
Dyna
Evaluation of Logic Programs

with Built-Ins and Aggregation:
A Calculus for Bag Relations

Matthew Francis-Landau, Tim Vieira, Jason Eisner

mfl@cs.jhu.edu

Johns Hopkins University

1

WRLA 2020 October 21

mailto:mfl@cs.jhu.edu

2

R-exprs
(Relational expressions)

2

R-exprs
(Relational expressions)

Term Rewriting

2

R-exprs
(Relational expressions)

Compile

Term Rewriting

2

Machine Learning

Database

Deductive
Databases

Dynamic
Programming

Logic Programming

Search

R-exprs
(Relational expressions)

Compile

Term Rewriting

AI

2

Machine Learning

Database

Deductive
Databases

Dynamic
Programming

Logic Programming

Search

R-exprs
(Relational expressions)

Compile

Term Rewriting

Care about what
not how something

is computed

AI

Term Rewriting

2

Machine Learning

Database

Deductive
Databases

Dynamic
Programming

Logic Programming

Search

R-exprs
(Relational expressions)

Compile

Term Rewriting

+ Queries

R-exprs (+ Query)

Care about what
not how something

is computed

AI

Term Rewriting

2

Machine Learning

Database

Deductive
Databases

Dynamic
Programming

Logic Programming

Search

R-exprs
(Relational expressions)

Compile

Term Rewriting

+ Queries

Results

(Hopefully) Useful
Representation

for User

R-exprs (+ Query)

Done

Care about what
not how something

is computed

AI

3

Dyna vs. Prior Work

3

SQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

3

SQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

Supported by all.
Naïve strategies
terminate due to

finite.

3

SQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

Combining rules
and “facts” to

infer new “facts”

3

SQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

E.g. can we
represent the set

of all positive
integers, or all

prime numbers

3

SQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

SELECT sum(column) FROM x

Important for weighted programs

3

SQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

Is this a full
programming

language

3

SQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

Can expressions like:
𝑋 < 𝑌 && 𝑌 < 𝑋

be identified as
impossible

3

WANT ALL THE
THINGSSQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓

Dyna vs. Prior Work

3

WANT ALL THE
THINGSSQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓ Hard to mix

Dyna vs. Prior Work

Aggregation + Infinite

•
• m(𝑋 ∶ 𝑋 ≥ 5) = ∞
• 𝑋 ∶ 𝑋 ≥ 5) = 5

•
1

2𝑖 = 2

4

Aggregation + Infinite

Aggregators

• OR – Exists A True Branch
• Used in Prolog (:-)
• Can stop early if find true value

•
• m(𝑋 ∶ 𝑋 ≥ 5) = ∞
• 𝑋 ∶ 𝑋 ≥ 5) = 5

•
1

2𝑖 = 2

4

Aggregation + Infinite

Aggregators

• OR – Exists A True Branch
• Used in Prolog (:-)
• Can stop early if find true value

• AND – Not exist false branch •
• m(𝑋 ∶ 𝑋 ≥ 5) = ∞
• 𝑋 ∶ 𝑋 ≥ 5) = 5

•
1

2𝑖 = 2

4

Aggregation + Infinite

Aggregators

• OR – Exists A True Branch
• Used in Prolog (:-)
• Can stop early if find true value

• AND – Not exist false branch

• Sum/Product – exhaustive
expansion of non-identity
contributions

•
• m(𝑋 ∶ 𝑋 ≥ 5) = ∞
• 𝑋 ∶ 𝑋 ≥ 5) = 5

•
1

2𝑖 = 2

4

Aggregation + Infinite

Aggregators

• OR – Exists A True Branch
• Used in Prolog (:-)
• Can stop early if find true value

• AND – Not exist false branch

• Sum/Product – exhaustive
expansion of non-identity
contributions

• Max/Min – Structured Search
problem or exhaustive search

•
• m(𝑋 ∶ 𝑋 ≥ 5) = ∞
• 𝑋 ∶ 𝑋 ≥ 5) = 5

•
1

2𝑖 = 2

4

Aggregation + Infinite

Aggregators

• OR – Exists A True Branch
• Used in Prolog (:-)
• Can stop early if find true value

