r

i
[

- .

n sixth grade I felt that I was'a preﬁy

good programmer, having gotten our

classroom TRS-80 to play a-game of
craps. It was a companionable machine,
with a comfortable 4K of memory, and for
my next project | decided to program it'to .
converse with me. Twenty years later, 'm
still working on it—having learned a lot
more about computer science, human lan-
guage, and mathematics along the way.

| R AN

The Turing Test

Back in 1950, the mathematician Alan
Turing, one of the great founders of com-
puter science, famously proposed conversa-
tion as the test of artificial intelligence (AI).
He argued that if a computer could success-
fully pass as a human for 30 seconds of
typed conversation, we might as well call it
intelligent. Like me, he underestimated the
problem, predicting it would be solved by
2000. I'm secretly glad it turned out to be
hard enough to give me a lifetime of inter-
esting work!

Turing was picturing college-level conver-
sations about Shakespeare and chess
puzzles. He didn't realize that even simple
language requires a daunting amount of
knowledge and reasoning ability. How
would a computer figure out that “they”
refers to different groups of people in the
following two sentences?

The city council denied the marchers a
permit because they feared violence.

The city council denied the marchers a
permit because they advocated violence.

Some computational linguists already try
to build “deep” language systems that can
do this. Such systems “understand”
enough about a specialized topic, like city
permits or travel planning, that they can
not only figure out what you mean, but
also draw appropriate conclusions that let
them help you out.

What Computers Need to Know

about Lanquage

Many of us are more focused on under-
standing the special properties not of city
permits, but of language itself. A major con-
cern of Alis to get computers to represent,




use, and acquire facts. So the big ques-
tions are: Exactly what facts do you sub-
consciously know about your language?
How do you make use of them? And how
did you figure them out as a toddler, just
by listening to other people make sound
vibrations in the air?

The language facts I'm talking about (you
know miillions) include where the verb
goes in a sentence, which words in the

Learning is Ambigquous

To get a sense of the problems, suppose I
tell you that “Time flies like an arrow,” a
sentence vou hadn’t heard before.

If you don't speak English, you're up a
creek: so far as you know, I could have
meant anything at all.

If you know how English does and
doesn't permit ideas to be expressed, you

computer science, and engineering all at
once, without losing focus. As a
researcher, I like to keep crossing that
spectrum: noticing nuances of language,
trying to fit them into patterns, turning
those patterns into rigorous mathematics,
developing algorithms to work with the
mathematics, coding those algorithms as
programs, and studying how well the pro-
grams do.

LINGUISTICS

dictionary are related, which sounds can
get dropped in fast speech, what the pre-
sent perfect tense (“have eaten”) means
logically, and when it is appropriate to
use “herself” rather than “her.” These are
all very hard questions to answer fully (try
it), and it’s amazing that you tackled
them at age four!

So how should a computer represent, use,
and acquire such facts? To represent the
facts of a given language, we would prefer
to use a single scheme that is flexible
enough to deal with any human lan-
guage—ijust as a baby’s brain is flexible
enough to learn English, Korean, Sanskrit,
Warlpiri, or Zulu. To devise such schemes
(an ongoing job!), we draw on the work
of linguists who study all those languages.
For our purposes the schemes have to be
quite formal, and they often use some dis-
crete mathematics, like graph theory and
abstract algebra.

Using the facts of a language to solve a
problem requires us to design algorithms.
Different problems call for different algo-
rithms. We work, for example, on algo-
rithms to take spoken dictation, diagram
sentences, translate from one language to
another, summarize email, figure out
whether you confused “their” with
“they’re” or “there,” read aloud with nat-
ural intonation, and convert news articles
into databases of facts.

Learning a language automatically is

like doing automatic scientific discovery.
We can give a powerful computer a lot of
data—for example, two million sentences
from the Wall Street Journal— and ask it
to search for hypotheses that explain

the data well but also conform well to
our general scheme for describing
human languages.

will be able to narrow my meaning down,
but not completely! Maybe I was making
a metaphorical remark about time, or a
literal one. Maybe I was instructing you
as to how you should time the flies, or
which flies to time. Maybe I was telling
you about a fly species called “time flies”
that are fond of a particular arrow, or
arrows in general. (Groucho Marx
quipped that time flies like an arrow,

but fruit flies like a banana.) Or maybe
what I actually said was “Tie ‘em flies,
like in our row.” All of these interpreta-
tions are possible in principle, and an
appropriately programmed computer
can come up with them.

If you also know what happens frequently
in English, you can rule out most of these
interpretations as possible but unlikely.
Most sentences do not start with verbs,
“time” is usually an abstract noun, and
“like”is usually a preposition. Furthermore,
you've heard people say “The time sure
flew past tonight,” but never “Look at
those time flies.” All these little bits of evi-
dence add up somehow to nudge you
toward reading the sentence as a remark
about time. Probability and statistics turn
out to be extremely useful tools in getting
computers to add up such evidence.

A wonderful introduction to such issues is
Steven Pinker’s The Language Instinct
(1994). It focuses more on linguistics and
psycholinguistics than on computational
linguistics, but it should get your mind
churning.

The Best of All Worlds

What I love most about my field is that it
engages every part of my mind. For me, it
was a way to get the benefits of majoring

in writing, empirical science, math,

The social aspect of research is also fun for
me—collaborating with colleagues, giving
talks at conferences, and participating in
my research community by reviewing
other people’s papers and organizing
workshops. In addition, since I chose to
work at a university rather than an indus-
trial lab, I help train the next generation
of computational linguists and also get to
teach other topics in computer science.
It’s a good full life, and it sure beats a life-
time of playing craps with a 4K TRS-80.

A new assistant profes-
sor, Jason Eisner took
his first computer science
class at CTY in 1982,
the first year that class
was offered. He is one of
several faculty at the
University of Rochester
who study how humans
process language and how to get computers to
do the same. He’s currently developing a
statistical approach to learning grammatical
transformations (the basis of Noam
Chomsky'’s linguistics revolution in 1957).
He’s also been bringing computer science
techniques to a current revolution in
phonology (the study of how languages
combine sounds).

March/Aprl 2000

15



