
601.465/665 — Natural Language Processing
Homework 2: Probability and Vector Exercises

Prof. Jason Eisner — Fall 2023
Due date: Tue 26 September, 2 pm

Only a little programming is required for this homework. The programming will get you started on some
concepts and installation issues you’ll need for the next homework. Mostly, you’ll solve some pencil-and-
paper problems, and then work through a long online visualization and complete a short program. There
will be a short quiz about the visualization in the class immediately after this homework is due.

Homework goals: Completing this homework should make you feel comfortable with using probability
expressions, Bayes’ Theorem, n-gram models and similar models of word sequences, and log-linear models.
You will also get some initial exposure to word embeddings and to the PyTorch library.

Collaboration: You may discuss each problem with one other student in the class. However, please write
up your answers separately and hand them in separately. Otherwise it’s too easy (for this homework) to get
by without understanding. For the coding task, write your own program since it’s quite short. If you discuss
a problem with someone else, disclose this in your PDF and mention your partner’s name.
You may not discuss with your partners from HW1. Make new friends! :-)

Starter code: There is some starter code available for question 8a. See that question for the link.

How to hand in your work: Put all notes, documentation, and answers to questions in a PDF file, and
submit it via Gradescope. You will submit your code separately.

The� symbol in the left margin marks items that you need to hand in. In your PDF, you should refer to
question numbers like 3(a). (Don’t use the blue� numbers; they are for your personal reference but may
change if this homework handout is updated.)

Notation: When you are writing your PDF file, you will need some way of typing mathematical symbols.
A good option is to use LATEX. Alternatively, you could try the equation editor in Google Docs, Microsoft
Word, or another word processor, or you could embed scans or photos of your neatly handwritten equations.

If you must type plain text, please pick one of the following three notations and use it consistently
throughout your homework. (If you need some additional notation not described here, just describe it clearly
and use it.) Use parentheses as needed to disambiguate division and other operators.

Text Picts LATEX
p(x | y) p(x | y) p(x | y) p(x \mid y)

¬x NOT x ˜x \neg x

x̄ (set complement) COMPL(x) \x \bar{x}

x ⊆ y x SUBSET y x {= y x \subseteq y

x ⊇ y x SUPERSET y x }= y x \supseteq y

x ∪ y x UNION y x U y x \cup y

x ∩ y x INTERSECT y x ˆ y x \cap y

x ≥ y x GREATEREQ y x >= y x \geq y

x ≤ y x LESSEQ y x <= y x \leq y

∅ (empty set) NULL 0 \emptyset

E (event space) E E E



1. These short problems will help you get the hang of manipulating probabilities. Let E 6= ∅ denote the�1

event space (it’s just a set, also known as the outcome space or sample space), and p be a function that
assigns a real number in [0, 1] to any subset of E . This number is called the probability of the subset.

You are told that p satisfies the following two axioms: p(E) = 1. p(X ∪Y ) = p(X) + p(Y ) provided
that X ∩ Y = ∅.1

As a matter of notation, remember that the conditional probability p(X | Z)
def
= p(X∩Z)

p(Z) . For
example, singing in the rain is one of my favorite rainy-day activities: so my ratio p(singing | rainy) =
p(singing AND rainy)

p(rainy) is high. Here the predicate “singing” picks out the set of singing events in E , “rainy”
picks out the set of rainy events, and the conjoined predicate “singing AND rainy” picks out the
intersection of these two sets—that is, all events that are both singing AND rainy.

(a) Prove from the axioms that if Y ⊆ Z, then p(Y ) ≤ p(Z).
You may use any and all set manipulations you like. Remember that p(A) = 0 does not imply
that A = ∅ (why not?), and similarly, that p(B) = p(C) does not imply that B = C (even if
B ⊆ C).

(b) Use the above fact to prove that conditional probabilities p(X | Z), just like ordinary probabili-
ties, always fall in the range [0, 1].

(c) Prove from the axioms that p(∅) = 0.

(d) Let X̄ denote E −X . Prove from the axioms that p(X) = 1−p(X̄). For example, p(singing) =
1− p(NOT singing).

