)
i by a small vector ∆

(`)
i before it is used

in further computations. The ∆ vectors for a given
hard prompt are initialized to 0 and then tuned.

Perturbing only layer 0 is equivalent to tuning
vi directly as in §3.1. However, if we are more
aggressive and perturb all layers, we now have 6d ·
(L + 1) parameters to tune a 6-token prompt. The
perturbations (∆ vectors) can be kept small through
early stopping or some other form of regularization.
Our intuition is that small perturbations will yield
more “familiar” activation patterns that are similar
to those that the LM was originally trained on. (Li
and Liang (2021) tried a rather different approach
to preventing overfitting when tuning all layers.)

3.3 Mixture Modeling

Given a set Tr of soft prompts for relation r, we
can define the ensemble predictive distribution

p(y | x, r) =
∑
t∈Tr

p(t | r) · pLM(y | t, x) (1)

where the learned mixture weights p(t | r) form
a distribution over the soft prompts t ∈ Tr. En-
sembling techniques other than mixture-of-experts
could also be used, including product-of-experts
(Jiang et al., 2020).

3.4 Data-Dependent Mixture Modeling

As an extension, we can replace the mixture
weights p(t | r) with p(t | r, x), to allow the
model to select prompts that are appropriate for the
given x. For example, a plural noun x might prefer
prompts t that use a plural verb.

While we could directly build a neural softmax
model for p(t | r, x), it seems useful to capture
the intuition that t may work better if x is plau-
sible in its x. Thus, we instead use Bayes’
Theorem to write p(t | r, x) as proportional to
p(t | r) · p(x | t, r)1/T , where we have included

T to modulate the strength of the above intuition.1

Here p(t | r) is still a learned distribution over
prompts, and we use the fixed language model to
estimate the second factor as

∑
y pLM(x, y | t)

(dropping the dependence on r just as we did for
the second factor of (1)). log T is tuned along with
all other parameters.

3.5 Training Objective

Given an initial set of prompts Tr, we jointly
optimize the soft prompts t ∈ T and their mixture
weights p(t | r) (and log T in §3.4) to minimize
the log-loss of the predictive distribution (1):∑

(x,y)∈Er

− log
∑
t∈Tr

p(y | t, x) (2)

This is a continuous and differentiable objec-
tive whose gradient can be computed by back-
propagation. It can be locally minimized by gradi-
ent descent (using a softmax parameterization of
the mixture weights). Equivalently, it can be locally
minimized by the EM algorithm: the E step finds a
posterior distribution over latent prompts for each
(x, y) example, and the M step performs gradient
descent to optimize the prompts in that mixture.

4 Experiments

4.1 Relational Datasets

The relations we learn to predict are T-REx original
(Elsahar et al., 2018), T-REx extended (Shin et al.,
2020), Google-RE (Orr, 2013), and ConceptNet
(Speer et al., 2017)—or rather, the subsets that
were used by the LAMA and AutoPrompt papers.
See Appendix A for some statistics.

4.2 Language Models

Following Petroni et al. (2019), we interrogate
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). These are masked (cloze) language
models. For variety, we also interrogate BART
(Lewis et al., 2020a), which conditions on the
prompt with empty y and generates a copy
where y has been filled in (by a single token).
We constrain BART’s decoding to ensure that its
answer does take this form. Unlike BERT and
RoBERTa, BART could be used to fill y with

1Raising the temperature T increases the entropy of the
mixture to get the benefits of ensembling; without T , the
strong language model usually places almost all the weight on
a single prompt.

an arbitrarily long phrase, but we do not allow this
because y in our datasets is always a single token.2

4.3 Dataset Splits

For the two T-REx datasets, we inherit the training-
validation-test split from Shin et al. (2020). For the
other datasets, we split randomly in the ratio 80-10-
10.3 Since all pairs (x, y) are distinct, there are no
common triples among these three sets. Common
x values are also rare because each dataset has at
least 174 distinct x values. However, the number
of distinct y values can be as small as 6. Thus, in
another set of experiments (Appendix E), we used a
more challenging split that ensures that there are no
common y values among these three sets. This tests
whether our model generalizes to unseen values.

4.4 Prompts

For the T-REx and Google-RE datasets, we have
four sources of initial prompts:

• (sin.) LAMA provides a single manually cre-
ated hard prompt for each relation type r.

