
Natural Language Processing (JHU 601.465/665)
Answers to "Structured Prediction" practice problems

1. (a) BELOW.

       The gradient is observed - expected, or more precisely,
           (empirical expectation) - (model expectation).
       In particular, the partial derivative of the log-likelihood with respect
       to theta[5] is
           (empirical expectation of feature 5) - (model expectation of feature 5).
       so it’s positive if the model expectation is BELOW the empirical expectation.
       Intuitively, by increasing theta[5], we move more probability to taggings
       on which feature 5 fires, which raises the model expectation to more closely
       match the empirical expectation.

   (b) ADDITION, MULTIPLICATION, DIVISION.

       You need to know the expected number of positions i in the
       sentence where you have a P tag preceded by "walked":
       w[i-1]="walked" and t[i]=P.

       To do this, you can use the forward-backward algorithm to find the
       posterior probabilities of all tags at all positions i.  Then just
       consider the positions i that are preceded by "walked" and look at the
       posterior probability p(t[i]=P).

       The forward algorithm efficiently uses MULTIPLICATION to extend partial
       paths by new arcs, and ADDITION to add up different paths to the same state.
       The same is true of the backward algorithm.  At the end, you have to DIVIDE
       by the total probability of all paths to get the posterior probability that
       the paths go through a particular state: alpha_i(P) * beta_i(P) / Z.

   (c) 159/52108.  Actually, this isn’t the "maximum possible" value
       because it’s not possible to quite get up to 159/52108, but you can
       get arbitrarily close.

       For example, if you drive theta[5] toward infinity, the
       posterior probability of P at positions following "walked" will
       approach 1.  So you will have 159 instances of "walked" and the
       model thinks that they are all followed by P and the feature will
       fire every time.

       Thus, it fires 159 times on 52108 training examples, for an average
       of 159/52108 times per example.

       (Some of you said 1.  But remember that f_5(t,w) is a count
       over the whole sentence, so it doesn’t have to be in the range
       [0,1].)

       (Some of you said 159.  But remember that you are looking for
       the expected value of f_5(t,w) on a random sentence, so you
       need to average over the whole corpus.)

   (d) 0.  Again, it’s not possible to quite get down to 0, but you can get
       arbitrarily close, for example by driving theta[5] toward negative infinity.
       Then the posterior probability of P at positions following "walked"
       will approach 0, so the model thinks that it never fires.

   (e) 159.  Or in a less efficient implementation, 159*k, where k is
       the number of tag types.  Let’s go through this in detail.

       For any finite theta vector, the model expectation will be
       somewhere in between (c) and (d), and in fact learning wil try
       to make it match the empirical expectation, as discussed in
       part (a).



       As part (b) says, you can use the forward-backward algorithm to
       do this.  Here’s why:

       * The log-linear model states that the probability of a path y,
         given a sentence x, is proportional to
            exp(sum of weights of features on that path)
         This is a product of exponentiated feature weights.

         (We count a feature multiple times in this sum or product if
         the feature fires multiple times on the path, i.e., if its
         count is > 1.)

       * The forward-backward algorithm treats the posterior
         probability of a path y, given a sentence x, as proportional
         to the product of the probabilities of transitions on that
         path.

       Therefore, to use the forward-backward algorithm, we have to
       assign "probabilities" to the transitions in the lattice such
       that the product of a path’s transition probabilities will be
       the product of the exponentiated weights of the features of that
       path.

       For example, to get the "probability" of a transition from X at
       position i-1 to tag P at position i, you will take the product
       of the exponentiated weights of the features that fire on that
       transition.

       (The resulting arc weight plays the same role as p(t[i]=P | t[i-1]=X)
       in an HMM.)

       Feature 5 fires only at positions i such that w[i-1]="walked".  So
       you have to look it up 159 times in computing these "probabilities."

       If you’re reading carefully, you will say "Wait!  For each such
       position i, there are k transitions of the form X --> P, since
       there are k different possibilities for X.  So the answer should
       be 159*k."

       That’s true.  However, a careful implementation will recognize
       that the feature is the same for all X, and look it up only
       once for each position i.  It is reused for all the transitions
       to i.

       In fact, the best implementation will make use of the
       distributive law.  If you’re going to multiply all of the
       transitions to a state by the same number, then it’s faster
       to leave out that number at first when adding up the
       summands to alpha(state), and then FINALLY multiply alpha(state)
       by that number.

       In fact, that is the standard presentation of the forward
       algorithm.  It’s also useful in an HMM, where the probability
       that state H emits 2 ice creams doesn’t depend on the state for
       the previous day, so a careful implementation of an HMM will
       look it up only once.  (Perhaps you discovered this trick in the
       HMM homework?)

       In other words, the standard presentation actually takes the
       weight of a path to be a product of numbers associated with its
       transitions AND its states.  You can say that feature 5 or the
       emission probability p(2 | H) as associated with the state at
       time i, rather than the transition from i-1 to i.  This means
       its weight is used at most once per state, rather than once per



       transition.

   (f) YES.  You still use the forward-backward algorithm, which is
       what allows you to marginalize over exponentially many paths
       in polynomial time.