(e) Prove from the axioms that p(singing AND rainy | rainy) = p(singing | rainy).

(f) Prove from the axioms that p(X | Y ) = 1 − p(X̄ | Y ). For example, p(singing | rainy) =
1− p(NOT singing | rainy). This is a generalization of question 1d.

(g) Simplify:
(
p(X | Y ) · p(Y ) + p(X | Ȳ ) · p(Ȳ )

)
· p(Z̄ | X)/p(Z̄)

(h) Under what conditions is it true that p(singing OR rainy) = p(singing) + p(rainy)?

(i) Under what conditions is it true that p(singing AND rainy) = p(singing) · p(rainy)?

(j) Suppose you know that p(X | Y ) = 0. Prove that p(X | Y,Z) = 0.2

(k) Suppose you know that p(W | Y ) = 1. Prove that p(W | Y, Z) = 1.3

2. All cars are either red or blue. The witness claimed the car that hit the pedestrian was blue. Witnesses�2

are believed to be about 80% reliable in reporting car color, regardless of the actual car color.4 But
only 10% of all cars are blue.

1In fact, probability functions p are also required to satisfy a generalization of this second axiom: if X1, X2, X3, . . . is an
infinite sequence of disjoint sets, then p(

⋃∞
i=1 Xi) =

∑∞
i=1 p(Xi). But you don’t need this for this homework.

2More precisely, p(X | Y,Z) could be either 0 or undefined, namely 0/0. (There do exist advanced ways to redefine conditional
probability to avoid this 0/0 problem. Even then, though, one may want a probability measure p to leave some probabilities
or conditional probabilities undefined. This turns out to be important for reasons beyond the scope of this course: e.g. http:
//en.wikipedia.org/wiki/Vitali_set.)

3More precisely, p(X | Y,Z) could be either 1 or undefined. See the previous footnote.
4In other words, accuracy is independent of color: 80% of witnesses who see red cars report the color correctly, and so do 80%

of witnesses who see blue cars.

2

http://en.wikipedia.org/wiki/Vitali_set
http://en.wikipedia.org/wiki/Vitali_set


(a) Write an equation relating the following quantities and perhaps other quantities:

p(Actual = blue)

p(Actual = blue | Claimed = blue)

p(Claimed = blue | Actual = blue)

Reminder: Here, Claimed and Actual are random variables, which means that they are func-
tions over some outcome space. For example, the probability that Claimed = blue really
means the probability of getting an outcome x such that Claimed(x) = blue. We are implicitly
assuming that the space of outcomes x is something like the set of witnessed car accidents.

(b) Match the three probabilities above with the following terms: prior probability, likelihood of the
evidence, posterior probability.

(c) Give the values of all three probabilities. (Hint: Use Bayes’ Theorem.) Which probability should
the judge care about?

(d) Let’s suppose the numbers 80% and 10% are specific to Baltimore. So in the previous problem,
you were implicitly using the following more general version of Bayes’ Theorem:

p(A | B, Y ) =
p(B | A, Y ) · p(A | Y )

p(B | Y )

where Y is city = Baltimore. Just as question 1f generalized question 1d, by adding a “back-
ground” condition Y , this version generalizes Bayes’ Theorem. Carefully prove it.

(e) Now prove the more detailed version

p(A | B, Y ) =
p(B | A, Y ) · p(A | Y )

p(B | A, Y ) · p(A | Y ) + p(B | Ā, Y ) · p(Ā | Y )

which gives a practical way of finding the denominator in question 2d.

(f) Write out the equation given in question 2e with A, B, and Y replaced by specific propositions
from the red-and-blue car problem. For example, Y is “city = Baltimore” (or just “Baltimore”
for short). Now replace the probabilities with actual numbers from the problem, such as 0.8.
Yeah, it’s a mickeymouse problem, but I promise that writing out a real case of this important
formula won’t kill you, and may even be good for you (like, on an exam).

