
601.465/665 — Natural Language Processing
Homework 3: Smoothed Language Modeling

Prof. Jason Eisner — Fall 2023
Due date: Friday 6 October, 11 pm

Probabilistic models are an indispensable part of modern NLP. This homework will try to convince
you that even simplistic and linguistically stupid models like n-gram models can be useful, provided their
parameters are estimated carefully. See section A in the attached reading handout.

You now know enough about probability to build and use some trigram language models. You will ex-
periment with different types of smoothing, including using PyTorch to train a log-linear model. You will
also get some experience in running corpus experiments over training, development, and test sets. This is
the only homework in the course to focus on that.

Homework goals: After completing this homework, you should be comfortable with
• estimating conditional probabilities from supervised data

– direct estimation of probabilities (with simple or backoff smoothing)
– conditional log-linear modeling (including feature engineering using external information such

as lexicons)
– subtleties of language modeling (tokenization, EOS, OOV, OOL)
– subtleties of training (logarithms, autodiff, SGD, regularization)

• evaluating language models via sampling, perplexity, and multiple tasks, using a train/dev/test split
• tuning hyperparameters by hand to improve a formal evaluation metric
• implementing these methods cleanly in Python

– partitioning the work sensibly into different classes, files, and scripts that play nicely together
– using basic facilities of PyTorch
– using remote GPUs to speed up your computation (if you choose)

Collaboration: You may work in teams of up to 2 on this homework. That is, if you choose, you may
collaborate with 1 partner from the class, handing in a single homework with multiple names on it. You are
expected to do the work together, not divide it up: if you didn’t work on a question, you don’t deserve credit
for it! Your solutions should emerge from collaborative real-time discussions with both of you present. Your
collaborator may not be your discussion partner from HW2. Make new friends! :-)

Reading: Read the long handout attached to the end of this homework!

Materials: Python starter code and data are at http://cs.jhu.edu/˜jason/465/hw-lm/. You’ve
already used some of the data (the lexicons) in the previous homework.1

1If you lack the bandwidth to download all of the data files to your own machine, just download a few. Once your code is
working, you can upload your code to the ugrad filesystem and run it on one of the ugrad machines, where the same files are
available in the directory /usr/local/data/cs465/hw-lm/. Please don’t make additional copies of the data on the ugrad
filesystem, as this would waste space; you can use symbolic links instead.

http://cs.jhu.edu/~jason/465/hw-lm/

On getting programming help: Use Python, building on the provided starter code. Since this is an upper-
level NLP class, not a programming class, I don’t want you wasting much time on low-level issues like
syntax, type annotations, and I/O. Also, I don’t want you to get stuck on understanding the starter code. By
all means seek help from someone who knows the language better! Your responsibility is the NLP stuff—
you do have to design, write, and debug the interesting code and data structures on your own. But I don’t
consider it cheating if another hacker (or a CA) helps you with Python issues. Those aren’t InterestingTM.

How to hand in your written work: Via Gradescope as before. Besides the comments you embed in
your source code, put all other notes, documentation, and answers to questions in a PDF file.

The� symbol in the left margin of this handout marks items that should be answered in your PDF. In
your PDF, you should refer to question numbers like 3(a). (Don’t refer to the blue� numbers; they are just
for your convenience and may change if this homework handout is updated.)

How to test and hand in your code and models:

• Your code and your trained models will need to be zipped and uploaded separately on Gradescope.�1

We will post more detailed instructions on Piazza.

• For the parts where we tell you exactly what to do, an autograder will check that you got it right.

• For the open-ended challenge (question 7(d)), an autograder will run your system and score its accu-
racy on test and grading-test data (see reading section C.1).

– You should get a decent grade if you do at least as well as the “baseline” system provided by the
TAs. Better systems will get higher grades.

– The test results are intended to help you evaluate your own system. Grades will be based on
separate grading-test data that you have never seen, simulating what happens when you
deploy your tested system in the real world.

1 Perplexities and corpora

Your starting point is the sample programs build vocab.py build lm.py fileprob.py, in
the code directory. The INSTRUCTIONS file in the same directory explains how to get the programs run-
ning (e.g., exactly what to type). Those instructions will let you automatically compute the log2-probability
of three sample files (data/speech/{sample1,sample2,sample3}). Try it!

More precisely, for each file, fileprob will give you the total log2-probability of all token sequences
in the file. Each line of the file is considered to be a separate token sequence (sentence or document) that is
implicitly preceded by BOS and followed by EOS.

Next, you should spend a little while studying those sample programs yourself, and browsing around the
data/ directory to see what’s there. See reading sections B and C for more information.

If a language model is built from the data/speech/switchboard-small corpus, using add-0.01�2

smoothing and a vocab threshold of 3, what is the model’s perplexity per word on each of the three sample
files?

What happens to the log2-probabilities and perplexities if you train instead on the larger switchboard�3

corpus? Why?

2

https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html

2 Implementing a generic text classifier

Modify fileprob to obtain a new program textcat that does text categorization via Bayes’ Theorem.
The two programs both use the same probs module to get the language model probabilities. So when

you extend probs.pywith new smoothing methods in question 5 below, they will immediately be available
from both programs.

textcat should be run from the command line almost exactly like fileprob. However,

• it needs to take two language models, one for each category of text
• it needs to specify the prior probability of the first category

Of course, you can imagine extending this to do n-way classification, with n language models each
trained on a different corpus, and prior probabilities for each of the n categories. But in this homework, we
will stick with binary classification.

Again, consult INSTRUCTIONS for some tips on working with the starter code.
You’ll train models of genuine emails (gen) and spam emails (spam). You (and the graders) should

then be able to use your program for classification like this:

./textcat.py gen.model spam.model 0.7 foo.txt bar.txt baz.txt

which uses the two trained models to classify the listed files. Its printed output should label each file with a
training corpus name (in this case gen or spam):

spam.model foo.txt
spam.model bar.txt
gen.model baz.txt
1 files were more probably gen.model (33.33%)
2 files were more probably spam.model (66.67%)

In other words, your program classifies each file by printing its maximum a posteriori class (the file name
of the model that more probably generated it). Then it prints a summary of all the files.

The number 0.7 on the above command line specifies your prior probability that a test file will be gen.
Thus, 0.3 is your prior probability that it will be spam. See reading section C.2.

Please use the exact output formats above. If you would like to print any additional output lines for your
own use, please direct it to STDERR, using the logging facility as illustrated in the starter code.

As reading section D.3 explains, both language models that you provide to textcat should use the
same finite vocabulary. Specifically, please construct this vocabulary to consist of words that appeared ≥ 3
times in the union of the gen and spam training corpora, plus OOV and EOS.2

To check your work: When we trained on the smallest training sets with λ = 1 and then classified all
270 dev files with a prior p(gen) = 0.7, just as in question 3(a) below, we classified 23 of them as spam.

2Of course, OOV and EOS may appear in the training corpora too—in fact, EOS must appear. But they might appear < 3 times.
build vocab is careful to include them in the vocabulary anyway. This is important. If OOV weren’t in the vocabulary, we
wouldn’t be able to handle OOV words. And if EOS weren’t in the vocabulary (and hence was treated as just part of the OOV
category), then we couldn’t sample from the language model—we wouldn’t know when we had generated EOS and could end the
sentence!

3

https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html

3 Evaluating a text classifier

In this question, you will evaluate your textcat program on the problem of spam detection. The datasets
are under data/gen spam. Look at the README file there, and then examine the training data to get a
sense for how the genuine emails differ from the spam emails. (Don’t peek at the test data!)

Using add-1 smoothing, run textcat on all the dev data for your chosen task. That is, train your
language models on the gen and spam training sets, and then classify the files gen spam/dev/gen/*
and gen spam/dev/spam/*. Use 0.7 as your prior probability of gen.

(a) From the results, you should be able to compute a total error rate for the technique. That is, what�4

percentage of the dev files were classified incorrectly?

(b) Extra credit: We will focus on the spam detection problem in this assignment. But lectures in class,5

focused on the language identification task, using a character-trigram model instead of a word-trigram
model. Formally, these settings are very similar. If you’re curious, you can try out the language ID set-
ting as well, using the data in data/english spanish. This should be quite fast since the corpora
and vocabulary are small. Train your language models on the en.1K and sp.1K datasets, then clas-
sify the files english spanish/dev/english/*/* and english spanish/dev/spanish/*/*.
Use 0.7 as your prior probability of English. All of these files have been tokenized into characters for
you, so that you can use the same code as before.3

What percentage of the dev files were classified incorrectly?

(c) How small do you have to make the prior probability of gen before textcat classifies all the dev�6

files as spam?

(d) Now try add-λ smoothing for λ 6= 1. First, use fileprob to experiment by hand with different
values of λ > 0. (You’ll be asked to discuss in question 4(b) why λ = 0 probably won’t work well.)

What is the minimum cross-entropy per token that you can achieve on the gen dev files (when esti-�7

mating a model from gen training files with add-λ smoothing)? How about for spam?

In principle, you should try a lot of λ values to find the one that does best on dev data.4 However, for
purposes of this assignment, it’s okay to try just λ ∈ {5, 0.5, 0.05, 0.005, 0.0005}.

(e) In principle, you should apply different amounts of smoothing to the gen and spam models. For
example, if gen’s dev set has a higher rate of novel words than spam’s dev set, then you’d want to
smooth gen more.

However, for simplicity in this homework, let’s smooth both models in exactly the same way. So what�8

is the minimum cross-entropy per token that you can achieve on all development files together, if both
models are smoothed with the same λ ∈ {5, 0.5, 0.05, 0.005, 0.0005}?
(As in the previous question, you should be evaluating the gen model on gen development files only,
and the spam model on spam development files only, to make sure that they are good models of

3Properly speaking, these sequences are not complete sentences. They are substrings plucked from the middle of documents, so
they don’t really have BOS or EOS. Ideally, you would change the iterator over trigrams to reflect that: if you observe the sequence
w1w2w3w4w5, the only trigram probabilities that you can compute or train are p(w3 | w1w2), p(w4 | w2w3), and p(w5 | w3w4),
because you don’t know what was before w1 (not necessarily BOS) or after w5 (not necessarily EOS).

4Perhaps using the charming little golden-section search algorithm, a lovely approach when you only have one hyperparameter
(λ). When you have multiple hyperparameters, it is typical to use grid search, Nelder-Mead, or a randomized search algorithm.

4

https://en.wikipedia.org/wiki/Golden-section_search
https://en.wikipedia.org/wiki/Hyperparameter_optimization

their intended categories. To measure the overall cross-entropy per token for a given λ, find the total
number of bits that it takes to predict all of the development files from their respective models. This
means running fileprob twice: once for the gen data and once for the spam data. Add the two
results, and then divide by the total number of tokens in all of the development files.)

What value of λ gave you this minimum cross-entropy? Call this λ∗. (See reading section E for why�9

you are using cross-entropy to select λ∗.)

(f) Each of the dev files has a length. The length in words is embedded in the filename (as the first
number).

Come up with some way to quantify or graph the relation (on dev data) between file length and
the classification accuracy of add-λ∗. Some tips about graphing are in http://cs.jhu.edu/

˜jason/465/hw-lm/graphing.html. You may also be interested in correlations.

Write up your results.�10

(g) Extra credit: If you are also experimenting with language ID, similarly report on the relation (on dev,11

data) between file length and classification accuracy. The length in words is again embedded in the
filename (as the first number), and also appears in the directory name.

(h) Now try increasing the amount of training data. (Keep using add-λ∗, for simplicity.) Compute the
overall error rate on dev data for training sets of different sizes: gen vs. spam; gen-times2 vs.
spam-times2 (twice as much training data); and similarly for . . .-times4 and . . .-times8.

Graph the training size versus classification accuracy. This is sometimes called a “learning curve.”�12

Do you expect accuracy to approach 100% as training size→∞?

(i) Extra credit: If you’re also experimenting with language ID, you can do the same exercise there if,13

you’re still curious. We’ve provided training corpora of 6 sizes: en.1K vs. sp.1K (1000 characters
each); en.2K vs. sp.2K (2000 characters each); and similarly for 5K, 10K, 20K, and 50K.

4 Analysis

Reading section F gives an overview of several smoothing techniques beyond add-λ.

(a) At the end of question 2 and in reading section D.4, the vocabulary size V was carefully defined to
include OOV. So if you saw 19,999 different word types in training data, then V =20,000. What�14

would go wrong with the UNIFORM estimate if you mistakenly took V =19,999? What would go
wrong with the add-λ estimate?

(b) What would go wrong with the add-λ estimate if we set λ = 0? You can even try it! (Remark: This�15

gives an unsmoothed “relative frequency estimate.” It is commonly called the maximum-likelihood
estimate, because it maximizes the probability of the training corpus.)

