
Natural Language Processing (JHU 601.465/665)
Answers to "Log-Linear Modeling" practice problems

1. (a) 0.2.

       Remember that with the maximum-likelihood parameters, the
       expected features of a log-linear model match the observed
       features.  (Because that’s what makes the gradient vector 0 --
       recall http://cs.jhu.edu/˜jason/tutorials/loglin/#6 and the
       log-linear handout.)

       The given formulas can be interpreted as saying that there are
       3 binary features.  One fires only on "bwa," one fires only on
       "bwee," and one fires only on "kiki."

       The "bwee" feature is observed to fire 0.2 of the time,
       so in the maximum likelihood solution, the model matches
       this and predicts that it will fire 0.2 of the time.
       In this case, that simply means that p(bwee) = 0.2.

   (b) log 0.3, log 0.2, log 0.5 gives probabilities 0.3, 0.2, 0.5
       as required.  In this case Z=1.

   (c) For any constant b, b+log 0.3, b+log 0.2, b+log 0.5 still
       gives probabilities 0.3, 0.2, 0.5.  In this case, Z=exp b.
       So just choose any b != 0 to get a different solution.

   (d) The L1 regularizer prefers smaller values of
           |theta_bwa| + |theta_bwee| + |theta_kiki|

       Which value is best depends on what value of b you chose.
       In this case, the L1 regularizer is minimized if you
       choose b = -log 0.3, so that the median weight is 0
       and the other weights are close to 0.

       (Of course, the regularizer would be even happier if you also
       reduced the distance between the weights, bringing them all
       closer to 0!  That gives you the regularized solution, which
       is NOT a maximum-likelihood solution.)

   (e) 0.25.  We observe the "bw" feature in 0.5 of the training
       data, so under the maximum-likelihood parameters, the
       model expects this feature to fire 0.5 of the time.  That
       means p(bwa)+p(bwee) = 0.5.  But according to the formulas,
       p(bwa)=p(bwee): the features don’t distinguish between them.
       Therefore p(bwee) = 0.25.

   (f) Yes.  The new model will correctly predict the observed
       counts of bwa, bwee, and kiki in an average sentence.
       Thus, it will correctly predict the SUM of these counts,
       which is 4.0.

       To be more concrete, if there are N training sentences, then
       the information in the problem implies that there are 4N
       training words, comprising 4N*0.3 bwa tokens, 4N*0.2 bwee
       tokens, and 4N*0.5 kiki tokens.  Thus the average observed
       count per sentence is 4*0.3 bwa, 4*0.2 bwee, 4*0.5 kiki.  The
       trained model’s predictions will match these counts, and
       therefore it predicts 4*0.3 + 4*0.2 + 4*0.5 = 4 tokens per
       sentence.

2. (a) f_1(s,l,y) = (if l==Esperanto then y else 0).

       Note that this is a real-valued feature (think of the
       "number of sides" feature in the log-linear model



       over triangles, squares, and pentagons).

       If this has a negative weight, then p(y | s,l)
       will decrease exponentially with y (when l==Esperanto).
       That is, it is unlikely that an Esperanto student
       will take a lot of years.

       (When l != Esperanto, p(y | s,l) is constant at 1/11.
       No features fire, so all 11 outcomes are equally likely.)

   (b) In training, we are trying to maximize log p(y | s,l), summed
       over all training triples (s,l,y).

       The main point: this value is optimized when the model predicts
       an expected total value of f_1 over the training set that
       equals its observed value.  In other words, the model should
       expect that the average Esperanto student will take 1.6 years
       to become fluent, just as we observed.

       We would expect theta_1 to be negative: as explained
       above, that’s when the model prefers as few years as
       possible.

       To be formally precise about it, the observed number of firings
       of f_1 (summing over examples i in the training set) is
          sum_i f_1(s_i,l_i,y_i)
       and the expected number is
          sum_i sum_y p(y | s_i,l_i) f_1(s_i,l_i,y)
       By the definition of f_1, the observed number is
          1.6
       and the expected number is
          sum_y p(y | s_i,l_i) * y
          = sum_y (1/Z) exp(theta_1*y) * y
       where Z = sum_y exp(theta_1*y) and y ranges over 0,1,...10.