3. Beavers can make three cries, which they use to communicate. bwa and bwee usually mean something�3

like “come” and “go” respectively, and are used during dam maintenance. kiki means “watch out!”
The following conditional probability table shows the probability of the various cries in different
situations.
p(cry | situation) Predator! Timber! I need help!

bwa 0 0.1 0.8
bwee 0 0.6 0.1
kiki 1.0 0.3 0.1

(a) Notice that each column of the above table sums to 1. Write an equation stating this, in the form∑
variable p(· · · ) = 1.

3



(b) A certain colony of beavers has already cut down all the trees around their dam. As there are
no more to chew, p(timber) = 0. Getting rid of the trees has also reduced p(predator) to 0.2.
These facts are shown in the following joint probability table. Fill in the rest of the table, using
the previous table and the laws of probability. (Note that the meaning of each table is given in
its top left cell.)
p(cry , situation) Predator! Timber! I need help! TOTAL

bwa

bwee

kiki

TOTAL 0.2 0

(c) A beaver in this colony cries kiki. Given this cry, other beavers try to figure out the probability
that there is a predator.

i. This probability is written as: p( )

ii. It can be rewritten without the | symbol as:
iii. Using the above tables, its value is:
iv. Alternatively, Bayes’ Theorem allows you to express this probability as:

p( ) · p( )

p( ) · p( ) + p( ) · p( ) + p( ) · p( )

v. Using the above tables, the value of this is:

·
· + · + ·

This should give the same result as in part iii., and it should be clear that they are really the
same computation—by constructing table (b) and doing part iii., you were implicitly using
Bayes’ Theorem. (I told you it was a trivial theorem!)

4. A language model is a probability function p that assigns probabilities to word sequences such as�4

~w = (i, love, bagpipe, music).

Suppose ~w = w1w2 · · ·wn (a sequence of n words). A trigram language model defines

p(~w)
def
=

n+1∏
i=1

p(wi | wi−2, wi−1) (1)

where by convention we define wn+1 = EOS (“end of sequence”) and w0 = w−1 = BOS (“beginning
of sequence”).

For example, the model says that a speaker who says “i love bagpipe music” has generated the
sequence in left-to-right order, by rolling 5 dice that happened to land on i, love, bagpipe, music, EOS.
Each roll uses a special die selected by the two previously rolled characters (or BOS).

(a) Explicitly write out p(w1w2w3w4) when you use naive estimates of the parameters, such as

p(w4 | w2, w3)
def
=

c(w2w3w4)

c(w2w3)
(2)

4



where c(w2w3w4) denotes the count of times the trigram w2w3w4 was observed in a train-
ing corpus. The following terms will appear in your formula: c(BOS BOS), c(BOS BOS i),
c(bagpipe music EOS). What property of the corpus is counted by each of them?

Remark: Naive parameter estimates of this sort are called maximum-likelihood estimates
(MLE). They have the advantage that they maximize the probability (equivalently, minimize
the perplexity) of the training data. But they will generally perform badly on test data, unless
the training data were so abundant as to include all possible trigrams many times. This is why
we must smooth these estimates in practice.

(b) Suppose ~w = (do, you, think, the). Under any good language model of English, p(~w) should
be extremely low. Why? In the case of the trigram model, which parameter or parameters are
responsible for making this probability low?

(c) You turn on the radio while it is in the middle of broadcasting an interview. Assume that each
sentence of the interview was independently generated by a certain trigram model.
Under this assumption, match up expressions (A), (B), (C) with descriptions (1), (2), (3):
The expression

(A) p(do) · p(you | do) · p(think | do, you)
(B) p(do | BOS) · p(you | BOS, do) · p(think | do, you) · p(EOS | you, think)
(C) p(do | BOS) · p(you | BOS, do) · p(think | do, you)
represents the probability that

(1) the first complete sentence you hear is do you think
(2) the first 3 words you hear are do you think, all as part of a single sentence
(3) the first complete sentence you hear starts with do you think

Explain your answers briefly. Remark: The distinctions matter because ”do” is more probable
at the start of an English sentence than in the middle, and because (3) describes a larger event
set than (1) does. Remark: The best reply to do you think is “Yes, and therefore I am!”