(c) Let’s see on paper how backoff behaves with novel trigrams. If c(xyz) = c(xyz′) = 0, then does�16

it follow that p̂(z | xy) = p̂(z′ | xy) when those probabilities are estimated by smoothing? In your
answer, work out and state the value of p̂(z | xy) in this case. How do these answers change if
c(xyz) = c(xyz′) = 1?

(d) In add-λ smoothing with backoff, how does increasing λ affect the probability estimates? (Think�17

about your answer to the previous question.)

5

http://cs.jhu.edu/~jason/465/hw-lm/graphing.html
http://cs.jhu.edu/~jason/465/hw-lm/graphing.html

5 Backoff smoothing

Implement add-λ smoothing with backoff, as described in reading section F.3. This should be just a few
lines of code. You will only need to understand how to look up counts in the hash tables. Just study how the
existing methods do it.

Hint: So p̂(z | xy) should back off to p̂(z | y), which should back off to p̂(z), which backs off to
. . . what?? Figure it out! Think back to the Tablish language from recitation.

You can test out the method as you see fit, including experimenting with different λ values.
Note: Feel free to describe your findings in your writeup, but there is nothing to hand in here other than

your code. To check your code, the autograder will run it on small training and testing files with some λ.

6 Sampling from language models

So far, we have used our language models to compute the probability of given word sequences. Each
language model represents a probability distribution over word sequences.

But because these are well-defined probabilistic models, we can also sample from the distributions they
represent. As we saw in class, we sample random text by rolling a sequence of weighted dice whose sides
are words. This is a good way to see what the language model does and doesn’t know about English.

This is just like Homework 1, where your PCFG allowed you both to sample a new sentence (randsent)
and to compute the probability of a given sentence (parse). You can also do both of these things with an
n-gram model, which is a different generative model of text.5

Implement a generic sampling method that will work with any of our trained language models. When�18

called, the function should condition on BOS and produce new tokens until it reaches EOS. These tokens
are drawn from the smoothed model distribution according to their probabilities. This should remind you of
randsent in Homework 1. Note that OOV will sometimes be drawn, since it will have positive probability.

Write a separate script based on fileprob that will sample k sentences from a given language model,
using the sampling method you described above. (Especially because of UNIFORM, impose a maximum
length limit M , as in the PCFG homework. Sequences longer than your configurable limit should be trun-
cated with “...”.)

We should be able to call your script like this:

./trigram_randsent.py model_file 10 --max_length 20

Choose two trained models that seem to have noticeably different behavior. (They might use different�19

smoothing methods, or different hyperparameters.) Give a sample of 10 sentences from each of the models.
Discuss the differences you see and why they arise.

5Actually, not so different: an n-gram model turns out to be a special case of a PCFG. Can you show that this is true for n = 2?

6

7 Implementing a log-linear model and training it with backpropagation

(a) Add support for a log-linear trigram model. This is another smoothed trigram model, but the smooth-
ing comes from several feature functions instead of modified or backed-off counts. As usual, see
INSTRUCTIONS for details about working with the starter code.

Your code will need to compute p̂(z | xy) using the specific features in reading section F.4.1. The
parameters ~θ will be stored in X and Y matrices. You can use random or zero parameters at first, just
to get the code working.

Remember that you need to look up an embedding for each word, falling back to the OOL embedding
if that word is not in the lexicon. In particular, OOV will fall back to OOL.

You can use embeddings of your choice from the lexicons directory. (See the README file in that
directory.) These word embeddings were derived from Wikipedia, a large diverse corpus with lots of
useful evidence about the usage of many English words.

Make sure to use character embeddings if you try english/spanish. For gen/spam, you should
use word embeddings; words-gs-only-* is recommended based on our experiments.

(b) Implement a function that uses stochastic gradient descent to find theX and Y matrices in equation (7)
that minimize−F (~θ), which is theL2-regularized objective function described in reading section H.1.
(This is equivalent to maximizing F (~θ).)

If you initialize the matrices to 0 (see reading section I.5) (so ~θ = ~0), then you are initializing to a
uniform distribution. So it is a good sanity check that training for 0 epochs (--epochs 0) in fact
gives the same results as just using a uniform distribution (--smoother uniform).

You may prefer to try log-linear modeling first on language ID (data/english spanish), since
training a log-linear model takes significantly more time than add-λ smoothing. For example, here’s
what you should get if you train a log-linear language model for 10 epochs on en.1K, with a vocabu-
lary of size 30 derived from en.1K with threshold 3, the features described in reading section F.4, the
character embeddings of dimension d = 10 (chars-10.txt), L2 regularization with coefficient
C = 1, and the torch.optim.SGD optimizer with its default arguments (see reading section I.7.2)
and learning rate γ = 0.01:

Training from corpus en.1K
epoch 1: F = -3.2130978107452393
epoch 2: F = -3.0860249996185303
epoch 3: F = -3.037041425704956

... [you should print these epochs too]
epoch 10: F = -2.946611166000366
Finished training on 1027 tokens

You may find it helpful to speed this up by using a GPU as explained in reading section K. Learning
how to do that will come in handy in question 7(d) below and again in Homework 6.

(c) You should now be able to measure cross-entropies and text categorization error rates under your
fancy new language model! textcat should work as before. Just construct two log-linear models
over a shared vocabulary, and then compare the probabilities of a new document (dev or test) under
these models.

For the autograder’s sake, when log linear is specified on the command line, please train for E =
10 epochs, use the exact hyperparameters suggested in reading section I.5, use the torch.optim.SGD

7

https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html

optimizer (reading section I.7.2), and print output in the format above (this is printing F (~θ) rather
than Fi(~θ)). Your training numbers should be close to what we got, although we won’t expect them
to match perfectly.

Report cross-entropy and text categorization accuracy on gen spam withC = 1, but also experiment�20

with other values of C > 0, including a small value such as C = 0.05. Let C∗ be the best value you
find. Using C = C∗, play with different embedding dimensions and report the results. How and
when did you use the training, development, and test data? What did you find? How do your results
compare to add-λ backoff smoothing?

(d) Now you get to have some fun! Add some new features to the log-linear model and report the effect�21

on its performance. In fact, this may be necessary to beat the simpler add-λ methods. Some possible
features are suggested in reading section J. You should make at least one non-trivial improvement;
you can do more for extra credit, including varying hyperparameters and training protocols (reading
sections I.5 and I.7).

A good way to devise features is to try sampling sentences from the basic log-linear model (using
your sample method from question 6). What’s wrong with these sentences? Specifically, what’s
wrong with the trigrams, since that’s all that you can fix within the limits of a trigram model? Are
there features that you think are too frequent, or not frequent enough? If so, try adding these features,
and then the trained model should get them to occur at the right rate. (Remember from the log-linear
visualization that the predictions of a log-linear model, if it was trained without regularization, will
have the same features on average as actual words in the training corpus.)

For this question, you can additionally try changing the optimization method (see reading section I.7)
and the hyperparameters in search of better results.

Your improved method should be selected with the command-line argument log linear improved
(in place of add lambda, log linear, etc.). You will submit your code and your trained model
to Gradescope for autograding.

You are free to submit many versions of your system—with different implementations of log linear improved.
All will show up on the leaderboard, with comments, so that you and your classmates can see what
works well. (You should submit only log linear improved models to the leaderboard, not the
other kinds of model, even if those do better.) For final grading, the autograder will take the submitted
version of your system that worked best on the released test data, and then evaluate its performance
on grading-test data.

8

8 Speech recognition

Finally, we turn briefly to speech recognition. In this task, instead of choosing the best model for a given
string, you will choose the best string for a given model.

The data are in the speech subdirectory, drawn from the Switchboard corpus (see the README file
there). As usual, it is divided into training, development, and test sets. Here is a sample file (dev/easy/easy025):
8 i found that to be %hesitation very helpful
0.375 -3524.81656881726 8 i found that the uh it’s very helpful
0.250 -3517.43670278477 9 i i found that to be a very helpful
0.125 -3517.19721540798 8 i found that to be a very helpful
0.375 -3524.07213817617 9 oh i found out to be a very helpful
0.375 -3521.50317920669 9 i i’ve found out to be a very helpful
0.375 -3525.89570470785 9 but i found out to be a very helpful
0.250 -3515.75259677371 8 i’ve found that to be a very helpful
0.125 -3517.19721540798 8 i found that to be a very helpful
0.500 -3513.58278343221 7 i’ve found that’s be a very helpful

Each file has 10 lines and represents a single audio-recorded utterance u. The first line of the file is the
correct transcription, preceded by its length in words. The remaining 9 lines are some of the possible tran-
scriptions that were considered by a speech recognition system—including the one that the system actually
chose to output. Let’s reason about how to choose among the 9 candidates.

Consider the last line of the sample file. The line shows a 7-word transcription ~w surrounded by sentence
delimiters <s>. . .</s> and preceded by its length, namely 7. The number −3513.58 was the speech
recognizer’s estimate of log2 p(u | ~w): that is, if someone really were trying to say ~w, what is the log-
probability that it would have come out of their mouth sounding like u?6 Finally, 0.500 = 4

8 is the word
error rate of this transcription, which had 4 errors against the 8-word true transcription on the first line of
the file; this will be used in question 9 below.7

We won’t actually make you write any code here. But according to Bayes’ Theorem, how should you�22

choose among the 9 candidates? That is, what quantity are you trying to maximize, and how should you
compute it?

(Hint: You want to pick a candidate that both looks like English and looks like the audio utterance u.
Your trigram model tells you about the former, and −3513.58 is an estimate of the latter.)

6Actually, the real estimate was 15 times as large. Noisy-channel speech recognizers are really rather bad at estimating log p(u |
~w), so they all use a horrible hack of dividing this value by about 15 to prevent it from influencing the choice of transcription too
much! But for the sake of this question, just pretend that no hack was necessary and−3513.58 was the actual value of log2 p(u | ~w)
as stated above.

7The word error rate of each transcription was computed for you by a scoring program, or “scorer.” The correct transcription
on the first line sometimes contains special notation that the scorer paid attention to. For example, %hesitation on the first line
told the scorer to count either uh or um as correct.

9

9 Extra credit: Language modeling for speech recognition

Actually implement the speech recognition selection method in question 8, using one of the language models
you’ve already built. Use the switchboard corpus for training. You may experiment on the development
set before getting your final results from the test set. When experimenting, you may want to start out with
training on switchboard-small, just for speed.

(a) Modify fileprob to obtain a new program speechrec that chooses this best candidate. As usual,
see INSTRUCTIONS for details.

The program should look at each utterance file listed on the command line, choose one of the 9 tran-
scriptions according to Bayes’ Theorem, and report the word error rate of that transcription (as given
in the first column). Finally, it should summarize the overall word error rate over all the utterances—
the total number of errors divided by the total number of words in the correct transcriptions.

Of course, the program is not allowed to cheat: when choosing the transcription, it must ignore each
file’s first row and first column!

Sample input (please allow this format):

./speechrec switchboard_whatever.model easy025 easy034

Sample output (please use this format—but you are not required to get the same numbers):

0.125 easy025
0.037 easy034
0.057 OVERALL

Notice that the overall error rate 0.057 is not an equal average of 0.125 and 0.037; this is because
easy034 is a longer utterance and counts more heavily.

Hints about how to read the file:

• For all lines but the first, you should read a few numbers, and then as many words as the
integer told you to read (plus 2 for <s> and </s>). Alternatively, you could read the whole
line at once and break it up into an array of whitespace-delimited strings.

• For the first line, you should read the initial integer, then read the rest of the line. The rest
of the line is only there for your interest, so you can throw it away. The scorer has already
considered the first line when computing the scores that start each remaining line.
Warning: For the first line, the notational conventions are bizarre, so in this case the initial
integer does not necessarily tell you how many whitespace-delimited words are on the line.
Thus, just throw away the rest of the line! (If necessary, read and discard characters up through
the end-of-line symbol \n.)

(b) What is your program’s overall error rate on the carefully chosen utterances in test/easy? How,23

about on the random sample of utterances in test/unrestricted?

To get your answer, you need to choose a smoothing method, so pick one that seems to work well on
the development data dev/easy and dev/unrestricted. Be sure to tell us which method you,24

picked and why! What would be an unfair way to choose a smoothing method?

10

https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html

10 Extra credit: Open-vocabulary modeling

We have been assuming a finite vocabulary by replacing all unknown words with a special OOV symbol. But
an alternative is an open-vocabulary language model (reading section D.5).

Devise a sensible way to estimate the word trigram probability p(z | xy) by backing off to a letter
n-gram model of z if z is an unknown word. Also describe how you would train the letter n-gram model.