• (par.) LPAQA (Jiang et al., 2020) provides a
set of 13–30 hard prompts for each r, which
are paraphrases of the LAMA prompt.4

• (min.) LPAQA also provides a set of 6–29
hard prompts for each r, based on text mining.

• (ran.) For each (min.) prompt, we replace
each word with a random vector, drawn from
a Gaussian distribution fit to all of the LM’s
word embeddings. The number of words and
the position of the blanks are preserved.

For the ConceptNet dataset, LAMA uses the
gold Open Mind Common Sense (OMCS) dataset
(Singh et al., 2002). In this dataset, each example
(xi, yi) is equipped with its own prompt ti. (Each
example is really a sentence with two substrings
marked as x and y, which are removed to obtain ti.)
These prompts are often overly specific: often yi
can be predicted from (ti, xi), or just from ti alone,

2Among other filters, the LAMA and AutoPrompt papers
keep only the triples (r, x, y) such that y is a single token
according to the language models used by LAMA. When
working with BART, we further require y to be a single token
according to BART’s tokenization; thus, the BART results are
not comparable with the other language models.

3The LAMA paper (Petroni et al., 2019) provided no split
but used everything as test data for their zero-shot method.

4The LPAQA system combines their predictions via a
learned weighted product of experts.

but yj cannot be predicted from (ti, xj). Thus, for
each relation r, we use only the prompts that appear
more than 10 times, resulting in 1–38 prompts.

Statistics about the prompts are in Appendix B.
We used only a single copy of each prompt, but

a generalization would be to allow multiple slightly
perturbed copies of each prompt, which could di-
verge and specialize during training (Rose, 1998).

4.5 Training
We optimize equation (2) with the method in-
troduced in §3.5. We use the Adam optimizer
(Kingma and Ba, 2015) with its default configu-
ration. For gradient training, we set the batch size
as 64, early-stop patience as 4, and test with the
model that performs best on the dev set among 16
training epochs.

Training is fast. Even for our largest model
(BERT-large-cased) and largest dataset (T-REx ex-
tended), tuning a single prompt completes within a
few minutes. With a mixture of prompts, training
scales roughly linearly with the number of prompts.
It is still presumably much cheaper in time and
memory than fine-tuning the entire BERT model,
which must back-propagate a much larger set of
gradients.

4.6 Metrics and Baselines
Our method outputs the most probable y given
(r, x). Here and in the supplementary material,
we report its average performance on all test ex-
amples, with precision-at-1 (P@1), precision-at-
10 (P@10) and mean reciprocal rank (MRR) as
metrics. We measure the improvement from tun-
ing LAMA, LPAQA, and random prompts. We
also compare with AutoPrompt. Baseline numbers
come from prior papers or our reimplementations.

4.7 Results
Table 1 shows results on T-REx datasets obtained
by querying three BERT-style models, with P@1
as the metric. Additional metrics and language
models are shown in Tables 2 and 3 as well as
Tables 5 and 6 in the supplementary material.

We consistently get large improvements by tun-
ing the initial prompts. Remarkably, our method
beats all prior methods even when throwing away
the words of their informed prompts in favor of
random initial vectors. It simply finds a prompt
that works well on the (x, y) training examples.

We conduct an ablation study where we adjust
only the mixture weights (which are initially uni-

Model T-REx orig. T-REx ext.
LAMA (BEb) 31.1 26.4
LPAQA(BEb) 34.1 31.2
AutoPrompt 43.3 45.6

Soft (sin., BEb) 47.7 (+16.6?) 49.6 (+23.2?)

Soft (min., BEb) 50.7?(+16.6?) 50.5?(+19.3?)

Soft (par., BEb) 48.4 (+12.8?) 49.7 (+18.5?)