(d) Extra credit: One could also define a kind of reversed trigram language model preversed that,5

instead assumed the words were generated in reverse order (“from right to left”):

preversed(~w)
def
=

n∏
i=0

p(wi | wi+1, wi+2) (3)

where by convention we definew0 = BOS andwn+1 = wn+2 = EOS. In this case, the generating
process stops when we hit BOS, instead of EOS.
By manipulating the notation, show that the two models are identical (i.e., p(~w) = preversed(~w)
for any ~w) provided that both models use MLE parameters estimated from the same training
data (see question 4a).
Hint: Try writing out the probability of “i love bagpipe music” under both models. To
argue that the resulting probabilities are equal, you will have to observe that certain counts are
equal.

5. Under a bigram language model, knowing an early part of the sentence (“Horses like . . . ”) doesn’t
tell you too much about the end of the sentence. But that overlooks a useful property of real language

5



data. A sentence that starts out “Horses like . . . ” is probably about horses, so it will probably continue
to have a lot of horse-related words throughout, even at the end.

Suppose your corpus seems to cover k different topics—for example, POLITICS, CELEBRITIES, AN-
IMALS, and SPORTS. For the most part, each sentence seems to stick to a single topic. You want to
build an better bigram model that also captures the fact the choice of topic persists throughout
each sentence.
In the “probability crash course” lecture, we sketched a model of word sequences that considered
possible part-of-speech tags for the first word. The goal wasn’t to predict tags, but since words are
related to tags, we hoped that a model that included tags might predict the word sequence better. In
the same way, the goal here is not to predict topics, but to use them to predict the word sequence
better.

Write a formula for p(w1w2w3w4) under this better bigram model. (Hints: Latent variable, chain�6

rule, backing off using a conditional independence assumption. Make w4 depend not only on w3 but
also on the topic a.

6. [This problem is very important to the course, and will take you several hours to do properly.]
So far in this homework, we have been using conditional probabilities like p(Actual = blue) or
p(singing | rainy) or p(w4 | w2, w3). But where do those probabilities come from?

One option would be to estimate conditional event probabilities naively from data, using simple count
ratios as in formula (2). But those unsmoothed estimates will not be reliable when the numerator or
denominator counts are small.

An alternative is to use log-linear models. Frank Ferraro and I built an online toy to let you play with
such models. It should give you almost physical intuitions about how these models behave.

You’ll need to understand log-linear models in subsequent lectures and on the exams. They are also a
pretty good introduction to machine learning.

You can find the toy at http://cs.jhu.edu/˜jason/tutorials/loglin/. Work through its 18
lessons (and read the accompanying handout). This should be fun, but time-consuming.

To save you some time, there is nothing to hand in for this part of the homework. Instead, there will
be a brief but tricky in-class quiz to check that you understood what’s going on. Your score on the�7

quiz will be your score for this homework question.

The lessons are peppered with guidance in the form of questions. Just think through these questions
as you go along, and you should do fine on the quiz. We strongly suggest that you work through the
lessons with a friend or two, so that you can discuss the questions together.

7. Now, how might you use log-linear models in linguistics? Rather than answering in your PDF, do one
of the following:

• Think over your own interests in linguistics, NLP, or a related field. Post a new note on Piazza (a�8

note, not a question) with a subject line “Log-linear model for [my idea].” While we generally
allow you to post anonymously, please don’t for this question—it means we can’t search by
name, which slows down grading.
In your note, give an example of a conditional distribution p(y | x) that would be interesting to
model. It could be related to natural language, but it doesn’t have to be. Your goal here might
be to predict y from x, or to understand the properties of x that are predictive of y.

6

http://cs.jhu.edu/~jason/tutorials/loglin/


Be clear about both your real-world problem and your model of it. In particular, be precise
about what the formal objects x and y are—numbers? strings? arrays? trees?—and what x and
y represent in the real world. We will post an “official example” on Piazza to illustrate the
form of a good answer.

• Alternatively, respond to someone else’s Piazza post that you found interesting. Suggest some�8

new features fk(x, y) that would be useful for their problem. Or suggest changes to the problem
setup (e.g., the choice of x and y) or to other people’s features. Again, please don’t comment
anonymously.

