
Toward Interactive Dictation
Belinda Z. Li, Jason Eisner, Adam Pauls, Sam Thomson

Semantic Machines Massachusetts Institute of Technology

Abstract
• Current systems for dictation and editing-by-voice

only support (1) limited, inflexible edit commands,
which (2) must be invoked through trigger words.

• We introduce a new task, Interactive Dictation,
that addresses these 2 limitations. We allow users
to interrupt their dictation with spoken editing
commands in open-ended natural language.

• We build a novel data collection interface and
collect a dataset for this task, TERTiUS.

• We build baseline systems for the task.
• Code and data will be released:

https://aka.ms/tertius

Introduction

We want to support both transcription and editing
through speech. How do we build an intuitive system
that allows users to flexibly interleave dictation and edit-
ing? How may users invoke open-ended edit commands?

⇓
Interactive Dictation

Just wanted to ask about the event on 
Friday the 23rd. Is the event still on?

Just wanted to ask about the event on the 23rd, on 

Friday the 23rd. Is the event still on? Change“the 

event” to “it” in the last sentence.

Just wanted to ask about the event on the 
23rd.

Just wanted to ask about the event on 
Friday the 23rd.

Just wanted to check in about the event 
on Friday the 23rd. Is it still on?

(c)

(d)

(b)

(d)

(a)

(c)

(a)

(b)

(START)
cursor

Challenges:
• No reserved trigger words for invoking commands →

segmentation (are we dictating or commanding? has a new
command been invoked?) is nontrivial

• No fixed templates for commands → interpretation (which
commands to invoke?) is nontrivial.

Task Overview

Attached are the espeak events. Capitalize the S&E speak. Please review.

1. Segmentation Model ℳSEG

3. Execution 
Engine (EE)

Capitalize the S in eSpeak.

Attached are the eSpeak 
events. Please review.

5. Execution 
Engine

Attached are the espeak 
events.

Attached are the eSpeak 
events.

4. Interpretation 
Step ℳINT

(+EE)

(a) ASR

(b) Segmentation

(d) Interpretation

"

D0 D1 D2 D3

Attached are the espeak events. Capitalize the S&E speak. Please review.
, Dictationu1 , Commandu2 , Dictationu3

2. ASR Repair Step ℳNOR
u′ 2(c) Normalization

We assume a system for the task will have the series of modules (a)–(d) presented above. On the right is
the concrete instantiation of our system.

Data Collection

Step 1: Demonstrate Dialogues

Target document state Dn

Document state after selected segment Di

Document state before selected segment Di−1

Change in document state from segment Δ(Di−1, Di)

Normalized Utterance u′ i

Selected 
segment 
to edit Oi

Dictation Segments

Command Segments

Actual Literal Utterance

Literal Utterance ui

Step 2: Annotate Programs for Command Segments
Normalized Command Segment u′

i

⇓
Capitalize the S in eSpeak

⇓

Program pi

(capitalize
(theText

(and
(like "S")
(in (theText (like "eSpeak"))))))

Dataset: TERTiUS

Dialogues Segments
Task Description Dict. Cmd. Total
Replicate doc Exactly recreate an email 372 473 1453 1926
Elaborate doc Expand a terse description 343 347 473 820

of an email to a full email
Replicate segment Exactly recreate the effect 605 139 1299 1438

of a single command segment
sampled from demonstrations
of the previous two objectives

Total 1320 959 3225 4184

Table: Dataset size statistics.

• How diverse/flexible is the dataset?
Command action Distinct 1st tokens (TERTiUS) Distinct 1st tokens (DNS)
replace 83 -
delete 22 5
insert 51 1
correction 22 1
lowercase 12 1
· · ·

Table: Number of ways to invoke various commands, in terms of number of distinct first tokens used to invoke that
command. Comparing TERTiUS to prior systems (Dragon NaturallySpeaking)

Models

• MSEG: T5 encoder trained to perform BIOES tagging to identify command boundaries.
• MNOR: T5 encoder-decoder model trained to map noisy ASR segments into normalized ASR

segments (repairing ASR/speech errors).
• MINT: Maps normalized command ASR segments into either: (1) prog: programs which get

executed by an execution engine into the end-state, or (2) state: the end-state directly.

Experiments

Metric T5 GPT3

Segmentation
F1 90.9% -
Seg EM 85.3% -
Runtime (s/it) 0.097 -

prog state prog state
ASR Repair + State EM 28.3% 29.5% 38.6% 55.1%
Interpretation Program EM 28.3% - 41.9% -

Runtime (s/it) 1.28 3.46 5.32 6.92
We evaluate segmentation (top) and the ASR repair and
interpretation components jointly (bottom), reporting accuracy
metrics (F1, EM) as well as runtime (in seconds per example).
For ASR repair and interpretation, we experiment with a
fine-tuned T5 vs. a prompted GPT3 model, each outputting
either the end state (state) or a program to carry out the
command (prog).

Runtime vs. State EM of various repair &
interpretation models. Comparing GPT3 vs.
T5 and prog vs. state models. Both increasing
model size and predicting state is more
accurate, at the expense of runtime.

https://aka.ms/tertius

