<u>Dyna</u> Evaluation of Logic Programs with Built-Ins and Aggregation: A Calculus for Bag Relations

Matthew Francis-Landau, Tim Vieira, Jason Eisner

mfl@cs.jhu.edu

Johns Hopkins University

WRLA 2020 October 21

R-exprs (Relational expressions)

SQL Datalog Prolog CLP Dyna

	SQL	Datalog	Prolog	CLP	Dyna
Finite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Deductive	Х	\checkmark	\checkmark	\checkmark	\checkmark
		C	ombining	g rules	
		in	and "fact fer new '	s" to 'facts"	

	SQL	Datalog	Prolog	CLP	Dyna
Finite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Deductive	X	\checkmark	\checkmark	\checkmark	\checkmark
Infinite relations	X	X	\checkmark	\checkmark	\checkmark
		E.g repre of a inte prim	g. can we esent the all positive gers, or a ne numbe	e set ve all ers	

	SQL	Datalog	Prolog	CLP	Dyna
Finite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Deductive	Х	\checkmark	\checkmark	\checkmark	\checkmark
Infinite relations	Х	X	\checkmark	\checkmark	\checkmark
Aggregation	\checkmark	\checkmark	Х	Х	\checkmark
			SELECT Importa	<u>sum(c</u> nt for w	olumn) E eighted pro

	SQL	Datalog	Prolog	CLP	Dyna
Finite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Deductive	X	ls	this a ful		\checkmark
Infinite relations	X	pro la	grammir anguage	ng	\checkmark
Aggregation	1	\checkmark	Х	Х	\checkmark
Turing complete	X	X	\checkmark	\checkmark	\checkmark

	SQL	Datalog	Prolog	CLP	Dyna
Finite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Deductive	X			\checkmark	\checkmark
Infinite relations		Can expres $X < Y \&$	ssions lik & Y < X	æ:	\checkmark
Aggregation		be iden	tified as		\checkmark
Turing complete	Y		SSIDIC		\checkmark
Constraints	Х	Х	Х	\checkmark	\checkmark

	SQL	Datalog	Prolog	CLP	Dyna
Finite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Deductive	Х	\checkmark	\checkmark	\checkmark	\checkmark
Infinite relations	Х	X	\checkmark	\checkmark	\checkmark
Aggregation	\checkmark	\checkmark	Х	Х	\checkmark
Turing complete	Х	X	\checkmark	\checkmark	\checkmark
Constraints	Х	Х	Х	\checkmark	\checkmark

	SQL	Datalog	Prolog	CLP	Dyna	ITINGS
Finite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Deductive	Х	\checkmark	\checkmark	\checkmark	\checkmark	Ч
Infinite relations	Х	X	\checkmark	\checkmark		0
Aggregation	\checkmark	\checkmark	Х	Х		
Turing complete	Х	X	\checkmark	\checkmark	\checkmark	
Constraints	Х	X	Х	\checkmark	\checkmark	Hard to mix

•
$$m({X : X \ge 5}) = \infty$$

• ${X : X \ge 5}) = 5$
• $\frac{1}{2^{i}} = 2$

4

Aggregators

- OR Exists A True Branch
 - Used in Prolog (:-)
 - Can stop early if find true value

•
$$m({X : X \ge 5}) = \infty$$

• ${X : X \ge 5}) = 5$
• $\frac{1}{2^i} = 2$

Aggregators

- OR Exists A True Branch
 - Used in Prolog (:-)
 - Can stop early if find true value
- AND Not exist false branch

•
$$m({X : X \ge 5}) = \infty$$

• ${X : X \ge 5}) = 5$
• $\frac{1}{2^{i}} = 2$

Aggregators

- OR Exists A True Branch
 - Used in Prolog (:-)
 - Can stop early if find true value
- AND Not exist false branch
- Sum/Product exhaustive expansion of non-identity contributions

• $m({X : X \ge 5}) = \infty$ • ${X : X \ge 5}) = 5$ • $\frac{1}{2^{i}} = 2$

Aggregators

- OR Exists A True Branch
 - Used in Prolog (:-)
 - Can stop early if find true value
- AND Not exist false branch
- Sum/Product exhaustive expansion of non-identity contributions
- Max/Min Structured Search problem or exhaustive search

•
$$m({X : X \ge 5}) = \infty$$

• ${X : X \ge 5}) = 5$
• $\frac{1}{2^{i}} = 2$

Aggregators

- OR Exists A True Branch
 - Used in Prolog (:-)
 - Can stop early if find true value
- AND Not exist false branch
- Sum/Product exhaustive expansion of non-identity contributions
- Max/Min Structured Search problem or exhaustive search

