
Natural Language Processing (JHU 601.465/665)
Answers to "Probability Models" practice problems

1. a. Uniform distribution, meaning that all outcomes are equally probable.

      Remark: You can think of this as a 0-gram model!  Consider that
                      

   b. 4. Usually the answer would depend on the text, but in this
      case, the model assigns exactly -log(1/16) = 4 bits to each
      letter. (In information theory, logs are base 2 by convention.)

   c. 2^4 = 16.  Yes, this is related to the 1/16 probability.

   d. infinity.
          That’s because p(an English text) = 0 under your model.
          Your model doesn’t allow the letter "x", for instance.

          (We say that -log(0) = infinity because infinity is 
          the limit  of -log(x) as x -> 0.)

   e. infinity.  

2. False.
   But almost true!  It’s true of cross-entropy, not perplexity.

   crossentropy/word = 6 * crossentropy/letter, so
   perplexity/word = (2^(crossentropy/word))
                   = 2^(6*(crossentropy/letter))
                   = (2^(crossentropy/letter))^6
                   = (perplexity/letter)^6

   For example, if you are 10-ways perplexed about what each
   letter is, then you will be a million-ways perplexed (10^6)
   about what each word is.

   But wait, I wrote above:
        crossentropy/word = 6*(crossentropy/letter).
   Why is that true?

   Well, suppose there are N words in the corpus.
   Then there must be 6N letters (so that each word is 6 letters on average).
   So total cross-entropy of the corpus can be expressed in 2 different ways:
        (crossentropy/word) * N words  =   (crossentropy/letter) * 6N letters
   Dividing both sides by N gives 
        (crossentropy/word) = 6 * (crossentropy/letter)?

   More intuitively, this is for the same reason that when you take a bus trip,
        cost/week = 7 * cost/day

   If you travel by bus for 100 weeks and it costs you $840 total,
   then the cost was $8.40/week or $1.20/day.  (Maybe some days were
   cheaper and some days were more expensive; this is just the AVERAGE
   cost.)

   In the same way, if the overall log-probability of your test corpus
   is 2^-840, giving a cost of 840 bits to encode the whole corpus, and
   the corpus consisted of 100 words = 600 letters, then the
   cross-entropy was 8.4 bits/word or 1.4 bits/letter.

   Think of the log-probability as the cost of driving through the
   corpus using your model (your bus).  You have to pay to be
   surprised.

   Some portions of the journey cost more bits than others, because



   they are longer, or more surprising in context (driving the bus
   uphill requires more gas!).

   But to get the average cost per word or per letter, you look at the
   total cost and divide by the total number of words or letters.
   This is the cross-entropy of the model.

3. (a)                 HHHH  HHHH  THHH  HTHH  THHT  HTHT
       unsmoothed       1     1    3/4   3/4   1/2   1/2
       add-1 smoothed  5/6   5/6   2/3   2/3   1/2   1/2

   (b) 3/4  (just average the first line above)
       2/3  (just average the second line above)

   (c) Less bias: unsmoothed.

          The unsmoothed technique has no bias at all.  That means
          that ON AVERAGE, it will get the right answer.  In fact, the
          average answer above happened to be exactly correct (my coin
          does in fact have p(H) = 3/4).  So the bias is 0 (formally,
          the bias is the average of (estimated value - correct value)).

          By contrast, the smoothed technique will be biased toward
          giving answers that are closer to 1/2 than the truth,
          because adding 1 to the H and T counts always makes the
          estimate closer to 1/2 than what was observed.

       Less variance: smoothed.

          You will note that in the 6 columns above (alternate
          universes), the smoothed estimates are closer to one another
          than the unsmoothed estimates.  So our estimate varies less
          from universe to universe.

          (Formally, the variance is the average of (estimated value -
          mean estimated value)^2.  Over these 6 universes, that
          average is 0.022, but the true variance of the smoothed
          estimator considers what would happen if you repeated the
          experiment infinitely many times, not just 6.)

       In the unsmoothed case, the AVERAGE estimate (over all
       universes) will actually match the truth.  That is what it
       means for the unsmoothed estimator to be unbiased (0 bias).

       But who cares that the unsmoothed estimate is right on AVERAGE?
       The SINGLE estimate in YOUR universe could be wildly wrong.
       For example, in the first two columns, it estimates p(H)=1 and
       p(T)=0, which would put you in a world of hurt when you
       eventually see a T. You may be better off with the
       smoothed estimate, which goes a little bit wrong on average
       (bias > 0) but is more consistent (low variance) and so
       rarely goes too far wrong.

   (d) Each of the H flips costs -log(0.8) bits under your model, and
       each of the T flips costs -log(0.2) bits.
       All logs are base 2 as usual.

       So the total cost per flip is
         (-4*log(0.8) - 2*log(0.2))/6
       or equivalently
         -(2/3)*log(0.8) - (1/3)*log(0.2)

       Note: If you want to get really fancy, you can notice that
           log(0.8) = log(0.2*4) = log(0.2)+log(4) = log(0.2)+2
       so the answer becomes



         - log(0.2) - 4/3
       or equivalently
         log(5) - 4/3
       where log(5) is a little more than log(4)=2; so the answer is about 1 bit.
       (With a calculator, the exact number turns out to be about 0.99 bit.)

   (e) The problem is that 6 flips is not really enough to see the
       true behavior of the coin.  The easiest solution is to flip (say)
       1000 times instead of 6 times.  A 1000-flip sequence will give
       a lower-variance estimate of cross-entropy, because one 1000-flip
       sequence of this coin is much like another.

       (Since the coin has p(H)=3/4, very close to 3/4 of the 1000 flips
       will be heads.  By contrast, we got a 6-flip sequence HHHHTT in
       which only 2/3 of the flips were heads, and this is far from
       unusual.)