Just giving the formulas for your estimator will get you some extra credit. Implementing and testing,25

them would be even better!
Notes:

• x and/or y and/or z may be unknown; be sure you make sensible estimates of p(z | xy) in all these
cases

• be sure that
∑

z p(z | xy) = 1

11

601.465/665 — Natural Language Processing
Reading for Homework 3: Smoothed Language Modeling

Prof. Jason Eisner — Fall 2023

We don’t have a required textbook for this course. Instead, handouts like this one are the main readings.
This handout accompanies homework 3, which refers to it.

A Are n-gram models useful?

Why build n-gram models when we know they are a poor linguistic theory? Answer: A linguistic system
without statistics is often fragile, and may break when run on real data. It will also be unable to resolve
ambiguities. So our first priority is to get some numbers into the system somehow. An n-gram model is a
starting point, and may get reasonable results even though it doesn’t have any real linguistics yet.

Speech recognition. Speech recognition systems made heavy use of trigram models for decades. Alter-
native approaches that don’t look at the trigrams do worse. One can do better by building fancy language
models that combine trigrams with syntax, topic, and so on. But for a long time, you could only do a little
better—dramatic improvements over trigram models were hard to get. In the language modeling commu-
nity, a rule of thumb was that you had enough for a Ph.D. dissertation if you had managed to reduce a good
trigram model’s perplexity per word by 10% (equivalent to reducing the cross-entropy by just 0.152 bits per
word).

Machine translation. Statistical machine translation (MT) systems were originally developed in the late
1980’s and made use of trigram language models. After a quiet period, this paradigm was resurrected at the
end of the century and started getting good practical results. Statistical MT systems often included 5-gram
models trained on massive amounts of data.

Why 5-grams? Because an MT system that translates into English has to generate a new fluent sentence
of English, and 5-grams do a better job than 3-grams of memorizing common phrases and local grammatical
phenomena.

An English speech recognition system can get away without 5-grams because it is not generating a new
English sentence. It observes the spoken version of an existing English sentence, and only has to guess what
words the speaker actually said. A 3-gram model helps to choose between “flower,” “flour,” and “floor” by
using one word of context on either side. That already provides most of the value that we can get out of local
context. Going to a 5-gram model wouldn’t help too much with this choice, because it still wouldn’t look at
enough of the sentence to determine whether we’re talking about gardening (“flower”), baking (“flour”), or
cleaning (“floor”).

R-1

Smoothing. Fancy smoothing techniques developed in the 1990’s, applied to trigram models, eventually
managed to achieve up to a total 50% reduction in perplexity per English word (equivalent to a cross-entropy
reduction of 1 bit per word). A thorough review supported by careful comparative experiments can be found
in Goodman (2001).

As they noted, however, improving perplexity didn’t reliably improve the error rate of the speech recog-
nizer. In some sense, the speech recognizer only needs the language model to break ties among utterances
that sound similar. Many improvements to perplexity didn’t happen to help break these ties.

Neural language models. A line of work starting in 2000 used neural networks to produce smoothed prob-
abilities for n-gram language models. These neural networks can be thought of as log-nonlinear models—a
generalization of the log-linear models considered in reading section F.4 below. The starting point for both
is the word embeddings that were introduced on the previous homework.

Next, recurrent neural networks (RNNs) became a popular way to get beyond n-gram models. We will
touch on these methods in this course. They are not limited to a fixed-length history. They can learn to
exploit complex patterns in which the choice of next word is affected by the syntax, semantics, topic, style,
and format of the left context.

RNN-based language models were originally proposed in 1991 by the inventor of RNNs, but there seem
to be no published results on real data until 2010. In general, neural networks played little role in practical
NLP until about 2014. Around then, thanks to a series of small innovations over the preceding decade in
neural network architectures and parameter optimization, together with larger datasets and faster hardware,
neural methods in NLP started to show real gains over traditional non-neural probabilistic methods. In
particular, neural language models started to show real gains over n-gram models. However, it was noted
that cleverly smoothed 7-gram models could still do about as well as an RNN model by looking at lots of
features of the previous 6-gram (Pelemans et al. (2016)).

A new neural architecture called the Transformer, introduced in 2017, showed further empirical gains in
language modeling, halving perplexity (i.e., saving 1 bit of cross-entropy) over RNN models of comparable
size. Transformers quickly took over language modeling. We’ll look at them later.

More training data. Of course, training on larger corpora helps any method! Wikipedia maintains a
list of large language models—mostly Transformer-based—including the sizes of their training corpora. A
breakthrough model was GPT-3 (Brown et al., 2020), an enormous Transformer with 175 billion parameters,
trained on 500 billion tokens1 of (mostly) English text obtained by crawling the web. It achieved a perplexity
of 20.5 on the Penn Treebank test set and is quite remarkably good at generating and extending text passages
across a wide range of topics, styles, and formatting. Its creators showed that these abilities can be used to
help solve many other NLP tasks, because the language model has to know a lot about language, meaning,
and the real world in order to do such a good job of predicting what people are going to say next. GPT-3
formed the basis of ChatGPT.

1These tokens are actually word fragments, rather than words: see reading section D.6.

R-2

https://arxiv.org/abs/cs/0108005
https://www.aclweb.org/anthology/Q16-1024/
https://en.wikipedia.org/wiki/Large_language_model#List
https://en.wikipedia.org/wiki/Large_language_model#List
https://arxiv.org/abs/2005.14165

B Boundary symbols

Remember from the previous homework that a language model estimates the probability of any word se-
quence ~w. In a trigram model, we use the chain rule and backoff to assume that

p(~w) =

N∏
i=1

p(wi | wi−2, wi−1)

with start and end boundary symbols handled as in the previous homework.
In other words, wN = EOS (“end of sequence”), while for i < 1, wi = BOS (“beginning of sequence”).

Thus, ~w consists of N − 1 words plus an EOS symbol. Notice that we do not generate BOS but we do
condition on it (it was always there).2 Conversely, we do generate EOS but never condition on it (nothing
follows it). The boundary symbols BOS, EOS are special symbols that do not appear among w1 . . . wN−1.

In the homework that accompanies this reading, we will consider every line in a file to implicitly be
preceded by BOS and followed by EOS. A file might be a sentence, or an email message, or a text fragment.

C Datasets for Homework 3

Homework 3 will mention corpora for three tasks: spam detection, language identification, and speech
recognition. They are all at http://cs.jhu.edu/˜jason/465/hw-lm/data/. Each corpus has a
README file that you should look at.

C.1 The train/dev/test split

Each corpus has already been divided for you into training, development, and test sets, which are in sep-
arate directories. You will use collect counts on train, tune the “hyperparameters” like λ to maximize
performance on dev, and then evaluate your performance on test.

In principle, you shouldn’t look at test until you’re ready to get the final results for a system, and then
you must commit to reporting those results to avoid selective reporting. The danger of experimenting on
test to improve performance on test is that you might “overfit” to it—that is, you might find your way
to a method that seems really good, but is actually only good for that particular test set, not in general.

To be on the safe side, we will actually evaluate your system in a blind test, when we run it on new data
you’ve never seen. Your grade will therefore be determined based on a grading-test set that you don’t
have access to. So overfitting to test might give you good results on test in your writeup, but it will hurt
you on grading-test. (Just as if you tell your boss that the system works great and is ready to ship, and
then it doesn’t work for real users.)

C.2 Class ratios

In the homework, you’ll have to specify a prior probability that a file will be genuine email (rather than
spam) or English (rather than Spanish). In other words, how often do you expect the real world to produce
genuine email or English in your test data? We will ask you to guess 0.7.

Of course, your system won’t know the true fraction on test data, because it doesn’t know the true
classes—it is trying to predict them.

2Just like the ROOT symbol in a PCFG.

R-3

http://cs.jhu.edu/~jason/465/hw-lm/data/

We can try to estimate the fraction from training data, or perhaps more appropriately from dev data
(which are supposed to be “like the test data”). It happens that in dev data, 2

3 of the documents are genuine
email, and 1

2 are English. In this case, the prior probability is a parameter or hyperparameter of the model,
to be estimated from training or dev data as usual.

But if you think that test data might have a different rate of spam or Spanish than training data, then the
prior probability is not necessarily something that you should represent within the model and estimate from
training data. Instead it can be used to represent your personal guess about what you think test data will be
like.

Indeed, in the homework, you’ll use training data only to get the smoothed language models, which
define the likelihood of the different classes. This leaves you free to specify your prior probability of the
classes on the command line. This setup would let you apply the system to different test datasets about
which you have different prior beliefs—the spam-infested email account that you abandoned, versus your
new private email account that only your family knows about.

Does it seem strange to you that a guess or assumption might have a role in statistics? That is actually
central to the Bayesian view of statistics—which says that you can’t get something for nothing. Just as you
can’t get theorems without assuming axioms, you can’t get posterior probabilities without assuming prior
probabilities.

D The vocabulary

D.1 Choosing a finite vocabulary

All the smoothing methods assume a finite vocabulary, so that they can easily allocate probability to all the
words. But is this assumption justified? Aren’t there infinitely many potential words of English that might
show up in a test corpus (like xyzzy and JacrobinsteinIndustries and fruitylicious)?

Yes there are . . . so we will force the vocabulary to be finite by a standard trick. Choose some fixed,
finite vocabulary at the start. Then add one special symbol OOV that represents all other words.3 You should
regard these other words as nothing more than variant spellings of the OOV symbol.

Note that OOV stands for “out of vocabulary,” not for “out of corpus,” so OOV words may have token
count > 0 and in-vocabulary words may have count = 0.

D.2 Consequences for evaluating a model

For example, when you are considering the test sentence

i saw snuffleupagus on the tv

what you will actually compute is the probability of

i saw OOV on the tv

which is really the total probability of all sentences of the form

i saw [some out-of-vocabulary word] on the tv

3This symbol sometimes goes by the alternative name UNK, which stands for “unknown.”

R-4

Admittedly, this total probability is higher than the probability of the particular sentence involving snuffleupagus.
But in most of this homework, we only wish to compare the probability of the snuffleupagus sentence under
different models. Replacing snuffleupagus with OOV raises the sentence’s probability under all the
models at once, so the comparison is fair.4

D.3 Comparing apples to apples

We do have to make sure that if snuffleupagus is regarded as OOV by one model, then it is regarded
as OOV by all the other models, too. It’s not appropriate to compare pmodel1(i saw OOV on the tv)
with pmodel2(i saw snuffleupagus on the tv), since the former is actually the total probability
of many sentences, and so will tend to be larger.

So all the models must have the same finite vocabulary, chosen up front. In principle, this shared
vocabulary could be any list of words that you pick by any means, perhaps using some external dictionary.

Even if the context “OOV on” never appeared in the training corpus, the smoothing method is required
to give a reasonable value anyway to p(the | OOV,on), for example by backing off to p(the | on).

Similarly, the smoothing method must give a reasonable (non-zero) probability to p(OOV | i,saw).
Because we’re merging all out-of-vocabulary words into a single word OOV, we avoid having to decide how
to split this probability among them.

D.4 How to choose the vocabulary

How should you choose the vocabulary? For this homework, simply take it to be the set of word types that
appeared ≥ 3 times anywhere in training data. Then augment this set with a special OOV symbol. Let V
be the size of the resulting set (including OOV). Whenever you read a training or test word, you should
immediately convert it to OOV if it’s not in the vocabulary. This is fast to check if you store the vocabulary
in a hash set or an integerizer.

To help you understand/debug your programs, we have grafted brackets onto all out-of-vocabulary words
in one of the datasets (the speech directory, where the training data is assumed to be train/switchboard).
This lets you identify such words at a glance. In this dataset, for example, we convert uncertain to
[uncertain]—this doesn’t change its count, but does indicate that this is one of the words that your
code will convert to OOV (if your code is correct).

D.5 Open-vocabulary language modeling

The homework assumes a fixed finite vocabulary. However, an open-vocabulary language model does not
limit in advance to a finite vocabulary. Homework question 10 (extra credit) explores this possibility.

An open-vocabulary model must be able to assign positive probability to any word—that is, to any string
of letters that might ever arise. If the alphabet is finite, you could do this with a character n-gram model!

Such a model is sensitive to the spelling and length of the unknown word. Longer words will generally
receive lower probabilities, which is why it is possible for the probabilities of all unknown words to sum to
1, even though there are infinitely many of them. (Just as 1

2 + 1
4 + 1

8 + · · · = 1.)

4Homework question 10 and reading section D.6 discuss alternative approaches, which may also work better for text catego-
rization, since they look at the spellings of the unfamiliar words rather than treating them all as identical OOVs.

R-5

D.6 Alternative tokenizations

A language model is a probability distribution over sequences of tokens. But what are the tokens? We are
working with text that has been tokenized into words. That’s why our finite vocabulary is large and why
OOV tokens are nonetheless rather common in test data.

