Limitations of Autoregressive Models and T heir Alternatives

Chu-Cheng Lin**, Aaron Jaech’, Xin Li*, Matt Gormley ", Jason Eisner?

*ki1tsing@cs. jhu.edu

Commonly held beliefs:

“RNN language models are Turing-complete. So they can model any
computable language!”

“RNNSs can fit any finite language. If they do not fit, just add more
parameters!”

This work:

Not really! Even with unlimited compute/annotation during training, there
IS a distribution over strings, that cannot be fit by any autoregressive
model (e.g., RNN/Transformer), even if you allow longer strings to use
larger models (with polynomial growth).

But this language can be easily “fit” by a short hand-written Python
program!

P:

a decision problem class. It is the set of all languages that can be
decided in polynomial time.

Efficiently Computable (EC):

an abstraction of Energy-Based Models (EBMs).
A normalizable efficiently computable weighted language defines

p(x) x p(X) where P(X) can be computed in O(poly(|x|)).
Their support can be (and can only be) anything in P.

Efficiently Locally Normalized (ELN):
an abstraction of Autoregressive Models (including ordinary RNNs/
LSTMs/Transformers/...) They parametrize probability of string x as

p(x) = | [; p(@t | x<t) with a fixed size parameter vector. Computing
p(z: | X<t) takes O(poly (1)),

Efficiently Locally Normalizable with
Compact Parameters (ELNCP):

a generalization of ELNs. An ELNCP model has infinitely many
parameter vectors. When x| =n_ an ELCNP model uses parameters 0

to compute p(x) =11, p(xs | x<1), They provide a conceptual upper
bound to the just-train-a-slightly-larger-model paradigm for
autoregressive models.

ELNCP weighted languages can have support outside of P because of
the precomputed parameters.

Why is it bad that ELNCP models can't
decide all languages in P?

Because then they can't choose among continuations of a prompt. That
IS, there's no way to ensure that p(x#y) > O iff y is a valid continuation of
prompt X, even if that property can be checked in polytime.

P/poly:
P with the help of poly-sized advice strings that can come from an

oracle. P/poly is therefore more powerful than P — they can model
undecidable problems due to the oracle access!

Efficiently Computable with Compact
Parameters (ECCP):

IS a generalization of ECs. Similar to ELNCPs, ECCPs is a conceptual
upper bound to the just-train-a-slightly-larger-model paradigm of EBMs.

NP-complete (NPC):

Is a set of languages that are widely believed to be outside P/poly (and
therefore cannot be support of ECCP languages)

®
®

Lookup Models

®
®

*\s Lightly Marginalized ELNCP Models

NP/poly =

P(V*)(all unweighted languages)

w The space of unweighted languages. Each rectangular outline
corresponds to a complexity class and encloses the languages whose
decision problems fall into that class. Each shape (whose name is colored
to match the shape outline) corresponds to a model family and encloses
the languages that can be expressed as the support of some weighted
language Iin that family.

Future work:

Average-case analysis”?
Are there model families that have all the good stuff but none of the bad

stuff?

*Johns Hopkins University
’Facebook Al
A Carnegie Mellon University

The sequence order problem:
consider the distribution

p( x # 'y )
N~

"~

problem solution
encoding candidate

where P(X#Y) # 0 jif y IS a solution to x.

The prefix probability p(x#) > 0 if and only if x has a solution.
In other words, autoregressive models that factor

p(x#y) = p(x#) - p(¥ | X#) must have the capacity to decide whether x
has a solution, to ensure the joint distribution is accurate. If X is hard
enough (e.g. NP-hard), no autoregressive models can even get the
support right, as long as they use polytime/polysize (i.e. ELN/ELNCPs)!
The other sequence order does fine under autoregressive models (if X is

in NP):
p(y # x )=py#)  px|y#)

~~ ~
solution problem
candidate  encoding

But we don’t always get to decide the sequence order @

FiX #1: use EBMs

EBMs do not suffer the sequence order problem because they don't

even try to compute the possibly expensive factors p(xt | X<t))
Downside: it Is not easy to sample from EBMs. Training them requires
estimating the partition function.

Fix #2: marginalize

A Lightly marginalized ELNCP model marginalizes over an ELNCP
language (lightly so because it des not have too many latent variables).
The sequence of latent and observed symbols can be sampled from the

ELNCP model.
Intuitively, they avoid the sequence order problem with latent variables:

p( x_ # vy )=p( y #)p( x | y #)
problem solution latent problem  Jatent
encoding  candidate variable encoding variable

They can have any language in NP/Poly as support!
p( x_ )= pl y # o x | vy #

problem yeVv* latent problem latent
encoding variable encoding variable

Downside: marginalization is required even at test time.

ELN/ELNCP: Autoregressive models (§3.1) v

Fix #3: memorize anything we need

We can model anything if we have a big big database!
Examples: KNNLM, adaptive semi parametric language models, ...
Downside: Need a vast database of observed or precomputed answers.

Efficient sampling
and normalization?

Compact Efficient
parameters? scoring?

Model family Support can be . ..

some but not all L € P
EC/ECCP: Energy-based models (§4.1) X all L € Pbutno L € NPC
Lightly marginalized ELNCP: Latent-variable autoregressive models (§4.2) v all L € NP

Lookup models (§4.3) v anything