Soft (ran., BEb) 48.1 (+47.4) 50.6 (+49.8)

LAMA (BEl) 28.9† 24.0†

LPAQA(BEl) 39.4† 37.8†

Soft (sin., BEl) 51.1 (+22.2) 51.4 (+27.4)

Soft (min., BEl) 51.6 (+12.2) 52.5 (+14.7)

Soft (par., BEl) 51.1 (+11.7) 51.7 (+13.9)

Soft (ran., BEl) 51.9 (+47.1) 51.9 (+50.5)

AutoPrompt 40.0 -
Soft (min., Rob) 40.6?(+39.4) -

Table 1: Results on T-REx datasets with P@1 as
the metric. The “Soft” lines (our method) parentheti-
cally show the improvement over the initial parameters
(boldfaced if significant). In each subcolumn of com-
parable results, we boldface the best result along with
all that are not significantly worse (sign test, p < 0.02).
(We marked a boldface number with "?" if we lacked
access to per-example output for one of the systems;
differences from such systems were simply assumed to
be significant.) † marks baseline results obtained from
our reimplementations. In the Model column, BEb is
BERT-base, BEl is BERT-large, Rob is RoBERTa-base.

form) or only the word vectors in the prompts t.
As Table 4 shows, each helps, but the major ben-
efit comes from tuning the word vectors to get
soft prompts. Appendix C visualizes a set of soft
prompts, and Appendix D analyzes the mixture
weights. We also experiment on a challenging set-
ting where the y labels are distinct for training and
test (Appendix E in the supplementary materials),
and find that soft prompts still yield some benefits.

The above results are for our basic method that
tunes only the words of the prompt (i.e., layer 0).
When we tune all layers—the “deeply perturbed
prompts” of §3.2—we typically obtain small addi-
tional gains, across various models and initializa-
tions, although tuning all layers does substantially
hurt RoBERTa. These results are shown in Tables 5
and 6 in the supplementary material.

The tables show that the winning system—
for each combination of language model, T-REx
dataset, and evaluation metric—always uses a mix-
ture of soft prompts initialized to mined prompts.
It always tunes all layers, except with RoBERTa.

Finally, we also tried using data-dependent mix-

Model P@1 P@10 MRR
LAMA 9.7† 27.0† 15.6†

LPAQA 10.6† 23.7† 15.3†

Soft (sin.) 11.2 (+1.5) 33.5 (+ 6.5) 18.9 (+3.3)

Soft (min.) 12.9 (+2.3) 34.7 (+11.0) 20.3 (+5.0)

Soft (par.) 11.5 (+0.9) 31.4 (+ 7.7) 18.3 (+3.0)

Table 2: Results on Google-RE dataset obtained by
querying the BERT-large-cased model.

Model P@1 P@10 MRR
LAMA (BEb) 0.1† 2.6† 1.5†

LAMA (BEl) 0.1† 5.0† 1.9†

Soft (min.,BEb) 11.3(+11.2) 36.4(+33.8) 19.3(+17.8)

Soft (ran.,BEb) 11.8(+11.8) 34.8(+31.9) 19.8(+19.6)

Soft (min.,BEl) 12.8(+12.7) 37.0(+32.0) 20.9(+19.0)

Soft (ran.,BEl) 14.5(+14.5) 38.6(+34.2) 22.1(+21.9)

Table 3: Results on ConceptNet (winner: random init).

Model P@1 P@10 MRR
baseline 39.4 67.4 49.1

adjust mixture weights 40.0 69.1 53.3
adjust token vectors 50.7 80.7 61.1

adjust both 51.0 81.4 61.6

Table 4: Ablation experiments, conducted with the
BERT-large model on the T-REx original dataset.

ture weights as in §3.4. This had little effect, be-
cause training learned to discard the x information
by setting the temperature parameter T high.

5 Conclusion

Well-crafted natural language prompts are a pow-
erful way to extract information from pretrained
language models. In the case of cloze prompts used
to query BERT and BART models for single-word
answers, we have demonstrated startlingly large
and consistent improvements from rapidly learning
prompts that work—even though the resulting “soft
prompts” are no longer natural language.

Our code and data are available at https://
github.com/hiaoxui/soft-prompts.

How about few-shot prediction with pretrained
generative LMs? Here, Lewis et al. (2020b) show
how to assemble a natural language prompt for
input x from relevant input-output pairs (xi, yi)
selected by a trained retrieval model. Allowing
fine-tuned soft string pairs is an intriguing future
possibility for improving such methods without
needing to fine-tune the entire language model.

https://github.com/hiaoxui/soft-prompts
https://github.com/hiaoxui/soft-prompts

Acknowledgments

We thank the anonymous reviewers for helpful
comments. This work was supported by DARPA
KAIROS and by the National Science Foundation
under Grant No. 1718846. The U.S. Government
is authorized to reproduce and distribute reprints
for governmental purposes. The views and
conclusions contained in this publication are those
of the authors, and should not be interpreted as
representing official policies nor endorsement by
the funding agencies or by Microsoft (where Dr.
Eisner is also a paid employee, in an arrangement
that has been reviewed and approved by the Johns
Hopkins University in accordance with its conflict
of interest policies).