Be precise when describing your feature functions. Don’t just say “the amount of pseudoscience
words used in the text.” That’s a certainly a good starting thought—but how should your program
identify “pseudoscience words”? (Would you need to supply it with a list of such words, or could
you somehow pluck them automatically from a corpus of pseudoscience articles?) And how exactly
would your feature function measure this “amount”? (Should it return an integer count? A fraction?
The log of a fraction?)

Consider designing a large, systematic set of feature functions—hundreds or thousands that might
help prediction, not just 3 or 4 that should help. Hopefully, optimizing the weights will find the
features that do help and give weight ≈ 0 to the others. For example, instead of a single feature
that fires whenever it sees a pseudoscience word, you could create separate features that fire for each
word from “aardvark” to “zebra,” and hope that the system will learn to put a positive weight on
“megalithic” and a negative weight on “t-test.”

Warning: If you’re trying to predict different probabilities for different y values, then your feature
vector ~f(x, y) needs to be different for different y values, too. (Remember lesson 14 from the vi-
sualization.) Suppose you are given a text x and you’re trying to predict its author’s age y. If (for
a given x) your features fire in the same way on all ages y, then all ages will have the same prob-
ability: p(0 | x) = p(1 | x) = p(2 | x) = . . . = p(99 | x) = 1

100 . So don’t use a feature like
“f3(x, y) = 1 if x contains an emoji.” You will need a set of more specific features that depend on y,
such as “f3(x, y) = 1 if x contains an emoji and y < 18.”5

8. The next homework will involve various kinds of smoothed language models. Often, smoothing
involves treating similar events in similar contexts as having similar probabilities. (Backoff is one
example.)

One strategy will be to treat similar words as having similar probabilities. But what does “similar
words” mean? More concretely, how will we measure whether two words are similar?

Look at http://cs.jhu.edu/˜jason/465/hw-lm/lexicons/.6 Remember that a lexicon lists
useful properties of the words of a language. Each of the words-*.txt files7 is a lexicon that lists

5If this feature has positive weight, then an emoji raises the probability that the author is a minor. Specifically, it raises the
probabilities that y = 0, y = 1, . . . , y = 17, which means lowering the probabilities that y = 18, y = 19, . . .. The bad version
that doesn’t test y tries to raise the probabilities of all ages at once—but this has no effect after normalization: doubling all of the
unnormalized probabilities doesn’t change their ratios.

6If you lack the bandwidth or disk space to download all of these files to your own machine, just download a few. Once your
code is working, you can upload your code to the ugrad filesystem and run it on one of the ugrad machines, where the files
are available in the directory /usr/local/data/cs465/hw-lm/lexicons/. Please don’t make additional copies on the ugrad
filesystem, as this would waste space; you can use symbolic links instead.

7The file format should be easy to figure out. The file words-d.txt can be regarded as a matrix with about 70,000 rows and d
columns. Each row is labeled by a word. The first line of the file is special: it gives the number of rows and columns.

7

http://cs.jhu.edu/~jason/tutorials/loglin/#14
http://cs.jhu.edu/~jason/465/hw-lm/lexicons/


over 70,000 words of English, with a representation of each word as a d-dimensional vector. In
other words, it embeds these words into the vector space Rd; so the vectors are often called “word
embeddings.”

We can now define “similar words” as words with similar vectors. A word may have many syntactic
and semantic properties—some words are transitive verbs, some words are plural, some words refer
to animals. These properties can be considered by a log-linear model, and words with similar vectors
tend to have similar properties. The larger d is, the more room the vector has to encode interesting
properties.

The vectors in these particular files were produced automatically by Google’s word2vec program.8

Their individual dimensions are hard to interpret as natural properties. It would certainly be nice
if dimension 2 (for example) represented the “animal” property, so that a word that referred to an
animal would be one whose vector ~v = (v1, v2, . . . vd) had strongly positive v2. In practice, however,
word2vec chooses an arbitrary basis for the vector space. So the “animal” direction—to the extent
that there is one—is actually represented by some arbitrary vector ~u. The animal words tend to be
those whose vectors ~v have strongly positive ~v · ~u.

