Abstract

- Current systems for dictation and editing-by-voice only support (1) *limited*, *inflexible* edit commands, which (2) must be invoked through *trigger words*.
- We introduce a new task, **Interactive Dictation**, that addresses these 2 limitations. We allow users to interrupt their dictation with spoken editing commands in *open-ended* natural language.
- We build a novel data collection interface and collect a dataset for this task, **TERTIUS**.
- We build baseline systems for the task.
- Code and data will be released: https://aka.ms/tertius

Introduction

We want to support both *transcription* and *editing* through speech. How do we build an intuitive system that allows users to *flexibly* interleave dictation and editing? How may users invoke *open-ended* edit commands?

Challenges:

- No reserved trigger words for invoking commands \rightarrow **segmentation** (are we dictating or commanding? has a new command been invoked?) is nontrivial
- No fixed templates for commands \rightarrow **interpretation** (which commands to invoke?) is nontrivial.

Toward Interactive Dictation

Belinda Z. Li, Jason Eisner, Adam Pauls, Sam Thomson

Task Overview

Data Collection

Step 1: Demonstrate Dialogues

Program p_i

(capitalize

(theText

(and

(like "S")

Microsoft Semantic Machines Massachusetts Institute of Technology

Dataset: TERTiUS

command. Comparing TERTiUS to prior systems (Dragon NaturallySpeaking)

- segments (repairing ASR/speech errors).

	Metric	\mathbf{T}	'5
	F1	90.	9%
Segmentation	Seg EM	85.3%	
	Runtime (s/it)	0.097	
		prog	sta
ASR Repair +	State EM	28.3%	29.5
Interpretation	Program EM	28.3%	_
	Runtime (s/it)	1.28	3.4

We evaluate segmentation (top) and the ASR repair and interpretation components jointly (bottom), reporting accuracy metrics (F1, EM) as well as runtime (in seconds per example). For ASR repair and interpretation, we experiment with a fine-tuned T5 vs. a prompted GPT3 model, each outputting either the end state (state) or a program to carry out the command (prog).

Normalized Command Segment u'_i Capitalize the S in eSpeak

	Dialogues	Segments		
ion		Dict.	Čmd.	Total
create an email	372	473	1453	1926
terse description	343	347	473	820
l to a full email				
create the effect	605	139	1299	1438
command segment				
om demonstrations				
ious two objectives				
	1320	959	3225	4184

Table: Dataset size statistics

1^{st}	tokens (TERTiUS)	Distinct 1^{st} tokens (DNS)
	83	_
	22	5
	51	1
	22	1
	12	1

Table: Number of ways to invoke various commands, in terms of number of distinct first tokens used to invoke that

Models

• \mathcal{M}_{SEG} : T5 encoder trained to perform BIOES tagging to identify command boundaries. • \mathcal{M}_{NOR} : T5 encoder-decoder model trained to map noisy ASR segments into normalized ASR

• \mathcal{M}_{INT} : Maps normalized command ASR segments into either: (1) prog: programs which get executed by an execution engine into the end-state, or (2) state: the end-state directly.

Experiments

Runtime vs. State EM of various repair & interpretation models. Comparing GPT3 vs. T5 and prog vs. state models. Both increasing model size and predicting state is more accurate, at the expense of runtime.