References
Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Associa-
tion for Computational Linguistics (ACL), pages
238–247.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. PIQA: Reasoning about
physical commonsense in natural language. In Asso-
ciation for the Advancement of Artificial Intelligence
(AAAI).

Zied Bouraoui, Jose Camacho-Collados, and Steven
Schockaert. 2020. Inducing relational knowledge
from BERT. In Association for the Advancement
of Artificial Intelligence (AAAI), volume 34, pages
7456–7463.

David Broughton. 1995. The assumptions and theory
of public opinion polling. In Public Opinion Polling
and Politics in Britain, pages 15–33. Springer.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

J. Devlin, M. Chang, K. Lee, and K. Toutanova.
2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In North
American Association for Computational Linguistics
(NAACL).

M. C. Donaldson. 1978. Children’s Minds. W. W. Nor-
ton.

Max Eichler, Gözde Gül Şahin, and Iryna Gurevych.
2019. LINSPECTOR WEB: A multilingual prob-
ing suite for word representations. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
127–132.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Elena Simperl,
and Frederique Laforest. 2018. T-REx: A large
scale alignment of natural language with knowledge
base triples. In Language Resources and Evaluation
Conference (LREC), page 5.

Adi Haviv, Jonathan Berant, and Amir Globerson.
2021. BERTese: Learning to Speak to BERT. In Eu-
ropean Association for Computational Linguistics
(EACL).

M. A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In International
Conference on Computational Linguistics (COL-
ING).

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics (TACL).

D. P. Kingma and J. L. Ba. 2015. Adam: A method
for stochastic optimization. In International Confer-
ence on Learning Representations (ICLR), pages 1–
15.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In North American Association for Computa-
tional Linguistics and Human Language Technology
(NAACL-HLT), pages 260–270.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer.
2020a. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Association for Computa-
tional Linguistics (ACL).

Patrick Lewis, Ethan Perez, Aleksandara Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020b. Retrieval-augmented generation for
knowledge-intensive NLP tasks. arXiv preprint
arXiv:2005.11401.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for genera-
tion. arXiv preprint arXiv:2101.00190.

https://www.aclweb.org/anthology/P14-1023.pdf
https://www.aclweb.org/anthology/P14-1023.pdf
https://www.aclweb.org/anthology/P14-1023.pdf
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
https://arxiv.org/pdf/1911.12753
https://arxiv.org/pdf/1911.12753
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D19-3022
https://doi.org/10.18653/v1/D19-3022
http://www.lrec-conf.org/proceedings/lrec2018/pdf/632.pdf
http://www.lrec-conf.org/proceedings/lrec2018/pdf/632.pdf
http://www.lrec-conf.org/proceedings/lrec2018/pdf/632.pdf
https://arxiv.org/pdf/2103.05327.pdf
https://www.aclweb.org/anthology/C92-2082.pdf
https://www.aclweb.org/anthology/C92-2082.pdf
http://arxiv.org/abs/1911.12543
http://arxiv.org/abs/1911.12543
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1603.01360
https://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. arXiv preprint arXiv:2103.10385.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. S. Zettlemoyer, and V. Stoy-
anov. 2019. RoBERTa: A robustly optimized BERT
pretraining approach.

Dave Orr. 2013. 50,000 lessons on how to read: A re-
lation extraction corpus. https://github.
com/google-research-datasets/
relation-extraction-corpus.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. S. Zettlemoyer. 2018.
Deep contextualized word representations. In North
American Association for Computational Linguistics
(NAACL).

F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu,
A. H. Miller, and S. Riedel. 2019. Language mod-
els as knowledge bases? In Empirical Methods in
Natural Language Processing (EMNLP).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Delip Rao, Paul McNamee, and Mark Dredze. 2013.
Entity linking: Finding extracted entities in a knowl-
edge base. In Multi-Source, Multilingual Informa-
tion Extraction and Summarization, pages 93–115.
Springer.

E. Riloff and R. Jones. 1999. Learning dictionaries for
information extraction by multi-level bootstrapping.
In Association for the Advancement of Artificial In-
telligence (AAAI), pages 474–479.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know
about how BERT works. Transactions of the Associ-
ation for Computational Linguistics (TACL).