(Geometrically, this dot product measures how far ~v extends in direction ~u (it projects ~v onto the ~u
vector). Algebraically, it computes a certain linear combination of v1, v2, . . . , vn. As a special case, if
~u were (0, 1, 0, 0, . . .), then ~v · ~u would in fact return v2. But there’s no reason to expect that ~u would
be that simple.)

You’ll be using our lexicons in the next homework. For this homework, you’ll just warm up by writing
a short program to get a feel for word embeddings, vectorized computation, and the PyTorch library.
Start with the INSTRUCTIONS file in http://cs.jhu.edu/˜jason/465/hw-prob/.

(a) Your program findsim.py should print the 10 words most similar to seattle, other than
seattle itself, according to the 50-dimensional embeddings, if you run it as

python3 findsim.py words-50.txt seattle

They should be printed in decreasing order of similarity. To measure the similarity of two words
with vectors ~v and ~w, please use the cosine similarity, which is the cosine of the angle θ between
the two vectors:

cos θ =

(
~v

||~v||

)
·
(

~w

||~w||

)
=

~v · ~w
||~v|| ||~w||

=

∑d
i=1 viwi√∑d

i=1 v
2
i

√∑d
i=1w

2
i

∈ [−1, 1]

We’ve provided starter code for findsim.py in the directory mentioned above.
What are the most similar words to seattle, dog, communist, jpg, the, and google? Play�9

with your program some more. What are some examples that work “well” or “poorly”? What�10
patterns do you notice?
So far you have been using d = 50. What happens for larger or smaller values of d?�11

8The details are not important for this homework, but the vectors are optimized by gradient descent so as to arrange that the
vector for each word token wi will be predictable (to the extent possible) from the average vector of nearby word tokens (wj for
j 6= i and i− 5 ≤ j ≤ i+ 5). If you’re curious, you can find details in Mikolov et al. (2013)’s paper “Distributed Representations
of Words and Phrases and their Compositionality,” available at http://arxiv.org/abs/1301.3781. We ran the CBOW method
over the first 1 billion characters of English Wikipedia. word2vec doesn’t produce vector representations for rare words (c(w) < 5),
so we first replaced rare words with the special symbol OOL (“out of lexicon”), forcing word2vec to learn a vector representation
for OOL.

8

https://www.cs.jhu.edu/~jason/465/hw-prob/INSTRUCTIONS.html
http://cs.jhu.edu/~jason/465/hw-prob/
http://arxiv.org/abs/1301.3781


Hint: It’s probably a good idea to read the lexicon into some data structures. (See remarks
below.)
Hint: Start by making findsim find only the single most similar word, which should be easy
enough. Then you can generalize this method to find the 10 most similar words. (Since you
only want the top 10, it’s not necessary to sort the whole lexicon by similarity—that method is
acceptable, but inefficient.)
Note: You can copy the lexicon files to your personal machine. But to avoid downloading such
large files, it may be easier to run findsim directly on the ugrad machines. If you do this,
please don’t waste space by making fresh copies of the files on the ugrad machines. Just use
them at their current location. If you like, create symbolic links (shortcuts) to them by typing
“ln -s /usr/local/data/cs465/hw-lm/lexicons/* .” in your own working directory.

Just for fun: Semantle is a game based on similar lexicons of word2vec embeddings. It tells you how
close your guess is to the target word, measuring that by cosine similarity (whereas Wordle measures
it by how many of the letters match). It takes a lot of guesses and the ability to think of lots of words!
Try it if you like, perhaps starting with Semantle Junior, which uses easier target words.

(b) Now extend your program so that it can also be run as follows:

python3 findsim.py words-50.txt king --minus man --plus woman

This should find the 10 words most similar to the vector king− man+ woman, other than those
three words themselves.
(The old command python3 findsim.py words-50.txt seattle should still work. Note
that it is equivalent to python3 findsim.py words-50.txt seattle --minus seattle
--plus seattle, and you may want to implement it that way.)
You can regard the above command as completing the analogy

man : woman :: king : ?

