", CENTER FORLANGUAGE
& ANDSPEECH PROCESSING

JOHNS HOPKINS

U N T Y ERSITT Y

Time-and-Space-Efficient
Weighted Deduction

Jason Eisner, JHU

See algorithm

Meta-Theorem

» Can weighted deduction be made as efficient
as unweighted deduction?
* Only a constant factor worse in time and space ...
« ... for every deduction system and every input?

* For acyclic deduction: Yes!

* For cyclic deduction: Almost!
= Plus time to solve the strongly connected components
= But you can find those fast, in toposorted order

How can we prove facts?

Example: Parsing Opedal et al. (ACL 2023)

/ Regular Earley’s \/ Fast Earley’s \

B—p [PREDI: ———————— [i,§, A = e B
P By e A e By | PR G BAA T T
B =
PRED2 7" [§.3. B — 4]
[4.4.B = +p] :
sy, LB A= e av] [kl sonn LA e av] [k,
=P [ik. A= pasv] A [k, A = pasv]
k. B — pe]
Compl: [;HT{:-
o Jid A= e B Gk Bopel| A pe By [k B sl
' ik, A— pBev - [i,k,A— pBev]
__ oe’lsirp AN owlgh J
'S -

\

But faster for some grammars and sentences, thanks to sparsity.
Not obvious how to extend this to probabilistic or weighted parsing,
achieving same runtime and space bounds for all classes of inputs.

* Forward chaining, starting at axioms (Alg 1)

* Chart Cis set of nodes found so far
* Reached by following hyperedges that

combine other nodes from C

* Agenda A is a queue of nodes in C that still
have unfollowed out-hyperedges

* At each step, pop a node from A, combine
with previously popped nodes (they are in C)
¢ Add any resulting new nodes to Cand A

'\

How about weights?

Parsing as deduction

Deduce facts Parse
about which forest is
constituents really a
exist (nodes) proof
forest

serve red onion sauce over with

pasta

capers

Axioms are facts about input words and grammar rules

* Cnow maps each node v that has been found
to its weight so far (the pooled value of its in-
hyperedges found so far)

* This pooled value at v is updated ...

1. Each time a new in-hyperedge to v is found
2. But also, each time an existing hyperedge changes
its value because its input weights have been

updated!

* We hope this never happens, @
as it increases our runtime
to process the same node multiple times

* If the hypergraph is acyclic, we can prevent it
by popping nodes from A in topologically
sorted order. (But how do we do that???)

What’s a deduction system?

* Set of rules that deduce new facts from old
* They’re translated into iterators that can give any
node’s in-hyperedges and out-hyperedges
* Rules are usually written in a pattern-matching
language like Datalog or Dyna

How about weights?

« Turn the proof forestintoa Useful weight

computation graph! . Emtzrc)ifi?ngs
* Each hyperedge is labeled « Counts
with a function that will be < propabilities
applied to the hyperedge’s « Beliefs
inputs * Entropies

* Derivations

* Each node’s weight pools the
* Translations

function values from all its in-
hyperedges, using that node’s
aggregation operator, such as
+ or min (must be associative
& commutative)

CKY parsing written with Dyna rules

% A single word is a phrase (given an appropriate grammar rule).
phrase(X,I,J) += rewrite(X,W) * word(W,I,J).
% Two adjacent phrases make a wider phrase (given an appropriate rule).
phrase(X,I,J) += rewrite(X,Y,Z) * phrase(Y,I Mid)

* phrase(Z,Mid,J).
% An phrase of the appropriate type covering the whole sentence is a parse.
goal += phrase(start_nonterminal,0,length).