Kenneth Rose. 1998. Deterministic annealing for clus-
tering, compression, classification, regression, and
related optimization problems. Proceedings of the
IEEE, 80:2210–2239.

Timo Schick and Hinrich Schütze. 2020a. Exploit-
ing cloze questions for few-shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676. Accepted to EACL 2021.

Timo Schick and Hinrich Schütze. 2020b. It’s
not just size that matters: Small language mod-
els are also few-shot learners. arXiv preprint
arXiv:2009.07118.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Empirical Meth-
ods in Natural Language Processing (EMNLP).

Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open Mind
Common Sense: Knowledge acquisition from the
general public. In On the Move to Meaningful In-
ternet Systems 2002: CoopIS, DOA, and ODBASE,
volume 2519, pages 1223–1237. Springer.

Daniil Sorokin and Iryna Gurevych. 2017. Context-
aware representations for knowledge base relation
extraction. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1784–1789.

R. Speer, J. Chin, and C. Havasi. 2017. ConceptNet
5.5: An open multilingual graph of general knowl-
edge. In Association for the Advancement of Artifi-
cial Intelligence (AAAI).

Mihai Surdeanu and Heng Ji. 2014. Overview of the
English slot filling track at the TAC2014 knowledge
base population evaluation. In Proceedings of the
TAC-KBP 2014 Workshop.

Alon Talmor, Yanal Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics – On what lan-
guage model pre-training captures. Transactions
of the Association for Computational Linguistics,
8:743–758.

https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://github.com/google-research-datasets/relation-extraction-corpus
https://github.com/google-research-datasets/relation-extraction-corpus
https://github.com/google-research-datasets/relation-extraction-corpus
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1909.01066
http://arxiv.org/abs/1909.01066
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=68F3DFFF2561B3D285E165554CA7A90C?doi=10.1.1.297.6050&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=68F3DFFF2561B3D285E165554CA7A90C?doi=10.1.1.297.6050&rep=rep1&type=pdf
https://www.researchgate.net/profile/Ellen_Riloff/publication/221603776_Learning_Dictionaries_for_Information_Extraction_by_Multi-Level_Bootstrapping/links/54541c540cf26d5090a557ce/Learning-Dictionaries-for-Information-Extraction-by-Multi-Level-Bootstrapping.pdf
https://www.researchgate.net/profile/Ellen_Riloff/publication/221603776_Learning_Dictionaries_for_Information_Extraction_by_Multi-Level_Bootstrapping/links/54541c540cf26d5090a557ce/Learning-Dictionaries-for-Information-Extraction-by-Multi-Level-Bootstrapping.pdf
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/2002.12327
http://scl.ece.ucsb.edu/pubs/pubs_B/b98_2.pdf
http://scl.ece.ucsb.edu/pubs/pubs_B/b98_2.pdf
http://scl.ece.ucsb.edu/pubs/pubs_B/b98_2.pdf
https://arxiv.org/abs/2001.07676
https://arxiv.org/abs/2001.07676
https://arxiv.org/abs/2001.07676
https://arxiv.org/abs/2009.07118
https://arxiv.org/abs/2009.07118
https://arxiv.org/abs/2009.07118
http://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2010.15980
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.914&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.914&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.914&rep=rep1&type=pdf
https://www.aclweb.org/anthology/D17-1188.pdf
https://www.aclweb.org/anthology/D17-1188.pdf
https://www.aclweb.org/anthology/D17-1188.pdf
http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1612.03975
https://pdfs.semanticscholar.org/6d54/cce97861b9d38c700e1282d34d5236bf3bdb.pdf
https://pdfs.semanticscholar.org/6d54/cce97861b9d38c700e1282d34d5236bf3bdb.pdf
https://pdfs.semanticscholar.org/6d54/cce97861b9d38c700e1282d34d5236bf3bdb.pdf
https://doi.org/10.1162/tacl_a_00342
https://doi.org/10.1162/tacl_a_00342

A Statistics of Relational Databases

The statistics of the various relational databases are
shown in Table 8.

B Statistics of the Initial Prompts

Table 7 shows some statistics of the prompts we
use to initialize the SoftPrompt model.