Infinite Relations

- Infinite
 - Can't use a naïve enumerate strategy unless it stops early
- •

•
$$m({X : X \ge 5}) = \infty$$

• ${X \cdot X > 5} = 5$

$$\{X : X \ge 5\}) = 5$$

•
$$\frac{1}{2^i} = 2$$

Aggregators

- OR Exists A True Branch
 - Used in Prolog (: -)
 - Can stop early if find true value
- AND Not exist false branch
- Sum/Product exhaustive expansion of nonidentity contributions
- Max/Min Structured Search problem or exhaustive search

Infinite Relations

- $\sum_{i=0}^{i=0} \sum_{i=0}^{\infty} \sum_{i=0}^{i=0} \sum_{i=0}^{\infty} \sum_{i=0}^{i=0} \sum_$
- *X* :*X*≥5 *XX* :*XX*≥5 *X* :*X*≥5)=5
- $m(X:X \ge 5 XX:XX \ge 5 X:X \ge 5) = \infty$
- :XX≥5X:X≥5
- Infinite
 - Can't use a naïve enumerate strategy unless it stops early
 - Require special rules to understand sequencesm({X : X ≥ 5}) = ∞
 - $\{X : X \ge 5\}) = 5$
- $\frac{1}{2^i} = 2$

a(I) := b(I), c(I).

• pointwise logical AND

- a(I) := b(I), c(I).
 - pointwise logical AND
- a(I) = b(I) * c(I).
 - pointwise multiplication

- a(I) := b(I), c(I).
 - pointwise logical AND
- a(I) = b(I) * c(I).
 - pointwise multiplication
- a += b(I) * c(I).
 - dot product

$$\left(a = \sum_{i} b_i * c_i\right)$$

- a(I) := b(I), c(I).
 - pointwise logical AND
- a(I) = b(I) * c(I).
 - pointwise multiplication

$$a += b(I) * c(I)$$
.

• dot product

$$\left(a = \sum_{i} b_i * c_i\right)$$

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

$$a_{i,k} = \sum_{j} b_{i,j} * c_{j,k} \right)$$

• J is free on the right-hand side, so we sum over it

- a(I) := b(I), c(I).
 - pointwise logical AND
- a(I) = b(I) * c(I).
 - pointwise multiplication
- a += b(I) * c(I).
 - dot product

$$\left(a = \sum_{i} b_i * c_i\right)$$

- $\mathbf{a}(\mathbf{I},\mathbf{K}) += \mathbf{b}(\mathbf{I},\mathbf{J}) * \mathbf{c}(\mathbf{J},\mathbf{K}) . \qquad \left(a_{i,k} = \sum_{i} b_{i,j} * c_{j,k}\right)$
 - matrix multiplication; could be sparse
- J is free on the right-hand side, so we sum over it

- a(I) := b(I), c(I).
 - pointwise logical AND
- a(I) = b(I) * c(I).
 - pointwise multiplication
- a += b(I) * c(I).
 - dot product

$$\left(a = \sum_{i} b_i * c_i\right)$$

- **a**(**I**,**K**) += **b**(**I**,**J**) * **c**(**J**,**K**). • matrix multiplication; could be sparse $\begin{pmatrix}
 a_{i,k} = \sum_{j} b_{i,j} * c_{j,k} \\
 j \end{pmatrix}$
 - J is free on the right-hand side, so we sum over it

- a(I) := b(I), c(I).
 - pointwise logical AND
- a(I) = b(I) * c(I).
 - pointwise multiplication
- a += b(I) * c(I).
 - dot product

$$\left(a = \sum_{i} b_i * c_i\right)$$

 $a_{i,k} =$

a (1,K) += b (1,J) * c (J,K). • matrix multiplication; could be sparse

$$\left|\sum_{j} b_{i,j} * c_{j,k}\right|$$

• J is free on the right-hand side, so we sum over it

b(I,I) += 1. b(I,J) += 0.

• *Infinite* identity matrix

Example Program: Shortest path

Example Program: Shortest path

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.
distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

Variables not present in the head of an expression are aggregated over like with the dot product example.

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) in= 0.

Here the "min=" aggregator only keeps the minimal value that we have computed

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.


```
distance(Start, Y) min= distance(Start, X)
distance(Start, Start) min= 0.
```

Dyna programs are equivalent to the set of values they define

edge("a",	"b")	=	10.
edge("b",	"c")	=	2.
edge("c",	"d")	=	7.

Start	Y	distance(Start, Y)
"a"	"a"	0
"a"	"b"	10
"a"	"c"	12
"a"	"d"	19
"b"	"b"	0
"b"	"c"	2
"b"	"d"	9
"c"	"c"	0
"c"	"d"	7
"d"	"d"	0

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

7

3.1415

7

3.1415

0

0

Start	Υ	distance(Start, Y)
"a"	"a"	0
"a"	"b"	10
"a"	"c"	12
"a"	"d"	19
"b"	"b"	0
"b"	"c"	2
"b"	"d"	9
"c"	"c"	0
"c"	"d"	7
"d"	"d"	0

Shortest Path (cont.) distance(S, S) = 0.