       If we let t = exp(theta_1), then we can rewrite
       the expected number as
           sum_y (t^y / Z) * y
           = sum_y t^y * y / (sum_y t^y)

       The exam asked for a strategy to find the optimal theta_1.
       We could use the same gradient ascent strategy that we’ve been
       using all along: increase theta_1 when expected < observed,
       decrease theta_1 when expected > observed.

       Or we can just solve for the point where expected = observed.
       That is, theta_1=log(t) is optimized when
           sum_y t^y * y / sum_y t^y = 1.6
       and this could be solved quite simply by the bisection method
       ("binary chop") since it is merely a function of one variable.
       Actually doing this gives theta_1 = log(t) = -0.471.

       Just for fun, if you like playing with formulas:

       We can get a good approximation to the optimal t by letting y
       in the summation range over 0,1,...infinity instead of
       0,1,... 10.  This is a more natural problem anyway than
       artificially capping the number of years at 10.  And it won’t
       make much difference since t^y decays exponentially fast and
       will be tiny for large y.

       In that case, sum_y t^y = 1/(1-t) by the usual formula
       for the sum of a geometric series.  And we can write a
       recurrence for sum_y t^y * y as well:
          if S = sum_y t^y * y



               = 1 * 0 + t * 1 + t^2 * 2 + ...
          then S - (t + t^2 + t^3 + ...) = tS
          so (1-t)S = t + t^2 + t^3 + ... = t/(1-t)
          so S = t/(1-t)^2.
       Thus, the equation we’re trying to solve becomes
          (t/(1-t)^2) / (1/(1-t)) = 1.6
          t/(1-t) = 1.6
          t = 1.6 - 1.6t
          2.6t = 1.6
          t = 1.6/2.6 = 0.6153
        and we estimate theta_1 = log(t) = -0.486.

        Checking this, this value of t does give a pretty accurate
        answer even to the original problem where we only sum over
        y=0,1,...10.  It turns out that sum_y t^y * y / sum_y t^y =
        1.55 which is close to the desired 1.6.

    (c) Because theta_1 is negative, the most common amount of time
        is 0 years.  The probability of y falls off exponentially
        as y increases.

    (d) f_2(s,l,y) = (if y==0 then 1 else 0).

    (e) theta_2 = -infinity.  This means that p(y=0 | s,l) = 0: it is
        impossible to take 0 years.  After all, we’ve never observed 0
        years!  This may be overfitting a bit, but it leaves as much
        probability as possible for the things that we did observe.

        This will change the optimal value for theta_1.

    (f) To capture whether Helen is good at languages, we can have
        f_Helen(s,l,y) = (if s==Helen then y else 0).

        This is completely analogous to the Esperanto case.
        A negative weight means that Helen tends to
        take few years.  A positive weight means that she tends
        to take many years.

    (g) The weight of the feature f_you had no effect on the objective
        function.  You didn’t appear in training data; the model had no
        knowledge of whether you’d take many years or few years, and
        had no incentive to predict that you’d take many or few years.

        So without regularization, the answer is underdetermined --
        the optimizer could equally well pick any value of
        theta_you.  All values are tied.

        Regularization breaks the tie: then the optimizer will pick
        theta_you = 0 in order to make the regularizer as happy as
        possible.  This says that you are neither good nor bad at
        languages.  The model will treat you as a typical student
        without any personal adjustments for you.  And that seems like
        the appropriate result since the model never saw you during
        training and has no special information about you.

3. (a) China black cars: {f1}  -- total weight 1
       China white cars: {}    -- the empty set, with total weight 0
       India black cars: {}
       India white cars: {}

       Observing that exp(1)=e and exp(0)=1,

       p(c = black | r = china) = e / (e+1+1+1+1+1+1+1) = e/(e+7) = 0.27

       p(c = black | r = india) = 1 / (1+1+1+1+1+1+1+1) = 1/8 = 0.125



   (b) China black cars: {f1,f2,f3}   -- total weight 6
       China white cars: {f3}         -- total weight 3
       India black cars: {f2}         -- total weight 2
       India white cars: {}           -- total weight 0

       p(c = black | r = china)
          = e^6 / (e^6 + 7 * e^3) = e^3 / (e^3 + 7) = 0.74

          Notice that f3 had no effect here because it was always true
          whenever r=china.  It fired on every term in the numerator
          and denominator, so the extra factors of e^3 in the
          numerator and denominator canceled out.

       p(c = black | r = india) = e^2 / (e^2 + 7) = 0.51

   (c) 500 car tokens (100 from each region).