C Visualization of Soft Prompts

Figure 1 shows what a mixture of soft prompts
looks like when we tune only layer 0. The soft
prompts are not too interpretable. The words clos-
est to the tuned tokens (shown in blue) seem to
be largely on the music topic. However, the soft
templates do not seem to form meaningful phrases,
nor is it obvious why they would prime for y to be
an instrument when x is a musician.

D Entropy of the Mixture Model

For any given relation r, the entropy of the mixture
weights is

H =
∑
t∈Tr

p(t | r) ·
(
− log2 p(t | r)

)
(3)

We then take 2H ∈ [1, |Tr|] as a measure of the
effective number of prompts that were retained. Ta-
ble 10 shows some statistics of the effective num-
ber of prompts. In some cases, tuning the mixture
weights essentially selected a single prompt, but on
average, it settled on a mixture of several variant
prompts (as illustrated by Figure 1).

E Challenging dataset with distinct y’s

As described in §4.3, we conducted an additional
experiment to determine whether the prompts could
generalize to novel y values. We conduct another
experiment and ensure that there are no common
y values among the train / dev / test sets. We use
T-REx as the base relational database and split the
datasets to make the ratio close to 80-10-10. The
experiment results are shown in Table 9. We can
observe that our method again improves the results,
just as in Tables 5 and 6, which shows the general-
izability of our method.

[0.152] song popularized radio loyalty
on vocals and .

[0.126] saxophonist augmented Tor
playing the .

[0.126] rhythms concert Ezio
also played .

[0.122] songs instrumentation Eric
played the .

[0.109] theater abilities tell
plays the .

[0.084] guitar thriller
played .

[0.080] singing Once
playing .

[0.075] singing songs drawn
to play .

[0.046] performing Quick
plays .

[0.032] Wagner Tomb
studied .

[0.025] collaborated Theater
contributed .

[0.013] rendition Program Patriot
solo by .

[0.003] jazz Fighters
player .

[0.002] operates Indiana Organ Josef
and orchestra by .

[0.001] playoff Sports
competition .

[0.001] concerto Goethe literature
pieces by .

[0.001] Players into
international .

[0.000] grass guys
legend .

[0.000] pianist orchestra ”
played by .

[0.000] Auxiliary clarinet And
additional musicians .

[0.000] instances ? policies
bar : .

[0.000] classical collaborators Design
additional personnel .

[0.000] research [CLS]
production .

[0.000] Sonata cafeteria Kendra
works by .

[0.000] 2 [CLS] [UNK] piano [SEP]
mike mccready – guitars .

[0.000] Lena teachers
virtuoso .

[0.000] Recordings Brazilian Paris
works of .

[0.000] 1998 surprise
maestro .

[0.000] synthesizer mper railroad
sonatas of .

Figure 1: Visualization of the LPAQA mining prompts
for relation P1303 Instrument (i.e., x plays in-
strument y) from T-REx extended. We show the ef-
fect of tuning the layer-0 token embeddings (but not
higher layers) on BERT-large-cased. The prompts are
sorted in decreasing order by mixture weight. Each
prompt’s weight is shown at left; note that after the first
12 prompts, the remaining ones have negligible contri-
bution. We show each soft prompt in blue, followed
by the original (mined) prompt in red. To visualize the
tuned vector v, we display the blue word w that max-
imizes p(w | v). The brightness of the blue word w
and the original red word w0 are respectively propor-
tional to p(w | v) and p(w0 | v). The red word has
size 1, and the blue word has size ||v||/||v0||, where
v0 is the original untuned vector (the embedding of
w0). In this example, the blue probabilities p(w | v)
range from 6.5e-5 to 9.7e-5 (mean 8.6e-5 ± 8.1e-6),
the red probabilities p(w0 | v) range from 7.7e-5 to
1.1e-4 (mean 9.5e-5 ± 7.8e-6), and the relative magni-
tudes ||v||/||v0|| vary from 1.00 to 1.49 (mean 1.12 ±
0.13).

LM Method
Precision@1 Precision@10 MRR

init → soft → deep init → soft → deep init → soft → deep

BEb

LAMA 31.1 59.5 40.3
LPAQA 34.1 62.0 43.6

Soft (sin.) 31.1 +14.6?
−−−−−−→ 45.7 + 2.0−−−−−→ 47.7 59.5 +16.3?