Shortest Path (cont.) distance(S, S) = 0.

S	Y	distance(<mark>S, Y</mark>)
"foo"	"foo"	0
7	7	0
3.1415	3.1415	0

Shortest Path (cont.) distance(S, S) = 0.

S	Y	distance(S, Y)
"foo"	"foo"	0
7	7	0
3.1415	3.1415	0

 $\{\langle Arg_1, Arg_2, Result \rangle: Arg_1 = Arg_2 \text{ AND } Result = 0\}$

Shortest Path (cont.)

S	Y	distance(S, Y)
"foo"	"foo"	0
7	7	0
3.1415	3.1415	0

$$\{\langle Arg_1, Arg_2, Result \rangle: Arg_1 = Arg_2 \text{ AND } Result = 0\}$$

Shortest Path (cont.)

S	Y	distance(S, Y)
"foo"	"foo"	0
7	7	0
3.1415	3.1415	0

 $(Arg_1, Arg_2, Result): Arg_1 = Arg_2 AND Result = 0$ Tuple of Named Variables

Shortest Path (cont.)
distance(S, S) = 0.

$$\frac{V \quad distance(S, Y)}{100} = 0$$

 $\frac{V \quad distance(S, Y)}{100} = 0$
 $\frac{V \quad distance(S, Y)}{100} = 0$
 $\frac{V \quad distance(S, Y)}{100} = 0$
Tuple of Named Variables Executable Code Defines the Rule

S

"foo"

3.1415

7

Y

7

Shortest Path (cont.)
distance(S, S) = 0.

$$\frac{S \times (Arg_1, Arg_2, Result): Arg_1 = Arg_2 \text{ AND } Result = 0}{(Arg_1, Arg_2, Result): Tuple of Named Variables}$$
Tuple of Named Variables Executable Code Defines the Rule

distance(S, Y) = distance(S, X) + edge(X, Y).

distance(S, Y) = distance(S, X) + edge(X, Y).

Because of recursion, it can not be expressed using the set builder notation

distance(Start, Y) = edge(X, Y) + distance(Start, X).

distance(Start, Y) = edge(X, Y) + distance(Start, X).

Normalize with standard names for all arguments

Result is distance(Arg1, Arg2) : Result = edge(Arg2, X) + distance(Arg1, X).

distance(Start, Y) = edge(X, Y) + distance(Start, X).

Result is distance(Arg1, Arg2) : Result = edge(Arg2, X) + distance(Arg1,

(E is edge(Arg2, X))
(D is distance(Arg1, X))
(□)
builtin_plus(Result, E, D)

Intersect the bag by multiplying the multiplicities and joining these expressions using the same variable names

Over the tuple (Arg1, Arg2, Result, E, D, X)

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

(Result=min(MinInputVariable, R))

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

(Result=min(MinInputVariable, R))

R-expr composed on previous slide

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

Shortest Path All Together Now
distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Shortest Path All Together Now distance(S, S) min= 0. distance(S, X) min= edge(X, Y) + distance(S, Y). Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0. Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

Shortest Path All Together Now distance(S, S) min= 0. distance(S, X) min= edge(X, Y) + distance(S, Y). Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.

Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

(Arg1=Arg2) ♠ (MinInput=0)

```
Shortest Path All Together Now
distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).
Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).
```

```
(Arg1=Arg2) ♠ (MinInput=0)
```

```
proj(E, proj(D, proj(Y,
 (E is edge(Arg2, Y)) ∩ (D is distance(Arg1, Y)) ∩ builtin_plus(MinInput, E, D)
)))
```

```
Shortest Path All Together Now
distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).
Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).
```

```
((Arg1=Arg2) ♠ (MinInput=0)) ↔
```

```
proj(E, proj(D, proj(Y,
  (E is edge(Arg2, Y)) ↑ (D is distance(Arg1, Y)) ↑ builtin_plus(MinInput, E, D)
  )))
```

```
Shortest Path All Together Now
distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).
Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).
```

```
(Result=min(MinInput,
 ((Arg1=Arg2) ∩ (MinInput=0)) ↓
The complete distance
rule as a R-expr
```

```
proj(E, proj(D, proj(Y,
  (E is edge(Arg2, Y)) ∩ (D is distance(Arg1, Y)) ∩ builtin_plus(MinInput, E, D)
  )))
```

Manipulating R-exprs via Rewrites

Manipulating R-exprs via Rewrites

- A series of *semantic preserving* rewrites which attempt to *simplify* the expression
 - Look for a sub-R-expr which can be rewritten to be simpler, do so!