• AND – Not exist false branch

• Sum/Product – exhaustive
expansion of non-identity
contributions

• Max/Min – Structured Search
problem or exhaustive search

Infinite Relations

• Infinite …..
• Can’t use a naïve enumerate strategy

unless it stops early

•
• m(𝑋 ∶ 𝑋 ≥ 5) = ∞
• 𝑋 ∶ 𝑋 ≥ 5) = 5

•
1

2𝑖 = 2

4

Aggregation + Infinite

Aggregators
• OR – Exists A True Branch

• Used in Prolog (:-)
• Can stop early if find true value

• AND – Not exist false branch

• Sum/Product – exhaustive expansion of non-
identity contributions

• Max/Min – Structured Search problem or
exhaustive search

Infinite Relations
• ∑ 𝑖=0 ∞ 𝑖𝑖=0 ∑ 𝑖=0 ∞ ∞ ∑ 𝑖=0 ∞ 1 2 𝑖 1 1 2 𝑖 2 𝑖

2 2 𝑖 𝑖𝑖 2 𝑖 1 2 𝑖 = 2

• 𝑋 :𝑋≥5 𝑋𝑋 :𝑋𝑋≥5 𝑋 :𝑋≥5)=5

• m(𝑋 :𝑋≥5 𝑋𝑋 :𝑋𝑋≥5 𝑋 :𝑋≥5)=∞

• : 𝑋𝑋≥5 𝑋 : 𝑋≥5

• Infinite …..
• Can’t use a naïve enumerate strategy unless it stops

early

• Require special rules to understand sequencesm(ሼ
ሽ

𝑋 ∶
𝑋 ≥ 5) = ∞

• 𝑋 ∶ 𝑋 ≥ 5) = 5

•
1

2𝑖 = 2

4

Dyna = Logic Programming + Aggregation

5

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

5

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

5

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product

5

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product

5

I can range over
any value, not
just integers

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

5

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

5

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

5

Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

b(I,I) += 1. b(I,J) += 0.

• Infinite identity matrix

5

Example Program: Shortest path

6

Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

Variables not
present in the head
of an expression are
aggregated over like

with the dot
product example.

Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

Here the “min=“
aggregator only

keeps the
minimal value
that we have

computed

Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

edge("a", "b") = 10.
edge("b", "c") = 2.
edge("c", "d") = 7.

Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

edge("a", "b") = 10.
edge("b", "c") = 2.
edge("c", "d") = 7.

Start Y distance(Start, Y)

"a" "a" 0

"a" "b" 10

"a" "c" 12

"a" "d" 19

"b" "b" 0

"b" "c" 2

"b" "d" 9

"c" "c" 0

"c" "d" 7

"d" "d" 0

Dyna programs are
equivalent to the
set of values they

define

Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

edge("a", "b") = 10.
edge("b", "c") = 2.
edge("c", "d") = 7.

Start Y distance(Start, Y)

"a" "a" 0

"a" "b" 10

"a" "c" 12

"a" "d" 19

"b" "b" 0

"b" "c" 2

"b" "d" 9

"c" "c" 0

"c" "d" 7

"d" "d" 0

Start Y distance(Start, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Defined for all
cases where both

arguments are
equal

Shortest Path (cont.)

7

distance(S, S) = 0.

Shortest Path (cont.)

7

distance(S, S) = 0.

S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Shortest Path (cont.)

7

distance(S, S) = 0.

ሼ 𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝑅𝑒𝑠𝑢𝑙𝑡 : 𝐴𝑟𝑔1 = 𝐴𝑟𝑔2 𝐀𝐍𝐃 𝑅𝑒𝑠𝑢𝑙𝑡 = 0ሽ
S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Shortest Path (cont.)

7

distance(S, S) = 0.