−−−−−−→ 75.8 + 3.2−−−−−→ 79.0 40.3 +15.9?
−−−−−−→ 56.2 + 2.2−−−−−→ 58.4

Soft (min.) 34.1 +14.7?
−−−−−−→ 48.8 + 1.9−−−−−→ 50.7? 62.0 +15.6?

−−−−−−→ 79.6 + 1.1−−−−−→ 80.7? 43.6 +15.8?
−−−−−−→ 59.4 + 1.7−−−−−→ 61.1?

Soft (par.) 34.1 +12.8?
−−−−−−→ 46.9 + 1.5−−−−−→ 48.4 62.0 +16.8?

−−−−−−→ 78.8 + 0.8−−−−−→ 79.6 43.6 +14.2?
−−−−−−→ 57.8 + 1.3−−−−−→ 59.1

Soft (ran.) 0.7 +46.6−−−−−−→ 47.3 + 0.8−−−−−→ 48.1 4.6 +74.0−−−−−−→ 79.1 + 0.0−−−−→ 79.1 2.3 +56.1−−−−−−→ 58.4 + 0.5−−−−−→ 58.9

BEl

LAMA 28.9† 57.7† 38.7†

LPAQA 39.4† 67.4† 49.1†

Soft (sin.) 28.9 +16.9−−−−−→ 45.8 + 5.3−−−−−→ 51.1 57.7 +19.0−−−−−→ 76.7 + 4.4−−−−−→ 81.1 38.7 +17.8−−−−−→ 56.5 + 5.0−−−−−→ 61.5
Soft (min.) 39.4 +11.6−−−−−→ 51.0 + 0.6−−−−−→ 51.6 67.4 +14.0−−−−−→ 81.4 + 0.5−−−−−→ 81.9 49.1 +12.5−−−−−→ 61.6 + 0.5−−−−−→ 62.1
Soft (par.) 39.4 + 9.2−−−−−→ 48.6 + 2.5−−−−−→ 51.1 67.4 +12.6−−−−−→ 80.0 + 1.7−−−−−→ 81.7 49.1 +10.5−−−−−→ 59.6 + 2.1−−−−−→ 61.7
Soft (ran.) 2.3 +47.1−−−−−→ 49.4 + 1.9−−−−−→ 51.3 8.0 +73.0−−−−−→ 81.0 + 0.7−−−−−→ 81.7 4.5 +55.9−−−−−→ 60.4 + 1.5−−−−−→ 61.9

Rob
LPAQA 1.2† 9.1† 4.2†

AutoPrompt 40.0 68.3 49.9
Soft (min.) 1.2 +39.4−−−−−→ 40.6 − 7.3−−−−−→ 33.2 9.1 +66.3−−−−−→ 75.4 −22.3−−−−−→ 53.0 4.2 +48.8−−−−−→ 53.0 −12.1−−−−−→ 40.8

BAb
LPAQA 0.8† 5.7† 2.9†

Soft (min.) 0.8 +39.1−−−−−→ 39.9 5.7 +69.7−−−−−→ 75.4 2.9 +49.2−−−−−→ 52.1

BAl
LPAQA 3.5† 5.6† 4.8†

Soft (min.) 3.5 +22.3−−−−−→ 25.8 5.6 +62.4−−−−−→ 68.0 4.8 +36.2−−−−−→ 41.0

Table 5: Experimental results on T-REx original datasets. In the LM column, BEb is BERT-base-cased, BEl
is BERT-large-cased, BAb is BART-base-cased, BAl is BART-large-cased, Rob is RoBERTa-base, and Rol is
RoBERTa-large. In the results block, “init” uses the initial untuned prompts; “soft” starts at “init” and tunes the
prompts (layer 0) and mixture weights; and “deep” starts at “init” and tunes all the layers. Numbers above the
arrows are the relative change in the performance. Within each block, we boldface the best system and all those
that are not significantly worse (paired permutation test, p < 0.02). We also boldface the relative changes that are
significantly different from 0. Other symbols are as in Table 1.

LM Method
Precision@1 Precision@10 MRR

init → soft → deep init → soft → deep init → soft → deep

BEb

LAMA 26.4 54.3 35.8
LPAQA 31.2 57.3 39.9

Soft (sin.) 26.4 +22.2?
−−−−−−→ 48.6 + 1.0−−−−−→ 49.6 54.3 +23.3?