Try some more analogies, this time using the 200-dimensional vectors. For example:

king - man + woman
paris - france + uk
hitler - germany + italy
child - goose + geese
goes - eats + ate
car - road + air

Come up with some analogy questions of your own. Which ones work well or poorly? What�12

happens to the results if you use (say) d = 10 instead of d = 200?
Why does this work at all? Be sure to discuss the role of the vector king− man before woman is�13

added. What does it tell you about the vectors that they can solve analogies?
Submit your extended findsim program on Gradescope.�14

Data structures, PyTorch, and embeddings. Critical to data-driven methods in NLP is writing
efficient code to handle large amounts of data. Neural networks moved to the center of the field around
2015. While neural nets were popular in AI in the 1960’s and again in the late 1980’s (your prof even

9

https://semantle.com
https://www.nytimes.com/games/wordle/index.html
https://semantle.com/junior


did his undergrad thesis in this area), a third wave of interest grew out of impressive results that
started arriving around 2006, and neural nets now seem to be here to stay. The availability of massive
training data and parallel hardware—plus a bag of contemporary tricks for getting neural networks to
learn—lets us perform computational feats that would have been impossible even a decade ago.

Excellent software frameworks have arisen for building and training neural networks. In this class,
we’ll introduce you to one called PyTorch. PyTorch is fundamentally a library for fast, space-efficient
vectorized math in Python.9 It’s similar to the widespread math library NumPy in that regard, but
PyTorch provides three advantages:

• PyTorch’s mathematical objects track the computations applied to them, explicitly storing a com-
putation graph and tracking the gradients of the computations. This is used for backpropagation,
a key algorithm that tells us how to gradually improve the parameters of a neural network.

• PyTorch provides useful classes and functions built on top of its mathematical objects. These
make it easy to build common kinds of neural networks and train them using standard algorithms.

• PyTorch’s libraries make good use of parallel hardware. Modern CPUs provide vectorized op-
erations. Better yet, if your computer has a GPU, then PyTorch can use it for incredibly fast
parallel computation. (Our autograders don’t have GPUs, so we won’t turn to this for our class.)

Some of these strengths will come into play in the next homework. The current homework is just a
PyTorch warmup, where you’ll install the libraries and try out a little vectorized computation.

In order to find the words most similar to your query word (e.g. seattle), you’ll have to compute
the similarity between its embedding (a vector) and the other words’ embeddings. One approach is to
do this with a loop, comparing to each other word separately. But there’s a better, faster way. We can
batch the computations together, letting us compute the similarities in parallel.

Working out the details of this will be part of your task in this homework, but we’ll provide some
guidance here. Instead of making a Python dictionary that maps word types to vectors, you’ll want to
store all of the vectors together in a single matrix (see footnote 7). Each row of the matrix represents
the embedding of a different word type. Packing all these vectors into a single matrix often allows
you to run a computation in parallel over the whole vocabulary by using a single efficient PyTorch
matrix operation. Modern hardware is designed for this setting, where it can easily load a big block
of the matrix into the memory cache or GPU and run operations on its elements in parallel.

If you have a vocabulary of size V , the matrix will have V rows. You’ll need to “integerize” the word
types, identifying them with the integers 0, 1, 2, . . . , V − 1. For example, mapping seattle to its
integer—suppose it’s 57—will let you look up its embedding in row 57. If you find that row 99 is the
most similar row, you’ll have to map the integer 99 back to its spelling in order to print out the answer.
We’ve provided an Integerizer class to maintain this two-way mapping.

Integerization is an example of the flyweight design pattern. Unlike strings, integers are small fixed-
size objects: you can store a sentence compactly as an array of integers, and comparing two integers
is much faster than comparing two strings. If we represent the word type seattle as the integer 57,
we can use 57 as an index into arrays, vectors, and matrices that store various information about that
word type, such as its spelling, embedding, pronunciation, syntactic category, meaning, corpus count,

9A “vectorized” sin function means that if ~v = (v0, . . . , v49) ∈ R50, then sin(~v) returns (sin(v0), . . . , sin(v49)) ∈ R50.
PyTorch’s implementation of vectorized sin is far faster than an equivalent Python loop, since Python is a slow interpreted language.