Applications (see Eisner & Filardo, 2011)

4610
o

red onion sauce over with

pasta

capers

rederivation

with

serve red onion sauce over pasta capers

Ideas that don’t quite work

* Hopeful forward chaining (Alg 2)
* No guarantee of topological order
* So may throw an exception
* Prioritized forward chaining (Goodman 1999)
* Not generic — must devise a topologically sorting
priority function for each deduction system
* Bucket priority queue: visits every priority level,
may do unnecessary work and break runtime
* Heap priority queue: visits only occupied levels,
but log-factor overhead, which breaks runtime
* Dynamic programming tabulation
* Visits underived nodes, which breaks runtime
* Unweighted forward chaining followed by
weighted backward chaining (Algs 1+3)
* Goodman 1999
* But backward pass must find in-edges
* Store them on forward pass (more space)
* Orrecompute them (breaks runtime in
pathological cases where in-edges are harder
to compute than out-edges)

* Nearly all algorithms in formal language
theory (parsing, automata, grammar
transforms, weighted edit distance, ...)

» Systematic search (backtracking with
constraint propagation and branch & bound)

* Neural networks (rules specify architecture)

* Iterative methods (loopy belief propagation)

* Reinforcement learning (MDP)

CKY tabulation
can’'t get 0(n)
for easy cases
since it always
visits 0(n?)
nodes

with

serve red onion sauce over pasta capers

inputs)
D
/ 1A
R
¢

animations and
dialogue in the talk
> video!

Space O(|V])
Time: O(|V|+ |E])

(assuming fast iterators
and small weights)

Linear, hooray!
* I/ = vertices found
* E' = hyperedges found

- A

1610
propagate until *
value
has converged
(receivedall 7)

Multiple low-space forward passes

* Unweighted forward chaining followed
by weighted forward chaining

* First pass discovers graph, finding all nodes

* For space efficiency, don’t store the
hyperedges, but each node does store its
count of in-hyperedges (Alg 4)

* Second pass decrements this counter as it
finds the same hyperedges again (Alg 5)

* Node is pushed onto the agenda only when
its counter reaches 0 (weight converged)

* Kahn 1962 but on an unmaterialized graph

* Unweighted forward chaining followed
by toposorted SCC decomposition

* Needed for cyclic case

* First pass as above (without the counting)

* On second pass, use Tarjan’s (1972)
algorithm to enumerate all SCCs in (reverse)
topologically sorted order (Alg 8)

* Derive each SCC only from SCCs that have
already converged (Alg 6)

Can still be done
in O(|V|) space.

Toposorting nodes
only works on an
acyclic graph ...

Tarjan (1972) is like
backward chaining
(Alg 3) but discovers
cycles. It returns
SCCs in toposorted
order (Alg 7).

To avoid expensive

(3

in-hyperedges, we 6 ® ® ® 4
can run it on = N
reversed graph 1/&3/& 2
(same SCCs). Y ® [)

Key references

Unweighted deduction
Prolog (Colmerauer & Roussel 1972), Datalog (Ceri
et al. 1990)
Parsing as Deduction (Pereira & Warren 1983; Sikkel
1993; Shieber, Schabes, & Pereira 1995)
Transformations of deduction systems (e.g., Beeri &
Ramakrishnan 1991)
Static analysis of deduction systems (McAllester,
2002; Vieira et al. 2021, 2022)
Weighted deduction
Min-weighted deduction (Nederhof 2003)
Probability-weighted deduction (Sato 1995)
Semiring-weighted deduction (Goodman 1999;
Eisner et al. 2005)
Generalized weighted deduction (Filardo & Eisner
2011)
Transformations of deduction systems (Eisner &
Blatz 2007)
Graph algorithms
Topological sorting (Kahn 1962)
Discovery & toposorting of strongly connected
components (Tarjan 1972)
Solving strongly connected components (e.g.,
Lehmann 1977)

Algorithm 1 Unweighted forward ct
LCh A
2 forvelV:
3 | C.add(v): A.push(v)
4; while A £ (0):
5

u + A.pop()
6 for (v 2 uy, ... ug) € Coout(u):
7| g C: £ tipl
8: C.add(v); A.push()

Algorithm 2 Weighted forward chaining

1 C+«@ map with ke

2 A0

forvelV:

4 | Ch] @y=w(v)

5. | A.push(v)

6: while A # 0 :

7w+ A.pop()

8 | for (v —fc Y ug) € Clout(u) :
9: Cv] @v= f(Clur),. .., Clug))
10: if C'[v] changed :

11 if v has already popped from A : error
12 ifv ¢ A: Apush(v)

Algorithm 3 Weight computation by backward
chaining
1: & Algorithm 1 he

2C+0 w ¢ nap v
3 for v € V : COMPUTE(w) Vs i
4: procedure COMPUTE(v)

5 | ifCly]=1:
6 :

from Algorithm 1

/ i

7 for (v == uy,..., ug) € Ciin(v) :
8 for i + 1to k: COMPUTE(w;)
9: C.relax(v)
10: assert C'[v] # L heca: !