ሼ 𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝑅𝑒𝑠𝑢𝑙𝑡 : 𝐴𝑟𝑔1 = 𝐴𝑟𝑔2 𝐀𝐍𝐃 𝑅𝑒𝑠𝑢𝑙𝑡 = 0ሽ
S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Shortest Path (cont.)

7

distance(S, S) = 0.

ሼ 𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝑅𝑒𝑠𝑢𝑙𝑡 : 𝐴𝑟𝑔1 = 𝐴𝑟𝑔2 𝐀𝐍𝐃 𝑅𝑒𝑠𝑢𝑙𝑡 = 0ሽ

Tuple of Named Variables

S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Shortest Path (cont.)

7

distance(S, S) = 0.

ሼ 𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝑅𝑒𝑠𝑢𝑙𝑡 : 𝐴𝑟𝑔1 = 𝐴𝑟𝑔2 𝐀𝐍𝐃 𝑅𝑒𝑠𝑢𝑙𝑡 = 0ሽ

Tuple of Named Variables Executable Code Defines the Rule

S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Shortest Path (cont.)

7

distance(S, Y) = distance(S, X) + edge(X, Y).

distance(S, S) = 0.

ሼ 𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝑅𝑒𝑠𝑢𝑙𝑡 : 𝐴𝑟𝑔1 = 𝐴𝑟𝑔2 𝐀𝐍𝐃 𝑅𝑒𝑠𝑢𝑙𝑡 = 0ሽ

Tuple of Named Variables Executable Code Defines the Rule

S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Shortest Path (cont.)

7

distance(S, Y) = distance(S, X) + edge(X, Y).

distance(S, S) = 0.

ሼ 𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝑅𝑒𝑠𝑢𝑙𝑡 : 𝐴𝑟𝑔1 = 𝐴𝑟𝑔2 𝐀𝐍𝐃 𝑅𝑒𝑠𝑢𝑙𝑡 = 0ሽ

Tuple of Named Variables Executable Code Defines the Rule

S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Because of recursion, it can not be expressed using the set builder notation

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

Normalize with standard
names for all arguments

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

R-expr to Call
function by name

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

R-expr to Call
function by name

Intermediate
results are
mapped to
variables

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

Recursive
call to

distance

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

Built-in
represented in the

R-expr

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

∩*
∩*

Intersect the bag by
multiplying the

multiplicities and
joining these

expressions using
the same variable

names

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

∩*
∩*

Over the tuple ⟨Arg1, Arg2, Result, E, D, X⟩

8

distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

∩*
∩*

proj(E, proj(D, proj(X,)))

Now Over the tuple ⟨Arg1, Arg2, Result⟩

Project out all
local variables

What about Aggregation?

9

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

What about Aggregation?

9

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

(Result=min(MinInputVariable, R))

What about Aggregation?

9

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

R-expr
composed on
previous slide

(Result=min(MinInputVariable, R))

What about Aggregation?

9

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

R-expr
composed on
previous slide

New
intermediate

variable
introduced

(Like project)

(Result=min(MinInputVariable, R))

What about Aggregation?

9

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

R-expr
composed on
previous slide

New
intermediate

variable
introduced

(Like project)

Resulting
value from
aggregation

(Result=min(MinInputVariable, R))

Shortest Path All Together Now

10

distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Shortest Path All Together Now

10

distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

Shortest Path All Together Now

10

distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

(Arg1=Arg2) * (MinInput=0)∩

Shortest Path All Together Now

10

distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

proj(E, proj(D, proj(Y,
(E is edge(Arg2, Y)) * (D is distance(Arg1, Y)) * builtin_plus(MinInput, E, D)
)))

(Arg1=Arg2) * (MinInput=0)

∩ ∩

∩

Shortest Path All Together Now

10

distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

proj(E, proj(D, proj(Y,
(E is edge(Arg2, Y)) * (D is distance(Arg1, Y)) * builtin_plus(MinInput, E, D)
)))

(Arg1=Arg2) * (MinInput=0)

∩ ∩

∩()

()
∪+

Shortest Path All Together Now

10

distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

proj(E, proj(D, proj(Y,
(E is edge(Arg2, Y)) * (D is distance(Arg1, Y)) * builtin_plus(MinInput, E, D)
)))

(Arg1=Arg2) * (MinInput=0)

∩ ∩

∩()

()
∪+

(Result=min(MinInput,

))

The complete distance
rule as a R-expr

Manipulating R-exprs via Rewrites

11

Manipulating R-exprs via Rewrites

• A series of semantic preserving rewrites which attempt to simplify the
expression
• Look for a sub-R-expr which can be rewritten to be simpler, do so!

