
Natural Language Processing (JHU 601.465/665)
Answers to "Log-Linear Modeling" practice problems

1. (a) 0.2.

 Remember that with the maximum-likelihood parameters, the
 expected features of a log-linear model match the observed
 features. (Because that’s what makes the gradient vector 0 --
 recall http://cs.jhu.edu/˜jason/tutorials/loglin/#6 and the
 log-linear handout.)

 The given formulas can be interpreted as saying that there are
 3 binary features. One fires only on "bwa," one fires only on
 "bwee," and one fires only on "kiki."

 The "bwee" feature is observed to fire 0.2 of the time,
 so in the maximum likelihood solution, the model matches
 this and predicts that it will fire 0.2 of the time.
 In this case, that simply means that p(bwee) = 0.2.

 (b) log 0.3, log 0.2, log 0.5 gives probabilities 0.3, 0.2, 0.5
 as required. In this case Z=1.

 (c) For any constant b, b+log 0.3, b+log 0.2, b+log 0.5 still
 gives probabilities 0.3, 0.2, 0.5. In this case, Z=exp b.
 So just choose any b != 0 to get a different solution.

 (d) The L1 regularizer prefers smaller values of
 |theta_bwa| + |theta_bwee| + |theta_kiki|

 Which value is best depends on what value of b you chose.
 In this case, the L1 regularizer is minimized if you
 choose b = -log 0.3, so that the median weight is 0
 and the other weights are close to 0.

 (Of course, the regularizer would be even happier if you also
 reduced the distance between the weights, bringing them all
 closer to 0! That gives you the regularized solution, which
 is NOT a maximum-likelihood solution.)

 (e) 0.25. We observe the "bw" feature in 0.5 of the training
 data, so under the maximum-likelihood parameters, the
 model expects this feature to fire 0.5 of the time. That
 means p(bwa)+p(bwee) = 0.5. But according to the formulas,
 p(bwa)=p(bwee): the features don’t distinguish between them.
 Therefore p(bwee) = 0.25.

 (f) Yes. The new model will correctly predict the observed
 counts of bwa, bwee, and kiki in an average sentence.
 Thus, it will correctly predict the SUM of these counts,
 which is 4.0.

 To be more concrete, if there are N training sentences, then
 the information in the problem implies that there are 4N
 training words, comprising 4N*0.3 bwa tokens, 4N*0.2 bwee
 tokens, and 4N*0.5 kiki tokens. Thus the average observed
 count per sentence is 4*0.3 bwa, 4*0.2 bwee, 4*0.5 kiki. The
 trained model’s predictions will match these counts, and
 therefore it predicts 4*0.3 + 4*0.2 + 4*0.5 = 4 tokens per
 sentence.

2. (a) f_1(s,l,y) = (if l==Esperanto then y else 0).

 Note that this is a real-valued feature (think of the
 "number of sides" feature in the log-linear model

 over triangles, squares, and pentagons).

 If this has a negative weight, then p(y | s,l)
 will decrease exponentially with y (when l==Esperanto).
 That is, it is unlikely that an Esperanto student
 will take a lot of years.

 (When l != Esperanto, p(y | s,l) is constant at 1/11.
 No features fire, so all 11 outcomes are equally likely.)

 (b) In training, we are trying to maximize log p(y | s,l), summed
 over all training triples (s,l,y).

 The main point: this value is optimized when the model predicts
 an expected total value of f_1 over the training set that
 equals its observed value. In other words, the model should
 expect that the average Esperanto student will take 1.6 years
 to become fluent, just as we observed.

 We would expect theta_1 to be negative: as explained
 above, that’s when the model prefers as few years as
 possible.

 To be formally precise about it, the observed number of firings
 of f_1 (summing over examples i in the training set) is
 sum_i f_1(s_i,l_i,y_i)
 and the expected number is
 sum_i sum_y p(y | s_i,l_i) f_1(s_i,l_i,y)
 By the definition of f_1, the observed number is
 1.6
 and the expected number is
 sum_y p(y | s_i,l_i) * y
 = sum_y (1/Z) exp(theta_1*y) * y
 where Z = sum_y exp(theta_1*y) and y ranges over 0,1,...10.

