
Natural Language Processing (JHU 601.465/665)
Answers to "Parsing" practice problems

1. (a) A CNF recognizer combines
 Y from [start,mid] + Z from [mid,end].
 An FF recognizer must combine
 Y from [start,mid-1] + a from [mid-1,mid] + Z from [mid,end]

 The resulting constituent will be at least 3 words long; there must be at least two
positions
 between start and end, namely mid-1 and mid.

 Changes needed:

 line 7: "width := 2 to n" --> "width := 3 to n"
 line 10: "mid := start+1 to end-1" --> "mid := start+2 to end-1"
 line 11: "for (X->Y Z) in Rules" --> "for (X->Y a Z) in Rules"
 line 12: "if Chart[start,mid,Y] and Chart[mid,end,Z]"
 --> "if Chart[start,mid-1,Y] and Input[mid]=a and Chart[mid,end,Z]"

 (b) Each ternary rule X -> Y a Z
 should be replaced with the rules
 X -> Y Z’
 Z’ -> A Z
 A -> a
 where the names Z’ and A are chosen to be new nonterminals not already in the grammar.

2. (a) (0, Q4) -- created by SCANning "plus" from (0,Q3)
 (2, Q0) -- created by PREDICTing "Num" from (0,Q4)

 (b) (0, Q5) -- created by SCANning "negative" from (2,Q4).
 (3, Q0) -- created by PREDICTing "Num" from (0, Q5).

 Note that if the sentence had instead been "one plus four plus two," then we would
have obtained (2,Q1)
 in column 3 by SCANning "four" from (2,Q0).

 Here is the full chart:

 one plus neg four plus two
 0 1 2 3 4 5 6
 ----- ----- ----- ----- ----- ----- -----
 0, Q2 0, Q1 0, Q4 0, Q5 3, Q1 0, Q4 5, Q1
 0, Q0 0, Q3 2, Q0 3, Q0 0, Q6 5, Q0 0, Q6
 4, Q0

3. The best answer is (d).

 (a) Wrong. (You may have recognized that discarding the VP under
 these conditions is a common pruning method that is UNSAFE. If
 the answer were really yes, then it would be safe.)

 (b) is wrong. In CKY, once a cell’s probability is computed, it
 does not change again.

 (c) is more on the right track. As it says, there’s no guarantee
 that there’s any constituent from 3 to 7. Nonetheless, this
 doesn’t directly rebut the claim being discussed.

 (d) This is the best answer. The claim asks about p(NP from 3 to
 7 | whole sentence), which would need to consider whether the
 context actually calls for an NP. But the inside probability is
 determined by the words from 3 to 7 only, not by the whole
 sentence.

 (The inside probability specifically represents p(words from 3 to
 7 | NP). In other words, how likely is it that starting
 randsent with NP would generate the words from 3 to 7? To see why
 this is what the inside probability represents, think about how it
 is computed from PCFG rule probabilities, and how those rule
 probabilities relate to the behavior of randsent.)

 (e) As it says, the inside probability isn’t about the
 highest-probability parse. But neither is the claim being
 discussed.

 Suppose there are 3 parses:
 A (relative probability 40%) contains VP from 3 to 7
 B (relative probability 30%) contains NP from 3 to 7
 C (relative probability 30%) contains NP from 3 to 7

 Then the highest-probability parse has a VP, but if the
 model is correct, then a speaker of this sentence would
 intend an NP parse 60% of the time.

 So we do want to look at a sum over parses. But the
 inside probability is not the sum we want, since it is
 only a sum over subparses (of the substring from 3 to 7).
 Later in the course, we’ll see what sum we do want.

4. (a) Remember, a PCFG starts with the S symbol and decides whether
 to expand it into NP VP or something else. So we are modeling
 the probability of NP VP given S:

 p(NP[...] VP[...] | S[...])
 = 1/Z(S[...]) exp sum_i theta_i f_i(S[...],NP[...] VP[...])

 A number of people got this backwards and tried to model the
 conditional probability of the parent S given the children NP
 VP. But that doesn’t really make sense unless NP and VP have
 previously decided to be siblings and have a common parent.
 The probability of that choice would have to be modeled and
 multiplied into the overall probability of the parse tree.

 Rather that modeling a sequence of bottom-up parsing choices in
 that way (yes, it is possible), we have taken a generative PCFG
 approach. That is, even though we’re COMPUTING the probability
 of a parse from the bottom up, the probability is DEFINED by
 how likely randsent would be to generate that parse from the
 top down.

 (b) O(V^3). (The full runtime is O(n^3 V^3), but we said that n is
 a constant here, so n^3 is a constant and can be omitted.)

 (c) One answer is that any fine-grained rule in G has to be less
 probable than the corresponding coarse-grained rule in G’.
 This ensures that any fine-grained parse has a coarse-grained
 parse whose probability is at least as high, so there can’t
 be any probable fine-grained parse if there wasn’t any
 probable coarse-grained parse.

 As we discussed in class when talking about parsing heuristics,
 one way to arrange this is to define the coarse-grained p(NP VP
 | S) to be the MAXIMUM of all fine-grained probabilities of the
 form p(NP[...] VP[...] | S[...]). Note that p(. | S) is not
 really a probability distribution in this case -- it doesn’t
 sum to 1. However, we can still run CKY on it and find the
 "probability" of the best coarse-grained parse, which is an
 upper bound on the probability of the best fine-grained parse.

 We gave full credit for the above answer. If you read the
 question carefully, however, you’ll see that it actually asks
 about the probability of the SENTENCE, not the probability of
 the best PARSE. This requires summing over all possible
 parses. There are exponentially more fine-grained parses than
 coarse-grained parses, so if a single coarse-grained parse has
 "probability" comparable to a single fine-grained parse (even a
 good one), then the coarse-grained sum will not be as high as
 the fine-grained sum. The right answer (for extra credit!) is
 that p(NP VP | S) is the maximum over all S^ of the sum over
 all NP^, VP^ of p(NP^ VP^ | S^), where S^, NP^, and VP^ are
 fine-grained nonterminals of the form S[...], NP[...], VP[...].
 In that case, the inside algorithm on G’ will find the total
 probability of all fine-grained parses under G, PLUS the
 probability of illegal parses where a node like NP[singular],
 once generated, can turn into NP[plural] for free and rewrite
 using the rules for NP[plural]. This is an upper bound on the
 inside probability under G, as desired.

 (d) No. The UNNORMALIZED probabilities under G will indeed be
 lower than under G’, because the score is decreased by the
 negative-weighted features before it is exponentiated.
 (Assuming that the feature functions f_k return values >= 0.)
 However, the NORMALIZED probabilities are made to sum to 1
 again, so some rule probabilities will go up and some will go
 down.

 In the end, both G and G’ are true PCFGs under this scheme (in
 contrast to (c)), so each one gives a probability distribution
 over all possible sentences. Some sentences will be less
 likely under G than under G’, but some will be more likely, to
 balance things out.