11

Manipulating R-exprs via Rewrites

• A series of semantic preserving rewrites which attempt to simplify the
expression
• Look for a sub-R-expr which can be rewritten to be simpler, do so!

• Non-deterministic: Any order of rewrites is acceptable
• Requires searching through the entire R-expr to identify what can be

rewritten/run

11

Manipulating R-exprs via Rewrites

• A series of semantic preserving rewrites which attempt to simplify the
expression
• Look for a sub-R-expr which can be rewritten to be simpler, do so!

• Non-deterministic: Any order of rewrites is acceptable
• Requires searching through the entire R-expr to identify what can be

rewritten/run

• Fair rewrites: non-normal form sub-expression are eventually
rewritten
• Important in the case of recursive programs

11

Manipulating R-exprs via Rewrites

• A series of semantic preserving rewrites which attempt to simplify the
expression
• Look for a sub-R-expr which can be rewritten to be simpler, do so!

• Non-deterministic: Any order of rewrites is acceptable
• Requires searching through the entire R-expr to identify what can be

rewritten/run

• Fair rewrites: non-normal form sub-expression are eventually
rewritten
• Important in the case of recursive programs

• Core rewrites are presented in the paper

11

R-expr Rewrites—Built-ins

12

R-expr Rewrites—Built-ins

12

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

R-expr Rewrites—Built-ins

12

builtin_plus(1,2,Z) → (Z=3)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

builtin_plus
runs and its result is

assigned Z

R-expr Rewrites—Built-ins

12

builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

No rewrites
available for:

1+Y=Z

Y=1, Z=2
Y=2, Z=3
Y=3, Z=4

….

R-expr Rewrites—Built-ins

12

builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

(Z=3)*builtin_plus(1,Y,Z)→(Z=3)*builtin_plus(1,Y,3)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ
Propagate the

assignment to Z

R-expr Rewrites—Built-ins

12

builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

(Z=3)*builtin_plus(1,Y,Z)→(Z=3)*builtin_plus(1,Y,3)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

(Z=3)*builtin_plus(1,Y,3)→(Z=3)*(Y=2)

Propagate the
assignment to Z

Built-ins support
multiple modes
for computation

R-expr Rewrites—Built-ins

12

builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

(Z=3)*builtin_plus(1,Y,Z)→(Z=3)*builtin_plus(1,Y,3)

builtin_plus(1,2,3) → 1
builtin_plus(1,2,4) → 0

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

(Z=3)*builtin_plus(1,Y,3)→(Z=3)*(Y=2)

Check
assignment

is
consistent

Maps to the
multiplicity of

being contained in
the bag

* and +
are over the

bag’s
multiplicity

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")
(Result=min(MinInput,

(Arg1=Arg2)*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge(Arg2, X))*(D is
distance(Argr1,X)*bultin_plus(E,D,MinInput))))

Program

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")
(Result=min(MinInput,

(Arg1=Arg2)*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge(Arg2, X))*(D is
distance(Argr1,X)*bultin_plus(E,D,MinInput))))

(Distance=min(MinInput,
("a"="c")*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

Program

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")
(Result=min(MinInput,

(Arg1=Arg2)*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge(Arg2, X))*(D is
distance(Argr1,X)*bultin_plus(E,D,MinInput))))

(Distance=min(MinInput,
("a"="c")*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

0 Variables not equal
("a"="c") → 0 Variables not equal

Program

Rewrites Rules

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")
(Result=min(MinInput,

(Arg1=Arg2)*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge(Arg2, X))*(D is
distance(Argr1,X)*bultin_plus(E,D,MinInput))))