       (It would be only 481 tokens if you left out the OOVs, but as
       we’ll see below, you shouldn’t do that.  They are part of the
       data.)

       DOESN’T MATTER whether the first objective includes
       the OOV row.  If the model perfectly predicts
       all the answers in the first 7 rows, then it must also
       perfectly predict all the answers in the 8th row (OOV),
       as being the values that make each column sum to 1.

       YES, the second objective should include the OOV row.
       Otherwise, it would assign 0 probability to OOV in
       order to maximize the probability of the in-vocabulary events
       that *are* in the objective colors.  But this would not
       match the table, which shows that OOV colors have positive
       probability.

       Note: As HW3 said, the vocabulary is whatever you define it to
       be.  It doesn’t have to be the set of words or colors observed
       in training data, and in fact it’s not in this case (unlike in
       HW3).

   (d) Formula for regularizer:
       -C * (sum[c,r] theta[c,r]^2 + sum[c] theta[c]^2 + sum[r] theta[r]^2)

       No, the optimizer will no longer fit the data exactly, because
       there is a tension in the regularized objective between fitting
       the data and keeping the weights small.  The weights will be
       a little closer to 0 than before.

       With a regularizer, the learned weights may be more useful for
       predicting car colors in other countries or other years that
       are not in this training dataset.  In effect, it will do better
       on test data -- data that don’t appear in the training table.
       (Without a regularizer, we will fit the training data better,
       but possibly by picking crazy weights that won’t generalize
       well.)  Some of you said that the regularizer would help
       with predicting unseen colors, but there are only 8 categories
       that will ever be seen (including OOV), and all of them have
       already been seen in training data.

       theta[brown]: NEGATIVE because brown cars are less likely than
                               the average color, across almost all
                               regions.

                               (This could also be modeled by giving



                               f[brown] a positive weight that is
                               still less positive than the other f[c]
                               features.  However, this solution can’t
                               be optimal, since if all the f[c]
                               weights are positive, we can improve
                               the regularizer without changing the
                               likelihood, by subtracting a small
                               constant from all weights theta[c].)

       theta[india]: ZERO because this feature doesn’t discriminate
                          between different car colors and thus will
                          have no effect at all on likelihood, as we
                          saw in part (b).  So the only place where
                          theta[india] actually matters is in the
                          regularizer, which prefers to keep it at 0.

       theta[brown,india]: POSITIVE  because brown cars are more
                                     popular in India than elsewhere;
                                     this positive weight partly
                                     cancels out the negative
                                     weight for theta[brown]

       Between 0 and 1/8: Although none of the f[c,r] or f[r] features
       will fire on Australia, the f[c] features will fire.  And these
       features should recognize that brown is generally less common
       than the other colors.

       Like f[india], the Australia-specific features will never fire
       in either the training events or competing events in the same
       training contexts.  Therefore, their weights will not affect
       the probabilities that are being measured by the objective.
       Only the regularizer cares about their weights, and prefers
       those weights to be 0.

   (e) 1 if c=black or c=white

       This will get a positive weight.  (This following variant
       would also work, but would get a negative weight:
       "1 if not (c=black or c=white)".)

       This feature will fire on every event that has a black
       or white car color, resulting in a positive weight being
       added for those events.  As a result, the other weights
       of those events can be reduced to compensate.

       Therefore, the weights theta[black,india] and
       theta[white,india] will go down.

   (f) [extra credit]

       This does not change the ratio of colors in any region.
       However, it increases the number of European cars in the
       training corpus from 100 to 1000.  Thus, the objective more
       strongly emphasizes matching the probabilities for European
       cars.  The resulting p(c | r) will fit the European column of
       the DuPont table more accurately, and will tend to fit the
       other columns less accurately.