An alternative would be to tokenize into characters, as we did in the English/Spanish data. V is now
very small, but we still expect excellent coverage. For instance, with just English letters, digits, whitespace
characters, and punctuation marks, we can keep V < 100 and still handle almost all English text. Any
additional characters such as emojis, math symbols, and characters from non-English alphabets can be
treated as OOV.

Of course, we are now in the business of predicting individual characters. And now a trigram language
model only looks at the two previous characters, which is not very much context than the two previous
words. So in this case, we would want n in our n-gram model to be much larger than 3. (Or better yet, we’d
use a neural language model.)

An intermediate option is to tokenize into subwords. For example, we could use a morphological to-
kenizer that breaks the word flopping into two morphemes: the stem flop and the suffix -ing. The
language model then predicts these tokens one at a time. It might assign positive probability to the sequence
flop -ed in test data even if the word flopped had never occurred in training data.

But building a morphological tokenizer is a challenging language-specific problem—and not all un-
known words can be decomposed into known morphemes (consider person names, drug names, or mis-
spelled words).

Thus, language models in recent years have often learned a subword tokenizer. Uncommon words
are automatically split up into common word fragments—i.e., substrings that are common in the training
corpus. (See footnote 1.) Thus, the training and test data are preprocessed into sequences of “word pieces”
rather than words. In this case, flopping might be tokenized into flop -ping (or perhaps flopp
-ing), which approximates the morphological analysis above. If all single-character strings are in the
subword vocabulary, then OOV becomes unnecessary: it is possible to represent any string as a sequence of
subwords.

E Evaluation metrics (also called “evaluation loss functions”)

In this homework, you will measure your performance in two ways—which we discussed early on in class.
To measure the intrinsic predictive power of the model, you will use cross-entropy (per token). To measure
how well the model does at the extrinsic task of text categorization, you will use error rate (per document).
In both cases, smaller is better.

Error rate may be what you really care about! However, it doesn’t give a lot of information on a
small dev set. If your dev set has only 100 documents, then the error rate can only be one of the num-
bers { 0

100 ,
1

100 , . . . ,
100
100}. It can tell you if your changes helped by correcting a wrong answer. But it can’t

tell you that your changes were “moving in the right direction” by merely increasing the probability of right
answers.

In particular, for some of the tasks we are considering here, the error rate is just not very sensitive to the
smoothing hyperparameter λ: there are many λ values that will give the same integer number of errors on
dev data. That is why you will use cross-entropy to select λ on dev data: it will give you clearer guidance.

R-6

E.1 Other possible metrics

As an alternative, could you devise a continuously varying version of the error rate? Yes, because our system
doesn’t merely compute a single output class for each document.5 It constructs a probability distribution
over those classes, using Bayes’ Theorem. So we can evaluate whether that distribution puts high probability
on the correct answer.

• One option is the expected error rate. Suppose document #1 is gen. If the system thinks p(gen |
document1) = 0.49, then sadly the system will output spam, which ordinary error rate would count
as 1 error. But suppose you pretend—just for evaluation purposes—that the system chooses its output
randomly from its posterior distribution (“stochastic decoding” rather than “MAP decoding”). In
that case, it only has probability 0.51 of choosing spam, so the expected number of errors on this
document is only 0.51. Partial credit!

Notice that expected error rate gives us a lot of credit for increasing p(gen | document1) from 0.01
to 0.49, and little additional credit for increasing it to 0.51. By contrast, the actual error rate only gives
us credit for the increase from 0.49 to 0.51, since that’s where the actual system output would change.

• Another continuous error metric is the log-loss, which is the system’s expected surprisal about the cor-
rect answer on the extrinsic task. The system’s surprisal on document 1 is− log2 p(gen | document1) =
− log2 0.49 = 1.03 bits.

Both expected error rate and log-loss are averages over the documents that are used to evaluate. So
document 1 contributes 0.51 errors to the former average, and contributes 1.03 bits to the latter aver-
age.

In general, a single document contributes a number in [0, 1] to the expected error rate, but a number
in [0,∞] to the log-loss. In particular, a system that thinks that p(gen | document1) = 0 is infinitely
surprised by the correct answer (namely − log2 0 = ∞). So optimizing for log-loss would dissuade
you infinitely strongly from using this system . . . basically on the grounds that a system that is com-
pletely confident in even one wrong answer can’t possibly have the correct probability distribution.
To put it more precisely, if the dev set has size 100, then changing the system’s behavior on a single
document can change the error rate or the expected error rate by at most 1

100—after all, it’s just one
document!—whereas it can change the log-loss by an unbounded amount.

What is the relation between the log-loss and cross-entropy metrics? They are both average surprisals.6

However, they are very different:

metric what it evaluates probability used units long docs count more?

log-loss the whole classification system p(gen | document1) bits per document no
cross-entropy the gen model within the system p(document1 | gen) bits per gen token yes

E.2 Generative vs. discriminative

There is an important difference in style between these metrics.
5Unlike a decision tree classifier, or a perceptron classifier that chooses the class with the highest score.
6Technically, you could regard the log-loss as a conditional cross-entropy . . . to be precise, it’s the conditional cross-entropy

between empirical and system distributions over the output class. By contrast, the cross-entropy metric you’ll use on this homework
is the cross-entropy between empirical and system distributions over the input text. The output and the input are different random
variables, so log-loss is quite different from the cross-entropy we’ve been using to evaluate a language model!

R-7

Our cross-entropy (or perplexity) is a generative metric because it measures how likely the system would
to randomly generate the observed test data. In other words, it evaluates how well the system predicts the
test data.7

The error rate, expected error rate, and log-loss are all said to be discriminative metrics because they
only measure how well the system discriminates between correct and incorrect classes. This is more focused
on the particular task, which is good; but it considers less information from the test data. In other words, the
metric has less bias, in the sense that it is measuring what we actually care about, but it has higher variance
from test set to test set, and thus is less reliable on a small test set.

In short, a discriminative setup focuses less on explaining the input data and more on solving a particular
task—less science, more engineering. The generative vs. discriminative terminology is widely used across
NLP and ML:

evaluation (test data) We compared generative vs. discriminative evaluation methods above.

tuning (dev data) Methods for setting hyperparameters may optimize either a generative or discriminative
metric on the development data. (Normally they would use the evaluation metric, to match the actual
evaluation condition.)

training (train data) Similarly, methods for setting parameters may optimize either a generative or dis-
criminative metric on the development data. These are called generative or discriminative training
methods, respectively.

It is possible to use generative training as we are doing on this assignment (so that training gets to
consider more information from the training data) but still use discriminative methods for tuning and
evaluation (because ultimately we care about the engineering task).

modeling A generative model includes a probability distribution p(input) that accounts for the input data.
Thus, this homework uses generative models (namely language models).

A discriminative model only tries to predict output from input, possibly using p(output | input). For
example, a conditional log-linear model for text classification would be discriminative. This kind of
model does not even define p(input), so it can’t be used for generative training or evaluation.

F Smoothing techniques

Here are the smoothing techniques we’ll consider, writing p̂ for our smoothed estimate of p.

F.1 Uniform distribution

p̂(z | xy) is the same for every xyz; namely,

p̂(z | xy) = 1/V (1)

where V is the size of the vocabulary including OOV.
7In fact, a fully generative metric would require the system to fully predict the test data—not only the documents but also

their classes. That metric would be the joint log-likelihood, namely, log2
∏

i p(document i, classi) =
∑

i log2 p(document i |
classi) · p(classi). The second factor here is the prior probability of the class (e.g., gen or spam), which would also have to be
specified as part of the model.

R-8

F.2 Add-λ

Add a constant λ ≥ 0 to every trigram count c(xyz):

p̂(z | xy) = c(xyz) + λ

c(xy) + λV
(2)

where V is defined as above. (Observe that λ = 1 gives the add-one estimate. And λ = 0 gives the naive
historical estimate c(xyz)/c(xy).)

F.3 Add-λ with backoff

Suppose both z and z′ have rarely been seen in context xy. These small trigram counts are unreliable, so
we’d like to rely largely on backed-off bigram estimates to distinguish z from z′:

p̂(z | xy) = c(xyz) + λV · p̂(z | y)
c(xy) + λV

(3)

where p̂(z | y) is a backed-off bigram estimate, which is estimated recursively by a similar formula. (If
p̂(z | y) were the uniform estimate 1/V instead, this scheme would be identical to add-λ.)

So the formula for p̂(z | xy) backs off to p̂(z | y), whose formula backs off to p̂(z), whose formula
backs off to . . . what?? Figure it out!

F.4 Conditional log-linear modeling

In the previous homework, you learned how to construct log-linear models. Here’s that tutorial reading
again, but let’s restate the construction in our current notation.8

Given a trigram xyz, our model p is defined by

p(z | xy) def
=

p̃(xyz)

Z(xy)
(4)

where

p̃(xyz)
def
= exp

∑
k

θk · fk(xyz)

 = exp
(
~θ · ~f(xyz)

)
(5)

Z(xy)
def
=
∑
z

p̃(xyz) (6)

Here ~f(xyz) is the feature vector extracted from xyz, and ~θ is the model’s weight vector.
∑

z sums over the
V words in the vocabulary (including OOV) in order to ensure that you end up with a probability distribution
over this chosen vocabulary.

The resulting distribution p depends on the value of ~θ. Training on data (see reading section H below)

finds a particular estimate of ~θ (which we could call ~̂θ), which yields our smoothed distribution p̂. Stronger
regularization during training gives stronger smoothing.

8Unfortunately, the log-linear tutorial reading also used the variable names x and y, but to mean something different than they
mean in this homework. Its notation is pretty standard in machine learning.

R-9

https://www.cs.jhu.edu/~jason/tutorials/loglin/formulas.pdf

F.4.1 Bigrams and skip-bigram features from word embeddings

What features should we use in the log-linear model?
A natural idea is to use one binary feature for each specific unigram z, bigram yz, and trigram xyz (see

reading section J.3 below).
Instead, however, let’s start with the following model based on word embeddings:

p̃(xyz)
def
= exp

(
~x>X~z + ~y>Y ~z

)
(7)

where the vectors ~x, ~y, ~z are specific d-dimensional embeddings of the word types x, y, z, while X,Y are
d × d matrices. The > superscript is the matrix transposition operator, used here to transpose a column
vector to get a row vector.

This model may be a little hard to understand at first, so here’s some guidance.

What’s the role of the word embeddings? Note that the language model is still defined as a conditional
probability distribution over the vocabulary. The lexicon, which you will specify on the command line,
is merely an external resource that lets the model look up some attributes of the vocabulary words. Just
like the dictionary on your shelf, it may also list information about some words you don’t need, and it
may lack information about some words you do need. In short, the existence of a lexicon doesn’t affect
the interpretation of

∑
z in (6): that formula remains the same regardless of whether the model’s features

happen to consult a lexicon!
For OOV, or for any other type in your vocabulary that has no embedding listed in the lexicon, your

features should back off to the embedding of OOL—a special “out of lexicon” symbol that stands for “all
other words.” OOL is listed in the lexicon, just as OOV is included in the vocabulary.

Note that even if an specific out-of-vocabulary word is listed in the lexicon, you must not use that listing.9

For an out-of-vocabulary word, you are supposed to be computing probabilities like p(OOV | xy), which
is the probability of the whole OOV class—it doesn’t even mention the specific word that was replaced by
OOV. (See reading section D.2.)

Is this really a log-linear model? Now, what’s up with (7)? It’s a valid formula: you can always get
a probability distribution by defining p̂(z | xy) = 1

Z(xy) exp(any function of x, y, z that you like)! But
is (7) really a log-linear function? Yes it is! Let’s write out those d-dimensional vector-matrix-vector
multiplications more explicitly:

p̃(xyz) = exp

 d∑
j=1

d∑
m=1

xjXjmzm +

d∑
j=1

d∑
m=1

yjYjmzm

 (8)

= exp

 d∑
j=1

d∑
m=1

Xjm · (xjzm) +
d∑
j=1

d∑
m=1

Yjm · (yjzm)

 (9)

9This issue would not arise if we simply defined the vocabulary to be the set of words that appear in the lexicon. This simple
strategy is certainly sensible, but it would slow down normalization because our lexicon is quite large.