(Distance=min(MinInput,
("a"="c")*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

0 Multiplicative annihilation
0 Variables not equal

0 * R → 0 Multiplicative annihilation

Program

Rewrites Rules

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")
(Result=min(MinInput,

(Arg1=Arg2)*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge(Arg2, X))*(D is
distance(Argr1,X)*bultin_plus(E,D,MinInput))))

(Distance=min(MinInput,
("a"="c")*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

R Additive identity
0 Multiplicative annihilation
0 Variables not equal

0 + R → R Additive identity

Program

Rewrites Rules

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")
(Result=min(MinInput,

(Arg1=Arg2)*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge(Arg2, X))*(D is
distance(Argr1,X)*bultin_plus(E,D,MinInput))))

(Distance=min(MinInput,
("a"="c")*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

R Additive identity
R Additive identity
0 Multiplicative annihilation

0 + R → R Additive identity
0 + R → R Additive identity

Program

Rewrites Rules

Rewriting Example: Shortest Path

13

Distance is distance("a", "c")
(Result=min(MinInput,

(Arg1=Arg2)*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge(Arg2, X))*(D is
distance(Argr1,X)*bultin_plus(E,D,MinInput))))

(Distance=min(MinInput,
("a"="c")*(MinInput=0) +
proj(E, proj(D, proj(X,

(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

R Additive identity
R Additive identity
0 Multiplicative annihilation

0 + R → R Additive identity
0 + R → R Additive identity

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

Program

Rewrites Rules

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Result is edge(Arg1, Arg2)) :-
(Arg1="a")*(Arg2="b")*(Result=10) +
(Arg1="b")*(Arg2="c")*(Result=2) +
(Arg1="c")*(Arg2="d")*(Result=7)

Program

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Result is edge(Arg1, Arg2)) :-
(Arg1="a")*(Arg2="b")*(Result=10) +
(Arg1="b")*(Arg2="c")*(Result=2) +
(Arg1="c")*(Arg2="d")*(Result=7)

Program

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(("c"="a")*(X="b")*(E=10)+
("c"="b")*(X="c")*(E=2)+
("c"="c")*(X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Result is edge(Arg1, Arg2)) :-
(Arg1="a")*(Arg2="b")*(Result=10) +
(Arg1="b")*(Arg2="c")*(Result=2) +
(Arg1="c")*(Arg2="d")*(Result=7)

Program

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(("c"="a")*(X="b")*(E=10)+
("c"="b")*(X="c")*(E=2)+
("c"="c")*(X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

1
0
0 Equality checks

("c"="c") → 1

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Result is edge(Arg1, Arg2)) :-
(Arg1="a")*(Arg2="b")*(Result=10) +
(Arg1="b")*(Arg2="c")*(Result=2) +
(Arg1="c")*(Arg2="d")*(Result=7)

Program

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(("c"="a")*(X="b")*(E=10)+
("c"="b")*(X="c")*(E=2)+
("c"="c")*(X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

R Multiplicative identity
1
0
0 Equality checks

1 * R → R Multiplicative identity

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Result is edge(Arg1, Arg2)) :-
(Arg1="a")*(Arg2="b")*(Result=10) +
(Arg1="b")*(Arg2="c")*(Result=2) +
(Arg1="c")*(Arg2="d")*(Result=7)

Program

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(("c"="a")*(X="b")*(E=10)+
("c"="b")*(X="c")*(E=2)+
("c"="c")*(X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

R Multiplicative identity
R Multiplicative identity
1
0

1 * R → R Multiplicative identity
1 * R → R Multiplicative identity

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Result is edge(Arg1, Arg2)) :-
(Arg1="a")*(Arg2="b")*(Result=10) +
(Arg1="b")*(Arg2="c")*(Result=2) +
(Arg1="c")*(Arg2="d")*(Result=7)

Program

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(("c"="a")*(X="b")*(E=10)+
("c"="b")*(X="c")*(E=2)+
("c"="c")*(X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