 If we let t = exp(theta_1), then we can rewrite
 the expected number as
 sum_y (t^y / Z) * y
 = sum_y t^y * y / (sum_y t^y)

 The exam asked for a strategy to find the optimal theta_1.
 We could use the same gradient ascent strategy that we’ve been
 using all along: increase theta_1 when expected < observed,
 decrease theta_1 when expected > observed.

 Or we can just solve for the point where expected = observed.
 That is, theta_1=log(t) is optimized when
 sum_y t^y * y / sum_y t^y = 1.6
 and this could be solved quite simply by the bisection method
 ("binary chop") since it is merely a function of one variable.
 Actually doing this gives theta_1 = log(t) = -0.471.

 Just for fun, if you like playing with formulas:

 We can get a good approximation to the optimal t by letting y
 in the summation range over 0,1,...infinity instead of
 0,1,... 10. This is a more natural problem anyway than
 artificially capping the number of years at 10. And it won’t
 make much difference since t^y decays exponentially fast and
 will be tiny for large y.

 In that case, sum_y t^y = 1/(1-t) by the usual formula
 for the sum of a geometric series. And we can write a
 recurrence for sum_y t^y * y as well:
 if S = sum_y t^y * y

 = 1 * 0 + t * 1 + t^2 * 2 + ...
 then S - (t + t^2 + t^3 + ...) = tS
 so (1-t)S = t + t^2 + t^3 + ... = t/(1-t)
 so S = t/(1-t)^2.
 Thus, the equation we’re trying to solve becomes
 (t/(1-t)^2) / (1/(1-t)) = 1.6
 t/(1-t) = 1.6
 t = 1.6 - 1.6t
 2.6t = 1.6
 t = 1.6/2.6 = 0.6153
 and we estimate theta_1 = log(t) = -0.486.

 Checking this, this value of t does give a pretty accurate
 answer even to the original problem where we only sum over
 y=0,1,...10. It turns out that sum_y t^y * y / sum_y t^y =
 1.55 which is close to the desired 1.6.

 (c) Because theta_1 is negative, the most common amount of time
 is 0 years. The probability of y falls off exponentially
 as y increases.

 (d) f_2(s,l,y) = (if y==0 then 1 else 0).

 (e) theta_2 = -infinity. This means that p(y=0 | s,l) = 0: it is
 impossible to take 0 years. After all, we’ve never observed 0
 years! This may be overfitting a bit, but it leaves as much
 probability as possible for the things that we did observe.

 This will change the optimal value for theta_1.

 (f) To capture whether Helen is good at languages, we can have
 f_Helen(s,l,y) = (if s==Helen then y else 0).

 This is completely analogous to the Esperanto case.
 A negative weight means that Helen tends to
 take few years. A positive weight means that she tends
 to take many years.

 (g) The weight of the feature f_you had no effect on the objective
 function. You didn’t appear in training data; the model had no
 knowledge of whether you’d take many years or few years, and
 had no incentive to predict that you’d take many or few years.

 So without regularization, the answer is underdetermined --
 the optimizer could equally well pick any value of
 theta_you. All values are tied.

 Regularization breaks the tie: then the optimizer will pick
 theta_you = 0 in order to make the regularizer as happy as
 possible. This says that you are neither good nor bad at
 languages. The model will treat you as a typical student
 without any personal adjustments for you. And that seems like
 the appropriate result since the model never saw you during
 training and has no special information about you.

3. (a) China black cars: {f1} -- total weight 1
 China white cars: {} -- the empty set, with total weight 0
 India black cars: {}
 India white cars: {}

 Observing that exp(1)=e and exp(0)=1,

 p(c = black | r = china) = e / (e+1+1+1+1+1+1+1) = e/(e+7) = 0.27

 p(c = black | r = india) = 1 / (1+1+1+1+1+1+1+1) = 1/8 = 0.125

 (b) China black cars: {f1,f2,f3} -- total weight 6
 China white cars: {f3} -- total weight 3
 India black cars: {f2} -- total weight 2
 India white cars: {} -- total weight 0

 p(c = black | r = china)
 = e^6 / (e^6 + 7 * e^3) = e^3 / (e^3 + 7) = 0.74

 Notice that f3 had no effect here because it was always true
 whenever r=china. It fired on every term in the numerator
 and denominator, so the extra factors of e^3 in the
 numerator and denominator canceled out.

 p(c = black | r = india) = e^2 / (e^2 + 7) = 0.51

 (c) 500 car tokens (100 from each region).