−−−−−−→ 77.6 + 0.3−−−−−→ 77.9 35.8 +22.9?
−−−−−−→ 58.7 + 0.6−−−−−→ 59.3

Soft (min.) 31.2 +19.0?
−−−−−−→ 50.2 + 0.3−−−−−→ 50.5? 57.3 +21.9?

−−−−−−→ 79.2 + 0.5−−−−−→ 79.7? 39.9 +20.2?
−−−−−−→ 60.1 + 0.4−−−−−→ 60.5?

Soft (par.) 31.2 +18.5?
−−−−−−→ 49.7 + 0.0−−−−→ 49.7 57.3 +21.3?

−−−−−−→ 78.6 + 0.6−−−−−→ 79.2 39.9 +19.6?
−−−−−−→ 59.5 + 0.3−−−−−→ 59.8

Soft (ran.) 0.8 +46.3−−−−−−→ 47.1 + 3.5−−−−−→ 50.6 4.0 +70.4−−−−−−→ 74.4 + 4.9−−−−−→ 79.3 2.2 +54.3−−−−−−→ 56.5 + 3.9−−−−−→ 60.4

BEl

LAMA 24.0† 53.7† 34.1†

LPAQA 37.8† 64.4† 44.0†

Soft (sin.) 24.0 +26.2−−−−−→ 50.2 + 1.2−−−−−→ 51.4 53.7 +24.9−−−−−→ 78.6 + 0.9−−−−−→ 79.5 34.1 +25.9−−−−−→ 60.0 + 1.2−−−−−→ 61.2
Soft (min.) 37.8 +13.4−−−−−→ 51.2 + 1.3−−−−−→ 52.5 64.4 +15.1−−−−−→ 79.5 + 1.6−−−−−→ 81.1 44.0 +17.0−−−−−→ 61.0 + 1.4−−−−−→ 62.4
Soft (par.) 37.8 +12.5−−−−−→ 50.3 + 1.4−−−−−→ 51.7 64.4 +14.3−−−−−→ 78.7 + 2.1−−−−−→ 80.8 44.0 +16.1−−−−−→ 60.1 + 1.6−−−−−→ 61.7
Soft (ran.) 1.4 +46.1−−−−−→ 47.5 + 4.4−−−−−→ 51.9 5.4 +68.9−−−−−→ 74.3 + 6.3−−−−−→ 80.6 5.7 +51.2−−−−−→ 56.9 + 5.0−−−−−→ 61.9

Table 6: Experiment results on T-REx extended datasets.

prompts T-REx-min. T-REx-par. Goog-sin. Goog-min. Goog-par. ConceptNet
#relations 41 41 3 3 3 16

avg. prompts 28.4 26.2 1 32.7 28.0 9.3
min #prompts 6 13 1 29 24 1
max #prompts 29 30 1 40 30 38
avg. #tokens 5.1 4.5 4.7 5.3 4.2 7.1

Table 7: Statistics of prompts. The “Goog” stands for “Google-RE.” We do not list the statistics of randomized
prompts, as they should match the statistics of the mined prompts (“min.”) from which they are derived.

database T-REx original T-REx extended Google-RE ConceptNet
#relations 41 41 3 16

avg. #unique x 1580 834 1837 511
avg. #unique y 217 151 372 507

min #(x, y) 544 310 766 510
max #(x, y) 1982 1000 2937 4000
mean #(x, y) 1715 885 1843 1861

Table 8: Statistics of the relational databases.

Model P@1 P@10 MRR
LPAQA (BEb) 18.9 40.4 26.6

Soft (BEb) 23.0 (+4.1) 45.2 (+4.8) 30.5 (+3.9)

LPAQA (BEl) 23.8 47.7 32.2
Soft (BEl) 27.0 (+3.2) 51.7 (+4.0) 35.4 (+3.2)

Table 9: Results with distinct y’s. We use the BERT-
base-cased and BERT-large-cased LMs and the LPAQA
mining based prompts as initial prompts. The experi-
ments are conducted on the T-REx original dataset.

statistic mean std min max
T-REx original + min. 12.5 4.0 4.6 21.0
T-REx extended + min. 12.5 4.0 4.6 20.3
T-REx original + par. 5.4 4.0 1.1 17.1
T-REx extended + par. 5.4 3.9 1.2 18.4

Table 10: Statistics of effective number of prompts.