R-10

This does have the log-linear form of (5). Suppose d = 2. Then implicitly, we are using a weight vector ~θ
of length d2 + d2 = 8, defined by

〈 θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 〉
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
〈X11 , X12 , X21 , X22 , Y11 , Y12 , Y21 , Y22 〉

(10)

for a vector ~f(xyz) of 8 features

〈f1(xyz), f2(xyz), f3(xyz), f4(xyz), f5(xyz), f6(xyz), f7(xyz), f8(xyz) 〉
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

〈 x1z1, x1z2, x2z1, x2z2, y1z1, y1z2, y2z1, y2z2 〉
(11)

Remember that the optimizer’s job is to automatically manipulate some control sliders. This particular
model with d = 2 has a control panel with 8 sliders, arranged in two d×d grids (X and Y). The point is that
we can also refer to those same 8 sliders as θ1, . . . θ8 if we like. What features are these sliders (weights) be
connected to? The ones in (11): if we adopt those feature definitions, then our general log-linear formula
(5) will yield up our specific model (9) (= (7)) as a special case.

What keeps (7) log-linear is that the feature functions are pre-specified functions of xyz as shown in
equation (11). Specifically, they are determined by the word embeddings ~x, ~y, and ~z. We are not going to
learn the word embeddings or the feature functions fk—we only have to learn the weights θk.

As always, the learned weight vector ~θ is incredibly important: it determines all the probabilities in the
model.

Is this a sensible model? The feature definitions in (11) are pairwise products of embedding dimensions.
Why on earth would such features be useful? First imagine that the embedding dimensions were bits (0
or 1). Then x2z1 = 1 iff (x2 = 1 and z1 = 1), so you could think of multiplication as a kind of feature
conjunction. Multiplication has a similar conjunctive effect even when the embedding dimensions are in R.
For example, suppose z1 > 0 indicates the degree to which z is a human-like noun, while x2 > 0 indicates
the degree to which x is a verb whose direct objects are usually human.10 Then the product x2z1 will be
larger for trigrams like kiss the baby and marry the cop. So by learning a positive weight X21

(nicknamed θ3 above), the optimizer can drive p̂(baby | kiss the) higher, at the expense of probabilities
like p̂(benzene | kiss the). p̂(bunny | kiss the) might be somewhere in the middle since bunnies
are a bit human-like and thus bunny1 might be numerically somewhere between baby1 and benzene1.

Example. As an example, let’s calculate the letter trigram probability p̂(s | er). Suppose the relevant
letter embeddings and the feature weights are given by

~e =

[
−.5
1

]
, ~r =

[
0
.5

]
, ~s =

[
.5
.5

]
, X =

[
1 0
0 .5

]
, Y =

[
2 0
0 1

]
10You might wonder: What if the embedding dimensions don’t have such nice interpretations? What if z1 doesn’t represent a

single property like humanness, but rather a linear combination of such properties? That actually doesn’t make much difference.
Suppose z can be regarded asMz̃ where z̃ is a more interpretable vector of properties. (Equivalently: each zj is a linear combination
of the properties in z̃.) Then x>Xz can be expressed as (Mx̃)>X(Mỹ) = x̃>(M>XM)ỹ. So now it’s X̃ = M>XM that can
be regarded as the matrix of weights on the interpretable products. If there exists a good X̃ and M is invertible, then there exists a
good X as well, namely X = (M>)−1X̃M−1.

R-11

First, we compute the unnormalized probability.

p̃(ers) = exp

[−.5 1]

[
1 0
0 .5

][
.5
.5

]
+ [0 .5]

[
2 0
0 1

][
.5
.5

]
= exp(−.5× 1× .5 + 1× .5× .5 + 0× 2× .5 + .5× 1× .5) = exp 0.25 = 1.284

We then normalize p̃(ers).

p̂(s | er) def
=

p̃(ers)

Z(er)
=

p̃(ers)

p̃(era) + p̃(erb) + · · ·+ p̃(erz)
=

1.284

1.284 + · · ·
(12)

Speedup. The example illustrates that the denominator

Z(xy) =
∑
z′

p̃(xyz′) =
∑
z′

exp
(
~x>X~z′ + ~y>Y ~z′

)
(13)

is expensive to compute because of the summation over all z′ in the vocabulary. Fortunately, you can com-
pute x>Xz′ ∈ R simultaneously for all z′.11 The results can be found as the elements of the row vector
x>XE, where E is a d × V matrix whose columns are the embeddings of the various words z′ in the vo-
cabulary. This is easy to see, and computing this vector still requires just as many scalar multiplications
and additions as before . . . but we have now expressed the computation as a pair of vector-matrix mutiplica-
tions, (x>X)E, which you can perform using library calls in PyTorch (similarly to another matrix library,
numpy). That can be considerably faster than a Python loop over all z′. That is because the library call is
highly optimized and exploits hardware support for matrix operations (e.g., parallelism).

F.5 Other smoothing schemes

Numerous other smoothing schemes exist. In past years, for example, our course homeworks have used
Witten-Bell backoff smoothing, or Katz backoff with Good–Turing discounting.

In practical settings, the most popular n-gram smoothing scheme is something called modified Kneser–
Ney. One can also use a more principled Bayesian method based on the hierarchical Pitman–Yor process;
the resulting formulas are very close to modified Kneser–Ney.

Remember: While these techniques are effective, a really good language model would do more than just
smooth n-gram probabilities well. To predict a word sequence as accurately as a human can finish another
human’s sentence, it would go beyond the whole n-gram family to consider syntax, semantics, and topic
throughout a sentence or document. It would also use common sense and factual knowledge about the world.
Thus, language modeling remains an active area of research that uses grammars, recurrent neural networks,
and other techniques.

Indeed, it is reasonable to say that language modeling is AI-complete. That is, we can’t solve language
modeling without solving pretty much all of AI. This was essentially the point of Alan Turing’s 1950 article
“Computing Machinery and Intelligence,” in which he considered the possibility of a machine that could
sustain a deep, wide-ranging conversation. His “Turing Test” involves making you guess whether you’re

11The same trick works for y>Y z′, of course.

R-12

https://stackoverflow.com/a/21563036

conversing with a computer or a human. If you can’t tell, then maybe you should accept that the computer
is intelligent in some sense.12

(It follows that progress in language modeling might inadvertently create progress in AI. The enormous
GPT-3 model (reading section A) is already startlingly good at generating sentences that are appropriate
in context. It has no explicit representation of grammar, knowledge, or reasoning—yet by learning how to
model its training corpus, it has implicitly picked up a lot of whatever is needed to generate intelligent text.
While it is still imperfect in many ways, its creators demonstrated that we can interrogate it to get answers
to other AI problems that it was not specifically designed to solve.)

G Safe practices for working with log-probabilities

G.1 Use natural log for internal computations

In this homework, as in most of mathematics, log means loge (the log to base e, or natural log, sometimes
written ln). This is also the standard behavior of the log function in most programming languages.

With natural log, the calculus comes out nicely, thanks to the fact that d
dZ logZ = 1

Z . It’s only with
natural log that the gradient of the log-likelihood of a log-linear model can be directly expressed as observed
features minus expected features.

On the other hand, information theory conventionally talks about bits, and quantities like entropy and
cross-entropy are conventionally measured in bits. Bits are the unit of − log2 probability. A probability of
0.25 is reported “in negative-log space” as − log2 0.25 = 2 bits. Some people do report that value more
simply as− loge 0.25 = 1.386 nats. But it is more conventional to use bits as the unit of measurement. (The
term “bits” was coined in 1948 by Claude Shannon to refer to “binary digits,” and “nats” was later defined
by analogy to refer to the use of natural log instead of log base 2. The unit conversion factor is 1

log 2 ≈ 1.443
bits/nat.)

Even if you are planning to print bit values, it’s still wise to standardize on loge-probabilities for all
of your formulas, variables, and internal computations. Why? They’re just easier! If you tried to use
negative log2-probabilities throughout your computation, then whenever you called the log function or
took a derivative, you’d have to remember to convert the result. It’s too easy to make a mistake by omitting
this step or by getting it wrong. So the best practice is to do this unit conversion only when you print: at that
point convert your loge-probability from negative nats to positive bits by dividing by − log 2 ≈ −0.693.

G.2 Avoid exponentiating big numbers (crucial for gen/spam!)

Log-linear models require calling the exp function. Unfortunately, exp(710) is already too large for a 64-bit
floating-point number to represent, and will generate a runtime error (“overflow”). Conversely, exp(−746)
is too close to 0 to represent, and will simply return 0 (“underflow”).

That shouldn’t be a problem for this homework if you stick to the language ID task. If you are experi-
encing an overflow issue there, then your parameters probably became too positive or too negative as you
ran stochastic gradient descent, or because of the way you randomly initialized your model’s parameters.

But to avoid these problems elsewhere—including with the spam detection task—the standard trick is
to represent all values “in log-space.” In other words, simply store 710 and −746 rather than attempting to
exponentiate them.

12Perhaps the computer still can’t perceive and manipulate physical objects, so there are parts of AI (robotics and vision) that
it isn’t solving. But it still has to be able to talk about the physical world, and Turing’s proposal was that that being able to talk
sensibly about things should be enough to qualify as intelligent.

R-13

But how can you do arithmetic in log-space? Suppose you have two numbers p, q, which you are
representing in memory by their logs, lp and lq.

• Multiplication: You can represent pq by its log, log(pq) = log(p) + log(q) = lp + lq. That is,
multiplication corresponds to log-space addition.

• Division: You can represent p/q by its log, log(p/q) = log(p) − log(q) = lp − lq. That is, division
corresponds to log-space subtraction.

• Addition: You can represent p+q by its log. log(p+q) = log(exp(lp)+exp(lq)) = logaddexp(lp, lq).
See the discussion of logaddexp and logsumexp in the future Homework 6 handout. These are
available in PyTorch.

For training a log-linear model, you can work almost entirely in log space, representing u and Z in
memory by their logs, log u and logZ. In order to compute the expected feature vector in (18) below,
you will need to come out of log space and find p(z′ | xy) = u′/Z for each word z′. But computing
u′ and Z separately is dangerous: they might be too large or too small. Instead, rewrite p(z′ | xy) as
exp(log u′ − logZ). Since u′ ≤ Z, this is exp of a negative number, so it will never overflow. It might
underflow to 0 for some words z′, but that’s ok: it just means that p(z′ | xy) really is extremely close to 0,
and so ~f(xyz′) should make only a negligible contribution to the expected feature vector.

H Training a log-linear model

H.1 The training objective

To implement the conditional log-linear model, the main work is to train ~θ (given some training data and a
regularization coefficient C). As usual, you’ll set ~θ to maximize

F (~θ)
def
=

1

N

 N∑
i=1

log p̂(wi | wi−2 wi−1)

︸ ︷︷ ︸

log likelihood

−

C ·∑
k

θ2k

︸ ︷︷ ︸

L2 regularizer

 (14)

which is the L2-regularized log-likelihood per word token. (There are N word tokens.)
So we want ~θ to make our training corpus probable, or equivalently, to make the N events in the corpus

(including the final EOS) probable on average given their bigram contexts. At the same time, we also want
the weights in ~θ to be close to 0, other things equal (regularization).13

The regularization coefficient C ≥ 0 can be selected based on dev data.

13As explained on the previous homework, this can also be interpreted as maximizing p(~θ | ~w)—that is, choosing the most
probable ~θ given the training corpus. By Bayes’ Theorem, p(~θ | ~w) is proportional to

p(~w | ~θ)︸ ︷︷ ︸
likelihood

· p(~θ)︸︷︷︸
prior

(15)

Let’s assume an independent Gaussian prior over each θk, with variance σ2. Then if we take C = 1/2σ2, maximizing (14) is just
maximizing the log of (15). The reason we maximize the log is to avoid underflow, and because the derivatives of the log happen
to have a simple “observed− expected” form (since the log sort of cancels out the exp in the definition of p̃(xyz).)

R-14

http://cs.jhu.edu/~jason/465/hw-tag/hw-tag.pdf

H.2 Stochastic gradient descent

Fortunately, concave functions like F (~θ) in (14) are “easy” to maximize. You can implement a simple
stochastic gradient descent (SGD) method to do this optimization.

More properly, this should be called stochastic gradient ascent, since we are maximizing rather than
minimizing, but that’s just a simple change of sign. The pseudocode is given by Algorithm 1. We rewrite
the objective F (~θ) given in (14) as an average of local objectives Fi(~θ) that each predict a single word, by
moving the regularization term into the summation.

F (~θ) =
1

N

N∑
i=1

log p̂(wi | wi−2 wi−1)−
C

N
·
∑
k

θ2k

︸ ︷︷ ︸

call this Fi(~θ)

(16)

=
1

N

N∑
i=1

Fi(~θ) (17)

The gradient of this average,∇F (~θ), is therefore the average value of∇Fi(~θ).