 (It would be only 481 tokens if you left out the OOVs, but as
 we’ll see below, you shouldn’t do that. They are part of the
 data.)

 DOESN’T MATTER whether the first objective includes
 the OOV row. If the model perfectly predicts
 all the answers in the first 7 rows, then it must also
 perfectly predict all the answers in the 8th row (OOV),
 as being the values that make each column sum to 1.

 YES, the second objective should include the OOV row.
 Otherwise, it would assign 0 probability to OOV in
 order to maximize the probability of the in-vocabulary events
 that *are* in the objective colors. But this would not
 match the table, which shows that OOV colors have positive
 probability.

 Note: As HW3 said, the vocabulary is whatever you define it to
 be. It doesn’t have to be the set of words or colors observed
 in training data, and in fact it’s not in this case (unlike in
 HW3).

 (d) Formula for regularizer:
 -C * (sum[c,r] theta[c,r]^2 + sum[c] theta[c]^2 + sum[r] theta[r]^2)

 No, the optimizer will no longer fit the data exactly, because
 there is a tension in the regularized objective between fitting
 the data and keeping the weights small. The weights will be
 a little closer to 0 than before.

 With a regularizer, the learned weights may be more useful for
 predicting car colors in other countries or other years that
 are not in this training dataset. In effect, it will do better
 on test data -- data that don’t appear in the training table.
 (Without a regularizer, we will fit the training data better,
 but possibly by picking crazy weights that won’t generalize
 well.) Some of you said that the regularizer would help
 with predicting unseen colors, but there are only 8 categories
 that will ever be seen (including OOV), and all of them have
 already been seen in training data.

 theta[brown]: NEGATIVE because brown cars are less likely than
 the average color, across almost all
 regions.

 (This could also be modeled by giving

 f[brown] a positive weight that is
 still less positive than the other f[c]
 features. However, this solution can’t
 be optimal, since if all the f[c]
 weights are positive, we can improve
 the regularizer without changing the
 likelihood, by subtracting a small
 constant from all weights theta[c].)

 theta[india]: ZERO because this feature doesn’t discriminate
 between different car colors and thus will
 have no effect at all on likelihood, as we
 saw in part (b). So the only place where
 theta[india] actually matters is in the
 regularizer, which prefers to keep it at 0.

 theta[brown,india]: POSITIVE because brown cars are more
 popular in India than elsewhere;
 this positive weight partly
 cancels out the negative
 weight for theta[brown]

 Between 0 and 1/8: Although none of the f[c,r] or f[r] features
 will fire on Australia, the f[c] features will fire. And these
 features should recognize that brown is generally less common
 than the other colors.

 Like f[india], the Australia-specific features will never fire
 in either the training events or competing events in the same
 training contexts. Therefore, their weights will not affect
 the probabilities that are being measured by the objective.
 Only the regularizer cares about their weights, and prefers
 those weights to be 0.

 (e) 1 if c=black or c=white

 This will get a positive weight. (This following variant
 would also work, but would get a negative weight:
 "1 if not (c=black or c=white)".)

 This feature will fire on every event that has a black
 or white car color, resulting in a positive weight being
 added for those events. As a result, the other weights
 of those events can be reduced to compensate.

 Therefore, the weights theta[black,india] and
 theta[white,india] will go down.

 (f) [extra credit]

 This does not change the ratio of colors in any region.
 However, it increases the number of European cars in the
 training corpus from 100 to 1000. Thus, the objective more
 strongly emphasizes matching the probabilities for European
 cars. The resulting p(c | r) will fit the European column of
 the DuPont table more accurately, and will tend to fit the
 other columns less accurately.

