
Dyna: A Non-Probabilistic Programming
Language for Probabilistic AI

Jason Eisner
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218
jason@cs.jhu.edu

1 Introduction

The Dyna programming language [1, 2, and ongoing work] is intended to provide an abstraction
layer for building systems in machine learning and AI. Many of its motivating uses involve proba-
bilistic computation. However, a key decision was to make the language itself non-probabilistic.

2 Approach

A Dyna program is essentially just a set of equational schemata (e.g., recurrence relations) that
define named quantities from other named quantities. The program may define infinitely many such
quantities, and may express unbounded finite aggregations.

Dyna’s formalism is weighted logic programming. In an ordinary Prolog logic program, the infer-
ence rules (Horn clauses) specify when a term can be proved from other terms. Generalizing this,
a Dyna program’s inference rules (Horn equations) specify how to derive a term’s value from the
values of other terms.1 Just as a Prolog program defines a set of proved terms under a fixpoint
semantics, a Dyna program defines a map from proved terms to values.

A surprisingly large number of systems can be written very concisely in this declarative notation. A
prototype version [1] that implements only semiring-weighted inference has been used as a key tool
in over a dozen NLP papers. A more powerful and efficient version is now under development.

3 Example

For example, here is the inside algorithm for probabilistic context-free parsing. Capital letters are
free variables. For each X,I,K, the value of phrase(X,I,K) represents the probability that nontermi-
nal X would rewrite recursively to yield the input substring from I to K. The algorithm can run in
O(sentence length3) time, thanks to reuse of these values, i.e., dynamic programming.

1. phrase(X,I,K) += rewrite(X,W)*word(W,I,K). % a word forms a phrase, if X→W
2. phrase(X,I,K) += rewrite(X,Y,Z)*phrase(Y,I,J)*phrase(Z,J,K). % so do adjacent phrases, if X→ Y Z
3. phrase(epsilon,I,I) += 1. % empty phrases are available everywhere
4. result = phrase(”S”,0,sentence length). % probability of the full sentence

Line 3 is an extension to handle epsilons (and it defines infinitely many terms). The above code au-
tomatically handles rule cycles such as rewrite(”NP”,”NP”,epsilon), as well as lattice parsing. Further-
more, [2] shows that it can be automatically transformed to obtain several other parsing algorithms
that are asymptotically more efficient. Moreover, the corresponding outside algorithms are obtained
for free by automatic differentiation. By changing += to max=, one gets a Viterbi (1-best) parser. To
turn this into an A* parser [3], additional rules can be written to define the priority of updates.

1Subterms are evaluated in place by default, not quoted, giving Dyna a functional programming flavor.

1



4 Beyond probabilities

The values in the above example are probabilities. In general, however, Dyna values may be terms
of any type. Even if they are real numbers in the range [0, 1], they do not need to be treated as
probabilities. The rules for manipulating them are left up to the programmer.

For example, when using Dyna to implement an A* or best-first search, some values will be only
upper bounds on probabilities, or other numeric priorities. In MRFs or weighted FSAs, many val-
ues are unnormalized potentials. In loopy or max-product belief propagation, values are only ap-
proximate (and perhaps unnormalized) probabilities. In recurrent neural networks, values can be
activations that decay over time.

Other useful numeric values in ML include log-probabilities, annealed probabilities, (expected)
losses or rewards, event counts, reusable numerators and denominators, intermediate computations
for dynamic programming, transfer functions, regularization terms, feature weights, distances, tun-
able hyperparameters, and partial derivatives. Dyna programs are free to manipulate all of these.

As Dyna also allows non-numeric values, it can handle semiring computations, logical reasoning
(including default reasoning), and manipulation of structured objects such as lists, trees, and maps.

5 Benefits

So if Dyna does not commit to a particular probabilistic discipline, in what sense is it designed
for probabilistic AI? Like any declarative language, Dyna is meant to encapsulate common chores,
handling them efficiently and unobtrusively in support of a concise high-level notation.

Dyna’s main job is to determine the values of terms from the inference rules and user input. In other
words, it handles inference and search, storage, and indexed lookup, as well as I/O. We argue that
it is special-purpose implementations of these tasks that consume the bulk of the code in AI/ML
systems and toolkits, which typically run to several tens of thousands of lines in a subfield like NLP.

The new Dyna implementation under development attempts to systematize a wide range of useful
strategies for these tasks. Strategies for specific types of terms can be selected by manual declaration.
Such choices affect runtime but safely preserve program semantics. Eventually, we plan to use ML
to automatically select good strategies for a particular workload.

For example, the implementation specifically supports mixed inference strategies (forward and
backward chaining with selective or temporary memoization, as well as algebraic shortcuts and pow-
erful program transformations); a range of data structures that support efficient storage and fast
indexed lookup of relevant terms during inference; prioritized update propagation, e.g., updating
the left-hand-side of an inference rule after the right-hand side changes;2 automatic differentiation
for gradient-based training; and recovery and interactive visualization of derivation forests.

Dyna’s agnosticism about the semantics of its values is intended to make it a useful layer for building
and teaching a variety of exact or approximate approaches for specific AI tasks. We hope it can also
serve as a useful infrastructure for building toolkits and languages such as those under discussion in
this workshop, each of which does commit to some particular semantics.

References
[1] Jason Eisner, Eric Goldlust, and Noah A. Smith. Compiling comp ling: Weighted dynamic programming

and the Dyna language. In Proceedings of HLT-EMNLP, pages 281–290, 2005.
[2] Jason Eisner and John Blatz. Program transformations for optimization of parsing algorithms and other

weighted logic programs. In Proceedings of the 11th Conference on Formal Grammar, pages 45–85, 2007.
[3] Dan Klein and Christopher D. Manning. A∗ parsing: Fast exact Viterbi parse selection. In Proceedings of

HLT-NAACL, 2003.
[4] P. F. Felzenszwalb and D. McAllester. The generalized A* architecture. Journal of Artificial Intelligence

Research, 29:153–190, 2007.
2Update propagation is the basis of forward-chained inference, memo invalidation, message-passing algo-

rithms such as belief propagation, and dynamic algorithms that recompute outputs as the inputs change. The
priority of an update is itself a value computed by the Dyna program (cf. the generalized A* algorithm [4]). In
a future version we hope to parallelize by distributing the update queue across multiple processors.

2