Algorithm 1 Stochastic gradient ascent

Input: Initial stepsize γ0, initial parameter values ~θ(0), training corpus D = (w1, w2, · · · , wN), regulariza-
tion coefficient C, number of epochs E

1: procedure TRAIN

2: ~θ ← ~θ(0)

3: t← 0 . number of updates so far
4: for e : 1→ E : . do E passes over the training data, or “epochs”
5: for i : 1→ N : . loop over summands of (16)
6: γ ← γ0

1 + γ0 · 2CN · t
. current stepsize—decreases gradually

7: ~θ ← ~θ + γ · ∇Fi(~θ) . move ~θ slightly in a direction that increases Fi(~θ)
8: t← t+ 1

9: return ~θ

Discussion. On each iteration, the algorithm picks some word i and pushes ~θ in the direction ∇Fi(~θ),
which is the direction that gets the fastest increase in Fi(~θ). The updates from different i will partly cancel
one another out,14 but their average direction is∇F (~θ), so their average effect will be to improve the overall
objective F (~θ). Since we are training a log-linear model, our F (~θ) is a concave function with a single global
maximum; a theorem guarantees that the algorithm will converge to that maximum if allowed to run forever
(E =∞).

How far the algorithm pushes ~θ is controlled by γ, known as the “step size” or “learning rate.” This
starts at γ0, but needs to decrease over time in order to guarantee convergence of the algorithm. The rule in

14For example, in the training sentence eat your dinner but first eat your words, ∇F3(~θ) is trying to raise
the probability of dinner, while ∇F8(~θ) is trying to raise the probability of words (at the expense of dinner!) in the same
context.

R-15

line 6 for gradually decreasing γ works well with our specific L2-regularized objective (14).15

Note that t increases and the stepsize decreases on every pass through the inner loop. This is important
because N might be extremely large in general. Suppose you are training on the whole web—then the
stochastic gradient ascent algorithm should have essentially converged even before you finish the first epoch!
See reading section I.7 for some more thoughts about epochs.

H.3 The gradient vector

The gradient vector ∇Fi(~θ) is merely the vector of partial derivatives
(
∂Fi(~θ)
∂θ1

, ∂Fi(~θ)
∂θ2

, . . .

)
. where Fi(~θ)

was defined in (16). As you’ll recall from the previous homework, each partial derivative takes a simple and
beautiful form16

∂Fi(~θ)

∂θk
= fk(xyz)︸ ︷︷ ︸

observed value of feature fk

−
∑
z′

p̂(z′ | xy)fk(xyz′)︸ ︷︷ ︸
expected value of feature fk , according to current p̂

− 2C

N
θk︸ ︷︷ ︸

pulls θk towards 0

(18)

where x, y, z respectively denote wi−2, wi−1, wi, and the summation variable z′ in the second term ranges
over all V words in the vocabulary, including OOV. This obtains the partial derivative by summing multiples
of three values: the observed feature count in the training data, the expected feature counts ccording to the
current p̂ (which is based on the entire current ~θ, not just θk), and the current weight θk itself.

H.4 The gradient for the embedding-based model

When we use the specific model in (7), the feature weights are the entries of theX and Y matrices, as shown
in (9). The partial derivatives with respect to these weights are

∂Fi(~θ)

∂Xjm
= xjzm −

∑
z′

p̂(z′ | xy)xjz′m −
2C

N
Xjm (19)

∂Fi(~θ)

∂Yjm
= yjzm −

∑
z′

p̂(z′ | xy)yjz′m −
2C

N
Yjm (20)

where as before, we use ~x, ~y, ~z, ~z ′ to denote the embeddings of the words x, y, z, z′. Thus, the update to ~θ
(Algorithm 1 line 7) is

(∀j,m = 1, 2, . . . d) Xjm ← Xjm + γ · ∂Fi(
~θ)

∂Xjm
(21)

(∀j,m = 1, 2, . . . d) Yjm ← Yjm + γ · ∂Fi(
~θ)

∂Yjm
(22)

15It is based on the discussion in section 5.2 of Bottou (2012), “Stochastic gradient descent tricks,” who has this objective as
equation (10). You should read that paper in full if you want to use SGD “for real” on your own problems.

16This formula shows the partial derivative with respect to θk only. If you prefer to think of computing the whole gradient vector,
for all k at once, you can equivalently write this using vector computations as

∇Fi(~θ) = ~f(xyz)−
∑
z′

p̂(z′ | xy)~f(xyz′)− 2C

N
~θ

.

R-16

http://research.microsoft.com/pubs/192769/tricks-2012.pdf

I Practical hints for stochastic gradient ascent

The magenta hyperlinks in this section may be particularly useful. Most of them link to PyTorch documen-
tation.

I.1 Use automatic differentiation

You don’t actually have to implement the gradient computations in reading sections H.3 to H.4! You could,
of course. But the backward method in PyTorch will automatically compute the vector of partial deriva-
tives for you, using a technique known as automatic differentiation by back-propagation (or simply “back-
prop”). So, you only have to implement the “forward” computation Fi(~θ) for a given example i, and Py-
Torch will be able to “work backward” and find∇Fi(~θ). This requires it to determine how small changes to
~θ would have affected Fi(~θ). See reading section I.6 below for details.

If the forward computation is efficient and correct, then the backward computation as performed by
backward will also be efficient and correct. If instead you wrote your own code to compute the gradient,
it would be easy to mess up and miss an algebraic optimization—you could end up takingO(V 2) time when
O(V) is possible. You’d also have to put in checks to make sure that you were actually computing the
gradient correctly (e.g., the “finite-difference check”). This is not necessary nowadays.

I.2 Don’t try to learn all of PyTorch

We won’t be learning the whole PyTorch framework in this class, although it’s very nicely designed. All we
need is the basics:

• rapidly manipulate tensors (multidimensional numeric arrays), just as in NumPy, Matlab, and other
scientific computing packages

• automatically compute gradients via backward

(If you’ve built neural nets in PyTorch before, for example in the Deep Learning class, then you may
have written models by extending torch.nn.Module and instantiating the forwardmethod. However,
we’re going to avoid using torch.nn. If you’re used to relying on it, check out Neural net from scratch
to see how to train a network with the PyTorch basics only. That link is the starting point for an explanation
of how torch.nn can optionally be used to streamline the code, but you don’t need that.)

I.3 Make the forward computation efficient

In general, use PyTorch’s tensor operations wherever possible. One such operation can do a lot of computa-
tion, and is much faster than doing the same work with a Python loop. Avoid Python loops!

When the vocabulary is large, the slowest part of the forward computation Fi(~θ) is computing the de-
nominatorZ(xy) for each xy that you find, because it involves computing p̃(xyz) for all z and then summing
over all of them. You can use fast PyTorch operations for this.17 With efficient coding, each epoch should
take about 1 minute on a CPU.

(Advanced remark: There are language models that eliminate the need to sum over the whole vocabulary
by predicting each word one bit at a time (Mnih and Hinton (2009)). Then you only have to predict a

17In principle, it could be helpful to “memoize” Z(xy) in a dictionary, so that if you see the same xy many times, you don’t have
to recompute Z(xy) again each time: you can just look it up. Unfortunately, you do still have to recompute Z(xy) if ~θ has changed
since the last time you computed it. Since ~θ changes often with SGD, this trick may not give a net win.

R-17

https://timvieira.github.io/blog/post/2017/04/21/how-to-test-gradient-implementations/
https://pytorch.org/tutorials/
https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html
https://pytorch.org/tutorials/beginner/nn_tutorial.html#neural-net-from-scratch-no-torch-nn
https://pytorch.org/docs/stable/torch.html
https://pdfs.semanticscholar.org/1005/645c05585c2042e3410daeed638b55e2474d.pdf

sequence of log2 V bits. Since each prediction is only over two options, the denominator in the probability
only has to sum over 2 choices instead of V choices. This is computationally faster, but predicting those
bits is a somewhat artificial task that’s hard to do accurately. Nowadays people seem to just do the V -way
prediction, ideally using a GPU to accelerate the PyTorch operations.)

I.4 Make the forward computation correct

Our probability model p(z | xy) predicts the next word z from the vocabulary. Thus, the denominator Z in
equation (6) should sum over the vocabulary of possible next words (including EOS and OOV). It should not
sum over the lexicon, which is quite different! There might be dozens of vocabulary words that are not in
the lexicon: but we still have to add them into Z, using the OOL embedding for each of them. Conversely,
there might be thousands of lexicon words that are not in the vocabulary: the model simply can’t generate
any of them, although it can generate OOV.

To enable fast computation of Z, you can precompute a matrix of embeddings of the vocabulary words
using torch.stack:

torch.stack([embedding(word) for word in self.vocab])

where embedding(word) looks up the embedding of a word in the lexicon (returning the OOL embedding
if necessary). For this to be correct, self.vocab includes EOS and OOV.

For reasons discussed in reading section G.2, you won’t want to compute p(z | xy) directly using equa-
tion (4). Instead, you’ll want to compute log p(z | xy) = log p̃(xyz) − logZ(xy), where you’d better use
logsumexp to help find logZ(xy). For example, torch.logsumexp(torch.Tensor([1,2,3]),0)
or equivalently torch.Tensor([1,2,3]).logsumexp(0) is mathematically equivalent to
log(exp(1)+exp(2)+exp(3)), but is faster and more numerically stable.18

What is the reason for the 0 argument in these expressions? It specifies which dimension of the tensor to
operate on. In the example above, we are applying logsumexp to a 1D tensor (vector), so the only possible
dimension is 0. But if A is a 2D tensor (matrix), then A.logsumexp(0) sums up each row separately,
whereas A.logsumexp(1) sums up each column separately. This may actually be useful later in the
assignment: if you try the mini-batching technique in reading section I.7.6 below, you might be computing
logZ(xy) for many different contexts xy at once.

I.5 Choose your hyperparameters carefully

The convergence speed of stochastic gradient ascent is sensitive to the initial learning rate γ0. We recom-
mend trying γ0 = 10−2 for language ID and γ0 = 10−5 for spam detection, but you can experiment.

The initial guess ~θ(0) also matters. The easiest choice is ~0 (i.e., initialize all entries of X and Y to 0),
and that will work fine in this case, although it is not recommended in general.19

18When you’re adding up thousands of terms using log(exp(1)+exp(2)+exp(3)+· · ·), the resulting logZ may be nu-
merically imprecise—and its gradient will be so imprecise that trying to follow it actually won’t be able to find good parameters
for the model!

19To see what could go wrong, imagine that we were not given the word embeddings in a file, but were learning them along with
X and Y . Such a model would be symmetric—different dimensions of the embeddings would be governed by the same equations.
As a result, if we initialized all parameters to 0, then all parameters of the same kind would have to have identical updates, and
therefore, they would continue to have identical values throughout optimization!

The standard solution is to initialize the parameters not to 0, but to random values close to 0—for example, drawn from a normal
distribution with mean 0 and small standard deviation. This “breaks the symmetry” and allows the different dimensions of the word
embeddings to specialize and play different roles.

R-18

https://pytorch.org/docs/stable/generated/torch.stack.html
https://pytorch.org/docs/stable/generated/torch.logsumexp.html

(Note that the homework asks you to use the hyperparameters recommended above when log linear
is selected (question 7(b)). This will let you and us check that your implementation is correct. However,
you may want to experiment with different settings, and you are free to use those other settings when
log linear improved is selected (see question 7(d)) to get better performance.)

I.6 Compute and apply the gradient properly

To implement line 7 of Algorithm 1, you should do something like this:

F_i = log_prob - regularizer # as defined in (16); depends on ~θ and on example i

F_i.backward() # increases ~θ.grad by the vector (∂Fi

∂θ1
, ∂Fi

∂θ2
, . . .)

The first line is the final step of the forward computation, and the second line is the backward computation.
The parameters don’t actually have to be named ~θ. For example, the probability model given by equa-

tions (4) to (7) has parameter matrices X and Y . Suppose we represent those as 2D tensors X and Y, and
then use them to help compute F_i. Then X.grad and Y.grad will be magically defined to be 2D ten-
sors of the same shapes as X and Y. The call to F_i.backward() serves to modify both of them: for
example, it will increase (X.grad)[5,2] by ∂Fi

∂X[5,2] . To make this happen, however, you need to specify
before doing the forward computation that X and Y should track their gradients: either create them with the
requires grad=True flag, or call their requires grad (true)method right after you create them.

After doing the backward computation, to complete line 7, you can update X and Y like this:

with torch.no_grad():
F += F_i # keep a running total of F over the epoch, if you like
X += gamma * X.grad # update X in the direction that will increase Fi
Y += gamma * Y.grad # update Y in the direction that will increase Fi

The no grad directive says not to track the computations in this block of code, because we don’t need the
gradient of those computations. It would be very expensive if F , X , and Y had to remember all the steps
that computed them! After all, F depends on all of the trigrams in this epoch, and the current values of X
and Y depend on all of the updates from all of the epochs so far. If you kept track of all these computations
at once, you would probably run out of memory during training. Fortunately, we only need to keep track
of the computations for the current F_i, not the total F. Once we call F_i.backward(), and take the
stochastic gradient step, we are allowed to forget how F_i was computed. This happens automatically
because on the next iteration of the loop, F_i is assigned to a new value. The old value and its attached
computation are then no longer accessible (as long as we’re not tracking the computation of F), so Python
can garbage-collect them when it gets low on memory.