10

https://www.pngitem.com/middle/iJohoJR_calculator-clipart-abacus-abacus-clip-art-hd-png/
https://en.wikipedia.org/wiki/Flyweight_pattern


and token positions.10 Of course, the number 57 is arbitrary: as XKCD points out, its numeric value
tells you nothing about the word.

In this homework, a lexicon will only contain one instance of seattle. But more generally, a lexicon
could include multiple word types that happen to have the same spelling. Chief Seattle was a Native
American leader; the City of Seattle was named after him; and the Seattle Mariners baseball team
was named after the city. All three can be referred to as seattle, but arguably they are different
word types that should have different embeddings. This is naturally allowed if distinct word types are
represented by distinct integers (or pointers) with associated data, rather than by distinct strings.

9. Extra credit: Some politicians seem to speak in circles. Instead of uttering strings with a start and an
end, they blow round linguistic objects out of their mouths, like smoke rings:

voters

m
y

th
at

thinkI

opponent claims

sa
id

I wondered, how would we build a language model to describe the probability of such objects? Well,
problems like this show up in computer vision, since images don’t have a natural start and end either.
Consider the similar problem of modeling the colors of these 4 pixels, using bigrams of adjacent pixel
colors:

A B

CD

A well-known computer vision paper by J. Besag (1974) proposed something like this: approximate
p(A,B,C,D) by a product p(A | B) · p(B | C) · p(C | D) · p(D | A).

So here’s the question. Can this approximation be justified by using the chain rule plus backoff? If,15

so, show how. If not, fix it as best you can. Discuss.

10The object-oriented alternative would be to represent the word type not as an integer, but as a pointer to a Word object that
stores all the information about seattle. This keeps all the information about a word in one place. But for many computations,
it makes more efficient use of the hardware to store all the embeddings consecutively in one region of memory, all the spellings in
another region, etc.

11

https://xkcd.com/2610/


Figure 1: RUBE GOLDBERG GETS HIS THINK-TANK WORKING AND EVOLVES THE SIMPLIFIED PENCIL-
SHARPENER. Open window (A) and fly kite (B). String (C) lifts small door (D) allowing moths (E) to escape and
eat red flannel shirt (F). As weight of shirt becomes less, shoe (G) steps on switch (H) which heats electric iron (I)
and burns hole in pants (J). Smoke (K) enters hole in tree (L), smoking out opossum (M) which jumps into basket
(N), pulling rope (O) and lifting cage (P), allowing woodpecker (Q) to chew wood from pencil (R), exposing lead.
Emergency knife (S) is always handy in case opossum or the woodpecker gets sick and can’t work.

10. Extra credit: This problem is supposed to convince you that logical reasoning is is just a special case
of probabilistic reasoning.11 That is, probability theory allows you to draw a conclusion from some
premises like “If there’s no nail, then there’s definitely no shoe.”

(a) p(¬shoe | ¬nail) = 1 For want of a nail the shoe was lost,
(b) p(¬horse | ¬shoe) = 1 For want of a shoe the horse was lost,
(c) p(¬race | ¬horse) = 1 For want of a horse the race was lost,
(d) p(¬fortune | ¬race) = 1 For want of a race the fortune was lost,
(e) p(¬fortune | ¬nail) = 1 And all for the want of a horseshoe nail.

Show carefully that (e) follows from (a)–(d). Hint: Consider,16

p(¬fortune,¬race,¬horse,¬shoe | ¬nail),

as well as the “chain rule” and questions 1a, 1b and 1k.

Note: The ¬ symbol denotes the boolean operator NOT.

Note: Be glad I didn’t ask you to prove the correct operation of Figure 1!

11An excellent and wide-ranging book developing this theme is Probability Theory: The Logic of Science, by the influential
statistician E. T. Jaynes. See http://bayes.wustl.edu/ for more readings.

12

http://bayes.wustl.edu/