       The new feature 5 is still asking whether P is good at position
       i of this sentence.  It may take a little longer to compute it,
       because you have to count the number of copies of "walked" at
       all positions j < i, instead of just the position i-1.  But
       once you have this count, you can determine the transition
       probability as before.  Then you can run the forward-backward
       algorithm as before.

   Remark: Note that feature 5 is probably the result of instantiating
   a template (w[i-1], t[i]).

       Feature 5 counts the number of positions i in the sentence
           such that (w[i-1], t[i])=(walked,P).
       Perhaps feature 6 counts
                     (w[i-1], t[i])=(walked,D)
       and feature 7 counts
                     (w[i-1], t[i])=(jumped,P).
       These are all instantiations of the same feature template.

2. (a) B = beginning of a place name,
       I = inside a place name but not the beginning,
       O = outside a place name.

            O   B      I      B   I    O    O    O  O   O
          From San Francisco New York can seem like a museum

       Note that the second "B" signals the start of a second place
       name immediately following the first one.  If that "B" were an
       "I", then the tagging would be incorrect because it would
       indicate a single place name, "San Francisco New York."

   (b) 11 transition values and 10 emission values.

       (Alternatively: In Homework 6, we would have said 11 transition
       values and 12 emission values, because we treated the BOS and
       EOS tags as emitting special BOS and EOS words with probability
       1.  By contrast, in this solution, I will assume that the BOS
       and EOS tags don’t emit anything.  They only participate in
       transitions, namely the tag bigrams BOS O at the start and O
       EOS at the end.  Which approach you choose is a matter of
       taste.)

   (c) Remark: The beta notation used here is similar to the notation
       used in the Viterbi inside algorithm.  In other words,
       beta_t(j,n) is the score of the best tagging that starts with
       tag t for the substring from position j to position n (that is,
       the final n-j words: w[j+1], ... w[n]).  In the backward
       algorithm, we usually write beta_t(j,n) as just beta_t(j),
       because the second argument is always n.

       j. for j = n to 1  (by step -1)

          So we initialize beta(n,n+1) and then the loop computes
             j = n:     compute beta_t(n-1, n+1) using word w[n]
             j = n-1:   compute beta_t(n-2,n+1) using word w[n-1]
               ...
             j = 1:   compute beta_t(0,n) using word w[1]
          in that order.



       ii. max_{t’} transition_score(BOS,t’) + beta_{t’}(0,n)

           This considers the transition from BOS to the initial tag t’.

           (Remark: A good name for this quantity would be
           beta_BOS(-1,n), but the loops above do not compute that
           quantity.  They only compute beta_t where t is in {I,O,B},
           and they include an emission score.)

       iii. log p("O" | "I")
               (log because we’re adding edge weights, not multiplying them)
               (not negated because we’re using max, not min)

       iv. true.  The weights are no longer log-probabilities, though.

       v. true. The weights are no longer log-probabilities, though.

   (d) Change the second equation to
       beta_t(i,n+1) = max_j max_{t’} emission_score(t, w[i+1] ... w[j])
                                       + transition_score(t,t’)
                                       + beta_{t’}(j,n+1)

       For example, to tag "San Francisco" as a place name,
       we would take
           i=1 (the start position of "San Francisco")
           j=3 (the end position of "San Francisco")
           t = PLACE
       and we consider emission_score(PLACE, San Francisco).

       The maximization now maximizes over j as well as t’.
       As a result, the runtime is now O(n^2) rather than O(n).
       In a straightforward implementation, the outer loop will
       now range over i rather than j, with the maximization
       over j handled in an inner loop.

       This is technically close to something called a "hidden
       semi-Markov model."

   (e) * example features indicating place name:

         all words are capitalized
         probably the object of the preposition "from", according to
            our parse forest or our 1-best parse
         preceded by "from"
         not preceded by a capitalized word
            (where we don’t count sentence-initial words as capitalized)

       * example features indicating non-named-entity:

         starts with "a"
         probably starts with a determiner, according to our parse forest
             or our 1-best parse
         contains no proper nouns, according to our parse forest
             or our 1-best parse
         the negation of any feature in previous list :-)

   (f) O(n), O(n^2), O(n^3).

       Explanation:

       In the  HMM program, the slowest rule is the one that
       must be instantiated at all O(n) positions J.

       In the phrasal tagging program, the slowest rule is the
       one that must be instantiated at all O(n^2) position pairs



       I,J.

       In the parsing program, the slowest rule is the
       one that must be instantiated at all O(n^3) position triples
       I,Mid,J.

   (g) The former is larger by a factor of e^2 (about 2.71828^2 or 7.39).

   (h) C, B, A.

       Remember that a strong L1 regularizer prefers all weights to be
       small, and furthermore tends to produce sparse weight vectors,
       where most weights are 0.

       Notice that under scheme A, such weight vectors will pick out a
       few particular lengths as having small nonzero weights.  Under
       scheme B, such weight vectors will divide the lengths into a
       few ranges, with equal weight within each range, and small
       differences in weight from one range to the next.  And under
       scheme C, sparse weight vectors will give a piecewise linear
       graph, with small differences in slope from one range to the
       next.

       These graphs therefore correspond to schemes C, B, A
       respectively.  In fact, each of them corresponds to the same
       sparse weight vector (0,0,1.5,0,-2,0,0,0) under a different
       scheme.