Algorithm 4 Unweighted forward chaining with
parent counting (compare Algorithm 1)
LC—hA-D
2: forveV:
C.add(v); A.push(v)
waiting_edges[v] += 1
while A # 0 :
1« A.pop()
waiting_items += 1

- JECH- SR S SO

for (v 4,] PN uy) € C.out(u) :
9 if waiting_edges|v] = 0:

10: C.add(v); A.push(v)

1: waiting_edges[v] += 1

Algorithm 5 Weighted forward chaining with par-
ent counting (compare Algorithm 2)
1 \gorithm 4

Ce=0hA«0

forveV:
CONTRIBUTE(p, w(v))

while A # ()

A.pop()

waiting_items —=1

2:
3
&
5
6w
7
I o
8 < UYyenay uy) € C.out(u):
L, Clug])y

for (v -
9 CONTRIBUTE(v, [(Cluy), ..
10: if waiting_items # 0 : error
11: procedure CONTRIBUTE(2,u)
12: | Clv] @=u
13 waiting_edges[v] —= 1
14: | if waiting_edges[v] = 0:
15: A.push(v) ! p

Algorithm 6 Solving an SCC using only out()
1: procedure SOLVESCC(S)

2 T

3 -
4 forveS:
5| | ifveV:Chl ©p=wlv) wxiom
6 | | Cuult] « CR] vl s
7. while true :
8 | Chew & Cprev
o: forue S:

!
100 for (v <~ uy, ..., u) € Cout(u):
1 ifves lic {

12: Creat Clug])
13: if Cyyeyy = C : break uality tes
14: B Coew

15: Finally / SCCs
16: forue S: see footiote 23
17: for (v i wy, ... ug) € Coout(u)

18: ifogS: hyperedge 1o later SC
19: Clv] &= f(Clnr], ..., Clux])

Algorithm 7 Weighted cyclic backward chaining
(compare Algorithm 3)
I: A i 1 has already b

2: & Here

RC«0AD
4; for v € V : COMPUTE(v)
s: function COMPUTE(v)

7 | low + |A]

8 | #C)=L: s

9: A.push(v) fi 22
10; ifveV:Ch]+ wv) i
e | | e 0 Lougse o mp) eCangy) -

12¢ T+ true i

13 fori < 1tok:

14 ifu, € A: 1 Cle
15: r + false; low min= A.index[u;]
16: else low min= COMPUTE(u;)

17 if r: Clv] ®= f(Clw),...,Clu])
18: assert Cv] # L u

19; if low = A.index|v] :

20 i i s SCC

21 S«0 SCC i

2 while | A| > low : S.add(A.pop())

23 SOLVESCC(S)

24: |_return low

Algorithm 8 Weighted cyclic forward chaining
(compare Algorithm 7)
H un 1 ha

2 0A ’
3 Ce«0:A«0 s
@ T«0 topasortee (
5: for v € V : FINDNEWSCCS(v)

6 Cew (

while 7 #0 : SOLVESCC(T .pop())
function FINDNEWSCCS(u)

ol

10: | low + |A|
1n: | ifug C:
12: Cl.add(u); A.push(u)

13 I'nr(ri T P uy) € C.out(u) :
14; ifv € A: low min= A index|v]
Is: else low min= FINDNEWSCCs(v)
16: if low = A.index|u] :

17: ’ St

18: S0 ¢ s entire SCC into th
19: while |A| > low : S.add(A.pop())
20: T .push(S)

21: | return low