Finally, remember that the backward algorithm doesn’t set the grad tensors; it increases them, adding
to whatever is already there. This is because of how the backprop algorithm works internally: it accumu-
lates an answer into grad by successive addition. Thus, you must explicitly clean up by resetting these
accumulators to 0 before the next call to backward.

X.grad.zero_()
Y.grad.zero_()

The method name zero_ ends in _ because it modifies the tensor in place; this is a PyTorch convention.

The performance of the model is then sensitive to the random initialization. A common technique is “random restarts”: train
several times, initializing randomly each time, and return the trained parameters that worked best on development data.

R-19

https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/generated/torch.Tensor.requires_grad_.html
https://pytorch.org/docs/stable/generated/torch.no_grad.html

I.7 Improve the SGD training loop

The following improvements are not required for the homework, but they might help you run faster or get
better results. You should read this section in any case. Many of these techniques will pay off even more
strongly in HW6.

I.7.1 Monitor your progress

Question 7(b) says to print the objective function (14) at the end of each epoch of Algorithm 1. You are
free to show additional information using log.info(). You might want to frequently show the objective
function, or perhaps its breakdown into log-likelihood and regularizer terms. Better yet, use the wandb
Python module to send these numbers to the Weights & Biases website where you can view them on a graph.

The objective should improve reasonably steadily; if not, your stepsize γ may be too large. You can also
show the log-likelihood on dev data; if you are improving on training data yet getting worse on dev data,
then you are overfitting to the training data, so your regularization coefficient C may be too small.

I.7.2 Manage parameter updates using a PyTorch optimizer

One annoying thing about the approach of reading section I.6 is that you have to explicitly update both X
and Y, and you have to explictly reset both X.grad and Y.grad. The more complex your model, the more
variables there are to worry about. The torch.nn module can help with this, if you like:

• keep track of all of the model parameters via torch.nn.Parameter
• update those parameters via SGD or another optimizer of your choice

This is illustrated in the starter code we provided you. EmbeddingLogLinearLanguageModel inher-
its from torch.nn.Module for this reason. When an instance of this model is created, it registers the
tensors X and Y as parameters of the model. Now all of the code in reading section I.6 can be simplified to

F_i = log_prob - regularizer # as before
(-F_i).backward() # note change of sign
optimizer.step() # adjusts the parameters (X and Y)
optimizer.zero_grad() # resets the gradient tensors (X.grad and Y.grad)

The optimizer object manages the state of an optimization algorithm such as SGD. The starter code
shows how to create a basic SGD optimizer via torch.optim.SGD. By convention, PyTorch optimizers
minimize an objective function by taking a step in the direction that will decrease the function. That is,
optimizer insists on doing stochastic gradient descent rather than ascent. So instead of maximizing
F =

∑
i Fi, we will use it to minimize −F =

∑
i(−Fi). That is why we find the gradient of -F_i above.

I.7.3 Convergent SGD

torch.optim.SGD won’t decrease the learning rate on every step. But decreasing the stepsize in an
appropriate way (as in Algorithm 1) is necessary to guarantee that the SGD optimizer eventually converges
to a local minimum.

In the special case of log-linear models, our objective function (the negative of equation (14)) happens
to be convex, so it has a unique local minimum—namely the global minimum. It’s best to use Algorithm 1
to be sure that that you converge to that. Any initial stepsize γ0 > 0 and decrease rate λ > 0 will suffice
(the choice λ = 2C

N is the one we used in reading section H.2). We have provided an implementation

R-20

http://wandb.ai
https://pytorch.org/docs/stable/optim.html

as ConvergentSGD, which you can try as an improvement on torch.optim.SGD. Using its default
arguments in the setup of question 7(b), it should achieve F = −2.9677 at the end of epoch 10.

(However, in the more general case of deep learning (see Homework 6), the simpler torch.optim.SGD
may actually be a better choice, and is widely used. The reason is that the deep learning objective function
will not be convex and will have local minima. Some of these are “bad” local minima that only work well
on the particular training dataset you used. There is some evidence that keeping a constant learning rate
will actually do better at avoiding these bad local minima (i.e., avoiding overfitting), so that the learned
parameters generalize better to test data. That is why torch.optim.SGD does not decrease the learning
rate.)

I.7.4 Deciding when to stop

In reading section H.2, you may have wondered how to choose E, the number of epochs. The homework
asks you to use a fixed number of epochs (E = 10) only to keep things simple. The more traditional SGD
approach is to continue running until the function appears to have converged “well enough.” For example,
you could stop if the average gradient over the past epoch (or the past m examples) was very small.

In machine learning, our ultimate goal is not actually to optimize the training objective, but rather to do
well on test data. Thus, a more common approach in machine learning is to compute the evaluation metric
(reading section E) on development data at the end of each epoch (or after each group of m examples).
Stop if that “dev objective” has failed to improve (say) 3 times in a row. Then you can use the parameter
vector ~θ that performed best on development data. This is known as “early stopping” because SGD may not
yet have converged to an optimum on the training objective. Early stopping can be an effective regularizer
(especially when C is too small) since it prevents overfitting to the training data. In effect, early stopping
treats the number of epochs as a hyperparameter that is tuned on dev data. It’s efficient and effective.

I.7.5 Shuffling

In theory, stochastic gradient descent shouldn’t even use epochs. There should only be one loop, not two
nested loops. At each iteration, you pick a random example from the training corpus, and update ~θ based
on that example. Again, you would evaluate on dev data after every m examples to decide when to stop.
That’s why it is called ”stochastic” (i.e., random). The insight here is that the regularized log-likelihood per
token, namely F (~θ), is actually just the average value of Fi(~θ) over all of the examples (see (16)). So if you
compute the gradient on one example, it is the correct gradient on average (since the gradient of an average is
the average gradient). So line 7 is going in the correct direction on average if you choose a random example
at each step.

In practice, a common approach to randomization is to still use epochs, so that each example is visited
once per epoch, but to shuffle the examples into a random order at the start of each epoch (including the
first). To see why shuffling can help, imagine that the first half of your corpus consists of Democratic talking
points and the second half consists of Republican talking points. If you shuffle, your stochastic gradients
will roughly alternate between the two, like alternating between left and right strokes when you paddle a
canoe; thus, your average direction over any short time period will be roughly centrist. By contrast, since
Algorithm 1 doesn’t shuffle, it will paddle left for the half of each epoch and then right for the other half,
which will make significantly slower progress in the desired centrist direction.

R-21

I.7.6 Mini-batching

Each step of Algorithm 1 tried to improve Fi(~θ) for some training example i (in our case, a trigram), by
moving the parameters in the direction ∇Fi(~θ). But instead, we could choose a “mini-batch” I of several
examples (typically the next examples in the shuffled order), and try to improve

∑
i∈I Fi(

~θ) by moving the
parameters in the direction∇

∑
i∈I Fi(

~θ).
The advantage of mini-batching is that it breaks the serial dependency of SGD, where each example

changes ~θ for the next example and therefore we can only compute one example at a time. Another way
of thinking about it is that a single SGD example now consists of several unrelated trigrams instead of just
one. Mini-batching means that the probabilities of all these trigrams are being evaluated in parallel, using
the same parameter vector ~θ. Since all the probabilities are computed using the same operations (but on
different data), you can compute them “all at once” using tensor operations. This is often much faster than
doing them one at a time, because the tensor operations are implemented in C++ and may even exploit
hardware speedups—vectorization (on a CPU) or parallelism (on a GPU).

J Ideas for log-linear features

Here are some ideas for extending your log-linear model. Most of them are not very hard, although training
may be slow. Or you could come up with your own!

Adding features means throwing some more parameters into the definition of the unnormalized proba-
bility. For example, extending the definition (7) with additional features (in the case d = 2) gives

p̃(xyz)
def
= exp

(
~x>X~z + ~y>Y ~z + θ9f9(xyz) + θ10f10(xyz) + . . .

)
(23)

= exp

θ1f1(xyz) + · · ·+ θ8f8(xyz)︸ ︷︷ ︸
as defined in (10)–(11)

+ θ9f9(xyz) + θ10f10(xyz) + . . .

 (24)

J.1 OOV features

Some contexts are reasonably likely to be followed by OOV: “I looked up the word .” Others are not:
“I flew to San .” It would be useful to do a good job of predicting p(OOV | xy).

Unfortunately, our basic model (7) does not have the freedom to learn specific parameters for OOV. It
just uses its general parameters X,Y with the pre-specified embedding of OOV.

Worse yet, the embedding of OOV is inappropriate. Recall from reading section F.4.1 that when z =
OOV, equation (7) takes ~z to be the embedding of OOL, since OOV is not in the lexicon. But that means OOV

is treated just like any other out-of-lexicon word. That’s wrong—typically, OOV should have a much higher
probability than any specific out-of-lexicon word that is in the vocabulary, because it represents a whole
class of words: p(OOV | xy) stands for the total probability of all words that are out-of-vocabulary.

Thus, you might add a simple feature foov(xyz) that returns 1 if z = OOV and returns 0 otherwise.
Given any xy, the expression ~xX~z + ~yY ~z is still equal for all OOL elements of the vocabulary, since they
all have the same ~z. But when z = OOV, the extra feature foov now fires as well, which increases p̃(xyz)
by a factor of exp θoov. As a result, for any xy, p̃(xyz) is exactly exp θoov times larger when z = OOV than
when z is some specific OOL word. The trained value of θoov determines how big this factor is. Roughly
speaking, this factor should be large if the original training corpus had a lot of different OOV word types.

R-22

You could be fancier and try to learn different OOV parameters for the different dimensions. For example,
you could add this to the score of xyz before you exponentiate:{

~x · ~xoov + ~y · ~yoov if z = OOV

0 otherwise
(25)

Here ~xoov and ~yoov are learned parameter vectors, so in effect we are learning 2d additional feature weights.
This should do a better job of learning how much to raise (or lower) the probability of z = OOV according
to the various properties of the context words x and y. Convince yourself that this model is still log-linear.20

J.2 Unigram log-probability

More generally, a weakness of the model (7) is that it doesn’t have any parameters that keep track of how
frequent specific words are in the training corpus! Rather, it backs off from the words to their embeddings.
Its probability estimates are based only on the embeddings, which were learned from some other (larger)
corpus.

It’s pretty common in NLP to use SGD to adjust the embeddings at the same time as the other parameters.
But then we wouldn’t have a log-linear model anymore, as discussed below equation (11).

One way to fix the weakness while staying within the log-linear framework would be to have a binary
feature fw for each word w in the vocabulary, such that fw(xyz) is 1 if z = w and 0 otherwise. We’ll do
that in reading section J.3 below.

But first, here’s a simpler method: just add a single non-binary feature defined by

funigram(xyz) = log p̂unigram(z) (26)

where p̂unigram(z) is estimated by add-1 smoothing. Surely we have enough training data to learn an appro-
priate weight for this single feature. In fact, because every training token wi provides evidence about this
single feature, its weight will tend to converge quickly to a reasonable value during SGD.

This is not the only feature in the model—as usual, you will use SGD to train the weights of all features
to work together, computing the gradient via (18). Let β = θunigram denote the weight that we learn for
the new feature. By including this feature in our definition of p̂unigram(z), we are basically multiplying a
factor of (p̂unigram(z))

β into the numerator p̃(xyz) (check (5) to see that this is true). This means that in the
special case where β = 1 and X = Y = 0, we simply have p̃(xyz) = p̂unigram, so that the log-linear model
gives exactly the same probabilities as the add-1 smoothed unigram model p̂unigram. However, by training
the parameters, we might learn to trust the unigram model less (0 < β < 1) and rely more on the word
embeddings (X,Y 6= 0) to judge which words z are likely in the context xy.

A quick way to implement this scheme is to define

funigram(xyz) = log(c(z) + 1) (where c(z) is the count of z in training data) (27)

This gives the same model, since p̂unigram(z) is just c(z)+ 1 divided by a constant, and our model renormal-
izes p̃(xyz) by a constant anyway.

20An alternative would be to replace OOV’s embedding ~z with a new, learned embedding vector ~zoov. Is that still log-linear? Well,
if we only use the new embedding in the z position, then we’re changing the score of xyz from ~x>X~z + ~y>Y ~z to ~x>X~zoov +
~y>Y ~zoov. But we can get exactly the same effect with the scheme above by learning ~xoov = X(~zoov − ~z) and ~yoov = Y (~zoov − ~z).

