

Privacy-Preserving Domain Adaptation of Semantic Parsers

Fatemehsadat Mireshghallah, Yu Su, Tatsunori Hashimoto, Jason Eisner, Richard Shin

fatemeh@ucsd.edu

ACL 2023

Problem Definition: Background

Task-oriented dialogue systems often assist users with **personal** or **confidential** matters

• Data is private and practitioners are not allowed to look at it

How can we know where the system is failing and needs more training data or new functionality?

Problem Definition: Adding New Functionality

- Why not just **fine-tune** on the eyes-off data **privately**?
 - If some users are asking the system to hop up and down, fine-tuning is unlikely to make it grow legs.

Problem Definition: Adding New Functionality

- Why not just **fine-tune** on the eyes-off data **privately**?
 - If some users are asking the system to hop up and down, fine-tuning is unlikely to make it grow legs.

Problem Definition: Adding New Functionality

- Why not just **fine-tune** on the eyes-off data **privately**?
 - If some users are asking the system to hop up and down, fine-tuning is unlikely to make it grow legs.
 - We need to be able to **look at synthesized data** to identify additional needed functions, then **annotate** with new functions and **add** to the training data to **improve the semantic parser**.

How can we privately synthesize data that is distributionally close to eyes-off user data?

Background: Differential Privacy

- DP protects the **membership of every single sample** in the training data
- A randomized algorithm A satisfies ϵ -DP, if for all databases D and D' that differ in data pertaining to one user, and for every possible output value Y:

$$\frac{\Pr[A(D) = Y]}{\Pr[A(D') = Y]} \le e^{\varepsilon}.$$

- We use DP-SGD, a differentially private variant of SGD:
 - Clipping gradients and adding noise

Baseline: Private Fine-Tuning of a Generative Model

• Intuitive Baseline: We model p(x), where x is a **private utterance**.

Proposed: 2-stage Modeling of Intermediate Variables

- Intuitive Baseline: We model p(x), where x is a **private utterance**.
- Proposed: We model p(y) and p(x|y), where y is a **private parse-tree**.
 - one stage models the **parse-trees**, p_{θ_v}
 - The other stage models an utterance given a parse-tree, $p_{\theta yx}$

Does This Really Work?

We simulated a situation where users are asking about the **weather** but the original semantic parser **was not trained on weather-related functions**:

- 1. We created the original semantic parser by training on $\frac{1}{10}$ of our data (SMCalFlow), excluding any examples that use weather-related functions.
- 2. We treated the other $\frac{9}{10}$ of the data as private user utterances, including those requesting weather. We created approximate private annotations for the private utterances, using the original semantic parser.
- 3. We apply the baseline and proposed methods to create **public synthesized datasets**, which **include weather functions**.
- 4. We simulated high-quality human annotation of the public synthetic utterances. We **retrain** the parser with this additional annotated data.

Does This Really Work?

Our proposed 2-stage method outperforms the baseline in terms of the downstream parser performance improvement on the weather function.

Experimental Results: Other Experiments

- 1. Effect of the **number of modes in the data** distributions on the gains that the 2stage method provides
- 2. Effect of **disrupting the correlation** between the parse-trees and utterances
- 3. Experimenting with larger models (GPT2-Large)
- 4. Studying the **effect of DP hyperparameters** on the privacy-utility trade-off (the budget split between the two stages, the clipping threshold and the learning rate.)
- 5. Additional Baseline: I-stage + Domain Prompt

Conclusion and Future Directions

- We propose methods for privately synthesizing data that can be studied and annotated to improve the performance of semantic parsers, by characterizing the private users' data.
- Future Directions:
 - How can we **incorporate active learning** for a more targeted improvement of the semanticparser?
 - How can we modify the objective to **directly evaluate the marginal distribution** over each function type?

fatemeh@ucsd.edu