R Multiplicative identity
R Multiplicative identity
1
0

1 * R → R Multiplicative identity
1 * R → R Multiplicative identity

(Distance=min(MinInput, proj(E, proj(D, proj(X,
((X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

14

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Result is edge(Arg1, Arg2)) :-
(Arg1="a")*(Arg2="b")*(Result=10) +
(Arg1="b")*(Arg2="c")*(Result=2) +
(Arg1="c")*(Arg2="d")*(Result=7)

Program

(Distance=min(MinInput, proj(E, proj(D, proj(X,
(("c"="a")*(X="b")*(E=10)+
("c"="b")*(X="c")*(E=2)+
("c"="c")*(X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

R Multiplicative identity
R Multiplicative identity
1
0

1 * R → R Multiplicative identity
1 * R → R Multiplicative identity

(Distance=min(MinInput, proj(E, proj(D, proj(X,
((X="d")*(E=7))

*(D is distance("a",X)*bultin_plus(E,D,MinInput))))

(Distance=min(MinInput, proj(D,
(D is distance("a","d")*bultin_plus(7,D,MinInput))))

Propagate values

Rewrites for Aggregators

15

Rewrites for Aggregators

15

(Result=min(MinInput, (MinInput=789))) → (Result=789)

A final value has
been determined.

Assign it to the
Result Variable

Rewrites for Aggregators

15

(Result=min(MinInput, (MinInput=789))) → (Result=789)

(Result=min(MinInput, R+S)) → builtin_min(MR, MS, Result)*
(MR=min(MinInput, R))*(MS=min(MinInput, S))

Two disjunctive
R-exprs can be split

and processed
individually

Rewrites for Aggregators

15

(Result=min(MinInput, (MinInput=789))) → (Result=789)

(Result=min(MinInput, R+S)) → builtin_min(MR, MS, Result)*
(MR=min(MinInput, R))*(MS=min(MinInput, S))

(Result=min(MinInput, 0)) → (Result=identity) ≡ (Result=∞)

Rewrites for Aggregators

15

(Result=min(MinInput, (MinInput=789))) → (Result=789)

(Result=min(MinInput, R+S)) → builtin_min(MR, MS, Result)*
(MR=min(MinInput, R))*(MS=min(MinInput, S))

(Result=min(MinInput, 0)) → (Result=identity) ≡ (Result=∞)

not_identity(identity) → 0
not_identity(V) → 1 if ground(V) && V != identity

(Result=min(MinInput, 0))*not_identity(Result) → 0

More
“traditional” for
aggregation to
map empty to

empty

Ongoing and Future Work

16

Ongoing and Future Work

• Memoization and Mixed-chaining of computation
• R-exprs serve as a basis for representing incomplete computations and can be

run in a myriad of different execution orders

• Extended version of this paper to (hopefully) appear soon

16

Ongoing and Future Work

• Memoization and Mixed-chaining of computation
• R-exprs serve as a basis for representing incomplete computations and can be

run in a myriad of different execution orders

• Extended version of this paper to (hopefully) appear soon

• Exploring and learning different execution orders
• R-exprs capture what needs to be computed while leaving the order and how

open to the runtime to decide

• Much like a database optimizer, but for full, long running programs

16

Ongoing and Future Work

• Memoization and Mixed-chaining of computation
• R-exprs serve as a basis for representing incomplete computations and can be

run in a myriad of different execution orders

• Extended version of this paper to (hopefully) appear soon

• Exploring and learning different execution orders
• R-exprs capture what needs to be computed while leaving the order and how

open to the runtime to decide

• Much like a database optimizer, but for full, long running programs

• Compilation and optimization of R-exprs

• github.com/matthewfl/dyna-R arxiv.org/abs/2010.10503

16

https://github.com/matthewfl/dyna-R
https://arxiv.org/abs/2010.10503

Thank you

Questions?

github.com/matthewfl/dyna-R

arxiv.org/abs/2010.10503

mfl@cs.jhu.edu
17

https://github.com/matthewfl/dyna-R
https://arxiv.org/abs/2010.10503