Manipulating R-exprs via Rewrites

- A series of *semantic preserving* rewrites which attempt to *simplify* the expression
 - Look for a sub-R-expr which can be rewritten to be simpler, do so!
- Non-deterministic: Any order of rewrites is acceptable
 - Requires searching through the entire R-expr to identify what can be rewritten/run
Manipulating R-exprs via Rewrites

- A series of *semantic preserving* rewrites which attempt to *simplify* the expression
 - Look for a sub-R-expr which can be rewritten to be simpler, do so!
- Non-deterministic: Any order of rewrites is acceptable
 - Requires searching through the entire R-expr to identify what can be rewritten/run
- Fair rewrites: non-normal form sub-expression are eventually rewritten
 - Important in the case of recursive programs

Manipulating R-exprs via Rewrites

- A series of *semantic preserving* rewrites which attempt to *simplify* the expression
 - Look for a sub-R-expr which can be rewritten to be simpler, do so!
- Non-deterministic: Any order of rewrites is acceptable
 - Requires searching through the entire R-expr to identify what can be rewritten/run
- Fair rewrites: non-normal form sub-expression are eventually rewritten
 - Important in the case of recursive programs
- Core rewrites are presented in the paper

builtin_plus(X,Y,Z) $\equiv \{\langle X,Y,Z \rangle : X + Y = Z\}$

R-ever Rewrites—Built-ins Propagate the builtin_plus(Y = Zassignment to Z builtin_plus(1, builtin_plus(1,Y,Z) (Z=3)*builtin_plus $(1, Y, Z) \rightarrow (Z=3)$ *builtin_plus(1, Y, 3)(Z=3)*builtin_plus $(1, Y, 3) \rightarrow (Z=3)$ *(Y=2)**Built-ins support** multiple *modes* for computation

Rewriting Example: Shortest Path Distance is distance("a", "c")

(Distance=min(MinInput, proj(E, proj(D, proj(X, (E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput)))) (Distance=min(MinInput, proj(E, proj(D, proj(X, (E is edge("c", X))*(D is distance("a",X)*bultin_plus(E,D,MinInput)))) (Result is edge(Arg1, Arg2)) :- Program (Arg1="a")*(Arg2="b")*(Result=10) + (Arg1="b")*(Arg2="c")*(Result=2) + (Arg1="c")*(Arg2="d")*(Result=7)

(Result=min(MinInput, (MinInput=789))) \rightarrow (Result=789)

A final value has been determined. Assign it to the Result Variable

(Result=min(MinInput, (MinInput=789))) \rightarrow (Result=789)

 $(Result=min(MinInput, R+S)) \rightarrow builtin_min(MR, MS, Result)* \\ (MR=min(MinInput, R))*(MS=min(MinInput, S))$

Two disjunctive R-exprs can be split and processed individually

(Result=min(MinInput, (MinInput=789))) \rightarrow (Result=789)

 $(\text{Result=min(MinInput, 0)}) \rightarrow (\text{Result=}identity) \equiv (\text{Result=}\infty)$

(Result=min(MinInput, (MinInput=789))) \rightarrow (Result=789)

```
(\text{Result=min(MinInput, 0)}) \rightarrow (\text{Result=}identity) \equiv (\text{Result=}\infty)
```

```
not_identity(identity) \rightarrow 0
not_identity(V) \rightarrow 1 if ground(V) && V != identity
```

(Result=min(MinInput, 0))*not_identity(Result) \rightarrow 0

More "traditional" for aggregation to map empty to empty

- Memoization and Mixed-chaining of computation
 - R-exprs serve as a basis for representing incomplete computations and can be run in a myriad of different execution orders
 - Extended version of this paper to (hopefully) appear soon

- Memoization and Mixed-chaining of computation
 - R-exprs serve as a basis for representing incomplete computations and can be run in a myriad of different execution orders
 - Extended version of this paper to (hopefully) appear soon
- Exploring and learning different execution orders
 - R-exprs capture *what* needs to be computed while leaving the order and *how* open to the runtime to decide
 - Much like a database optimizer, but for full, long running programs

- Memoization and Mixed-chaining of computation
 - R-exprs serve as a basis for representing incomplete computations and can be run in a myriad of different execution orders
 - Extended version of this paper to (hopefully) appear soon
- Exploring and learning different execution orders
 - R-exprs capture *what* needs to be computed while leaving the order and *how* open to the runtime to decide
 - Much like a database optimizer, but for full, long running programs
- Compilation and optimization of R-exprs
- github.com/matthewfl/dyna-R

arxiv.org/abs/2010.10503

Thank you

Questions?

github.com/matthewfl/dyna-R arxiv.org/abs/2010.10503 mfl@cs.jhu.edu