R-23

J.3 Unigram, bigram, and trigram indicator features

Try adding a unigram feature fw for each word w in the vocabulary. That is, fw(xyz) is 1 if z = w and 0
otherwise. Does this work better than the log-unigram-probability feature from reading section J.2?

Now try also adding a binary feature for each bigram and trigram that appears at least 3 times in training
data. How good is the resulting model?

In all cases, you will want to tune C on development data to prevent overfitting. This is important—the
original model had only 2d2 + 1 parameters where d is the dimensionality of the embeddings, but your new
model has enough parameters that it can easily overfit the training data. In fact, if C = 0, the new model
will exactly predict the unsmoothed probabilities, as if you were not smoothing at all (add-0)! The reason
is that the maximum of the concave function F (~θ) =

∑N
i=1 Fi(

~θ) is achieved when its partial derivatives
are 0. So for each unigram feature fw defined in the previous paragraph, we have, from equation (18) with
C = 0,

∂F (~θ)

∂θw
=

N∑
i=1

∂Fi(~θ)

∂θw
(28)

=
N∑
i=1

fw(xyz)︸ ︷︷ ︸
observed count of w in corpus

−
N∑
i=1

∑
z′

p̂(z′ | xy)fw(xyz′)︸ ︷︷ ︸
predicted count of w in corpus

(29)

Hence SGD will adjust ~θ until this is 0, that is, until the predicted count of w exactly matches the observed
count c(w). For example, if c(w) = 0, then SGD will try to allocate 0 probability to word w in all contexts
(no smoothing), by driving θw → −∞. Taking C > 0 prevents this by encouraging θw to stay close to 0.

J.4 Embedding-based features on unigrams and trigrams

Oddly, (7) only includes features that evaluate the bigram yz (via weights in the Y matrix) and the skip-
bigram xz (via weights in the X matrix). After all, you can see in (9) that the features have the form yjzm
and xjzm. This seems weaker than add-λ with backoff. Thus, add unigram features of the form zm and
trigram features of the form xhyjzm.

J.5 Embedding-based features based on more distant skip-bigrams

For a log-linear model, there’s no reason to limit yourself to trigram context. Why not look at 10 previous
words rather than 2 previous words? In other words, your language model can use the estimate p(wi |
wi−10, wi−9, . . . wi−1).

There are various ways to accomplish this. You may want to reuse the X matrix at all positions i −
10, i − 9, . . . , i − 2 (while still using a separate Y matrix at position i − 1). This means that having the
word “bread” anywhere in the recent history (except at position wi−1) will have the same effect on wi. Such
a design is called “tying” the feature weights: if you think of different positions having different features
associated with them, you are insisting that certain related features have weights that are “tied together”
(i.e., they share a weight).

You could further improve the design by saying that “bread” has weaker influence when it is in the more
distant past. This could be done by redefining the features: for example, in your version of (9), you could

R-24

scale down the feature value (xjzm) by the number of word tokens that fall between x and z.21

Note: The provided code has separate methods for 3-grams, 2-grams, and 1-grams. To support general
n-grams, you’ll want to replace these with a single method that takes a list of n words. It’s probably easiest
to streamline the provided code so that it does this for all smoothing methods.

J.6 Spelling-based features

The word embeddings were automatically computed based on which words tend to appear near one another.
They don’t consider how the words are spelled! So, augment each word’s embedding with additional di-
mensions that describe properties of the spelling. For example, you could have dimensions that ask whether
the word ends in -ing, -ed, etc. Each dimension will be 1 or 0 according to whether the word has the
relevant property.

Just throw in a dimension for each suffix that is common in the data. You could also include properties
relating to word length, capitalization patterns, vowel/consonant patterns, etc.—anything that you think
might help!

You could easily come up with thousands of properties in this way. Fortunately, a given word such as
burgeoning will have only a few properties, so the new embeddings will be sparse. That is, they consist
mostly of 0’s with a few nonzero elements (usually 1’s). This situation is very common in NLP. As a result,
you don’t need to store all the new dimensions: you can compute them on demand when you are computing
summations like

∑d
j=1

∑d
m=1 Yjm · (yjzm) in (9). In such a summation, j ranges over possible suffixes of

y and m ranges over possible suffixes of z (among other properties, including the original dimensions). To
compute the summation, you only have to loop over the few dimensions j for which yj 6= 0 and the few
dimensions m for which zm 6= 0. (All other summands are 0 and can be skipped.)

It is easy to identify these few dimensions. For example, burgeoning has the -ing property but
not any of the other 3-letter-suffix properties. In the trigram xyz = demand was burgeoning, the
summation would include a feature weight Yjm for j = -was and m = -ing, which is included because
yz has that particular pair of suffixes and so yjvm = 1. In practice, Y can be represented as a hash map
whose keys are pairs of properties, such as pairs of suffixes.

J.7 Meaning-based features

If you can find online dictionaries or other resources, you may be able to obtain other, linguistically inter-
esting properties of words. You can then proceed as with the spelling features above.

J.8 Repetition

Since words tend to repeat, you could have a feature that asks whetherwi appeared in the set {wi−10, wi−9, . . . wi−1}.
This feature will typically get a positive weight, meaning that recently seen words are likely to appear again.
Since 10 is arbitrary, you should actually include similar features for several different history sizes: for
example, another feature asks whether wi appeared in {wi−20, wi−19, . . . wi−1}.

Of course, this is no longer a trigram model, but that’s ok!
21A fancier approach is to learn how much to scale down this influence. For example, you could keep the feature value defined

as (xjzm), but say that the feature weights for position i− 6 (for example) are given by the matrix λ6X . Now X is shared across
all positions, but the various multipliers such as λ6 are learned by SGD along with the entries of X and Y . If you learn that λ6 is
close to 0, then you have learned that wi−6 has little influence on wi. (In this case, the model is technically log-quadratic rather
than log-linear, and the objective function is no longer concave, but SGD will probably find good parameters anyway. You will
have to work out the partial derivatives with respect to the entries of λ as well as X and Y .)

R-25

J.9 Ensemble modeling

Recall that equation (26) included the log-probability from another model as a feature within your log-linear
model. You could include other log-probabilities in the same way, such as smoothed bigram and trigram
probabilities from question 5. The log-linear model then becomes an “ensemble model” that combines the
probabilities of several other models, learning how strongly to weight each of these other models.

If you want to be fancy, your log-linear model can include various trigram-model features, each of
which returns log p̂trigram(z | xy) but only when c(xy) falls into a particular range, and returns 0 otherwise.
Training might learn different weights for these features. That is, it might learn that the trigram model is
trustworthy when the context xy is well-observed, but not when it is rarely observed.

K Using Kaggle for GPU Acceleration (optional)

Once your Python code is working, here’s a way to make your experiments run faster.
GPUs are well-suited for the highly parallelizable computations required in machine learning, such

as when training log-linear models or neural networks. PyTorch encourages programmers to write their
computations as operations on tensors, which are generally parallelizable. PyTorch can then carry out these
operations more efficiently (and backpropagate through them) if GPU hardware is available.22

GPUs adopt a Single-Instruction Multiple-Data (SIMD) architecture: thousands of processors execute
the same instruction in parallel, but on different data. This makes it fast to carry out tensor operations:
square all elements of a vector, sum all rows of a matrix, multiply two large matrices together, transform all
pixels of an image, compute feature vectors and probabilities for all trigrams in a mini-batch, etc.

Warning: The GPU will not speed up your code until you have organized the work into a few big tensor
operations, rather than many little ones.

K.1 Kaggle Notebooks

While there are compute clusters on campus with GPUs, it is possible to pay a cloud computing provider for
the use of their GPUs. There are also some opportunities to use cloud GPUs for free. Kaggle is a popular
website (now owned by Google) for data science competitions. It provides its users with some free GPU
use, up to a weekly limit.

Kaggle lets you interact with Notebooks, Datasets, and Competitions. A Notebook is actually a Jupyter
notebook: it allows you to keep a record of a sequence of computations, their results, and your natural-
language notes on them. The computations are executed using available hardware (including GPUs), similar
to Google Colab.

A Notebook contains a sequence of gray cells, each of which is either Code (by default, Python) or
Markdown (formatted text). You can add, edit, move, collapse (hide), and delete cells.

You can run a Code cell. This sends its code to an ongoing interactive Python session that is running
invisibly in the background—known as the kernel—and shows the output immediately below the cell. As a
special case, a line of code that starts with ! is executed by a bash shell. For example, you could type !ls
-l to see the contents of the current working directory of the Python session.23

22The same is true for other frameworks such as TensorFlow and Jax.
23This !ls -l is just shorthand for the Python call os.system("ls -l"), which starts up a new bash process, executes

the shell command ls -l within it, and ends the process. A line that starts with % or %% is also treated specially, as a “line magic”
or “cell magic” command respectively. You can read more about Jupyter magic commands online.

R-26

https://www.markdowntutorial.com/

To get started, see the Using Kaggle section of INSTRUCTIONS. This explains how to create an ac-
count, create a Notebook, and add this homework’s public Dataset to your Notebook’s kernel’s filesystem.

K.2 Your Code on Kaggle

But where do your code files go? Unfortunately, a notebook is only a single file, and is not even a .py file.
There are two workarounds.

git repo Create a private code repository, hosted on github or some other git server. Clone it from your
notebook so that it appears as a subdirectory of /kaggle/working. Whenever you edit the code
on your local computer, push the changes to the repo and pull them from the notebook.

Kaggle Dataset Upload the code directory from your local computer to Kaggle as an additional Dataset—a
private one—and add that Dataset to your Notebook’s filesystem. It’s not really data, of course, but it
will appear as a subdirectory of /kaggle/input (and will be read-only). Whenever you edit the
code on your local computer, upload a new version of the Dataset and then tell the Notebook to check
for updates.

Either way, your .py files will now be in the filesystem that is visible from your notebook, so you can
import them into your notebook, or invoke them from your notebook via shell commands.

Details of both methods are given in the INSTRUCTIONS file. The first method may be easier if you
have a github account and are used to the git workflow.

You should probably get everything running first on your local computer, since it’s easier to develop and
debug there. Wait to upload your .py files to Kaggle until everything seems to be working correctly—with
highly vectorized computations—and you need that GPU speedup.

K.3 Hardware Acceleration

Once you have things running in the Notebook, the INSTRUCTIONS file explains how to turn on the GPU.

R-27

https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html#using-kaggle
https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html
https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html
https://www.cs.jhu.edu/~jason/465/hw-lm/code/INSTRUCTIONS.html

	Perplexities and corpora
	Implementing a generic text classifier
	Evaluating a text classifier
	Analysis
	Backoff smoothing
	Sampling from language models
	Implementing a log-linear model and training it with backpropagation
	Speech recognition
	Extra credit: Language modeling for speech recognition
	Extra credit: Open-vocabulary modeling
	Are n-gram models useful?
	Boundary symbols
	Datasets for Homework 3
	The train/dev/test split
	Class ratios

	The vocabulary
	Choosing a finite vocabulary
	Consequences for evaluating a model
	Comparing apples to apples
	How to choose the vocabulary
	Open-vocabulary language modeling
	Alternative tokenizations

	Evaluation metrics (also called ``evaluation loss functions'')
	Other possible metrics
	Generative vs. discriminative

	Smoothing techniques
	Uniform distribution
	Add-
	Add- with backoff
	Conditional log-linear modeling
	Bigrams and skip-bigram features from word embeddings

	Other smoothing schemes

	Safe practices for working with log-probabilities
	Use natural log for internal computations
	Avoid exponentiating big numbers (crucial for gen/spam!)

	Training a log-linear model
	The training objective
	Stochastic gradient descent
	The gradient vector
	The gradient for the embedding-based model

	Practical hints for stochastic gradient ascent
	Use automatic differentiation
	Don't try to learn all of PyTorch
	Make the forward computation efficient
	Make the forward computation correct
	Choose your hyperparameters carefully
	Compute and apply the gradient properly
	Improve the SGD training loop
	Monitor your progress
	Manage parameter updates using a PyTorch optimizer
	Convergent SGD
	Deciding when to stop
	Shuffling
	Mini-batching

	Ideas for log-linear features
	OOV features
	Unigram log-probability
	Unigram, bigram, and trigram indicator features
	Embedding-based features on unigrams and trigrams
	Embedding-based features based on more distant skip-bigrams
	Spelling-based features
	Meaning-based features
	Repetition
	Ensemble modeling

	Using Kaggle for GPU Acceleration (optional)
	Kaggle Notebooks
	Your Code on Kaggle
	Hardware Acceleration