4. The correct answers are a, c, d.

   (a) should look familiar from an exercise on homework 2.
   It can be obtained by backing off from this use of the
   chain rule:

      p(w_0,w_1,w_2,w_3,w_4,w_5,w_6)
       = p(w_6)
         * p(w_5 | w_6)
         * p(w_4 | w_5, w_6)
         * p(w_3 | w_4, w_5, w_6)
         * p(w_2 | w_3, w_4, w_5, w_6)
         * p(w_1 | w_2, w_3, w_4, w_5, w_6)
         * p(w_0 | w_1, w_2, w_3, w_4, w_5, w_6)

   (c) can be obtained by backing off from this use of the chain rule:
      p(w_0,w_1,w_2,w_3,w_4,w_5,w_6)
       = p(w_0)
         * p(w_1 | w_0)
         * p(w_2 | w_0, w_1)
         * p(w_3 | w_0, w_1, w_2)
         * p(w_4 | w_0, w_1, w_2, w_3)
         * p(w_5 | w_0, w_1, w_2, w_3, w_4)
         * p(w_6 | w_0, w_1, w_2, w_3, w_4, w_5)

    The same is true of (d).  If you’re not convinced, notice that to
    back off, we always generalize the condition to the right of the
    bar.  Let’s do this formally.  Let W_0, W_1, W_2, ... be random
    variables denoting the words, and U_i be a random variable
    denoting the number of uncommon words in (W_0,W_1,...W_i).  The
    notation
        p(w_3 | w_0, w_1, w_2)
    is really just shorthand for
        p(W_3 = w_3 | W_0 = w_0, W_1 = w_1, W_2 = w_2)
      = p(W_3 = song | W_0 = BOS, W_1 = Sing, W_2 = a)
      = p(W_3 = song | W_0 = BOS, W_1 = Sing, W_2 = a, U_2 = 1)
    We can back off from this to
      = p(W_3 = song | U_2 = 1)
    as claimed.

    However, (b) is NOT valid.  The problem is that, for example,
    W_2 is generated dependent on W_3 and also vice-versa.  This
    is circular.

    In any valid use of the chain rule, you introduce variables one at
    a time, in some fixed order, with each variable’s value being
    conditioned on only the values already chosen for the previous
    variables -- or, with backoff, on some subset of those values.



    But (b) cannot have been obtained this way, because of the
    circularity noted above.  (W_2 must have been introduced after
    W_3, and also vice-versa, which is impossible.)

5a. Answer 1: Because we have no training data for Synglish.

    (Although it is possible to create such training data.  Just
    simulate the plagiarism process by sampling sentences from C and
    randomly replacing their words with synonyms.  This will give you
    a sample of Synglish, at least if our model of the plagiarism
    process is correct.  Now you can indeed train a log-linear model
    to distinguish between English and Synglish.)

    Answer 2: Even if we have training data, it is not clear what
    features to use.  Whether the log-linear model performs well
    depends on whether it has adequate features.  The method in the
    rest of the problem doesn’t require any feature design -- it
    simply draws the appropriate conclusions from the language models.

5b. Bayes’ Theorem says that the two probabilities in the odds ratio
    are respectively proportional to p(Synglish)*p(W | Synglish) and
    p(English)*p(W | English).  Therefore, their ratio is

           p(Synglish) p(W | Synglish)
           ---------------------------
           p(English)  p(W | English)

    Note that p(Synglish) is our prior probability that a student
    decides to plagiarize.  p(W | Synglish) is given by a model of how
    text is generated in this case.  The problem says that we have
    such a model, and it is called p_Synglish.  So the final answer is

           p(Synglish) p_Synglish(W)
           -------------------------
           p(English)  p_English(W)

    Remark: If you are feeling insecure about the odds ratio above,
    here is a more explicit use of Bayes’ Theorem to get it:

         p(Synglish | W) = p(Synglish) * p(W | Synglish) / p(W)
         p(English | W)  = p(English)  * p(W | English)  / p(W)

    When we take the odds ratio of these two, the identical
    denominators cancel out.  This is very convenient because the
    denominator has the slightly complicated form

         p(W) =  p(Synglish) * p(W | Synglish) + p(English) * p(W | English)

    In general, when using Bayes’ Theorem, it is sometimes easier to
    think about RELATIVE probabilities of different outcomes (odds
    ratios) without bothering to convert them to absolute
    probabilities.

5c. Here is one reasonable answer:

    p_Synglish(W) = sum_V  p(V) * p(w_1 | v_1) * ... * p(w_n | v_n)

    This assumes that for each word, the student makes an INDEPENDENT
    decision about whether and how to replace it.

    Notice that this formula sums over the many ways of getting
       W = In the senior sunshines, this was easy.
    We don’t know whether V was
       V = In the old days, this was easy.
       V = Inside the old days, this was simple.



       V = In the super sunshines, this was simple.
       ...

    So we have to sum over all the possibilities.  What we have really
    done is to build a joint model of p(V,W), and then we obtain
    p(W) = sum_V p(V,W).

    Now, we have to fill in the details.  First of all, what is p(V)?
    This is the English sentence that the cheating student started
    with.  As noted in question 4d, there are at least two reasonable
    models that we could use:

    (A)    p(V) = 1/|C| if V is in C
           p(V) = 0     otherwise

    (B)    p(V) = p_English(V)

    Second, what is p(w_i | v_i)?  Well, the student doesn’t replace
    all the words.  A simple model is that the student has a 90%
    chance of leaving v_i alone (so w_i = v_i), and a 10% chance
    of replacing it with an element of syn(v_i), where all elements
    including v_i itself are equally likely to be chosen.
    Under this model,

     p(w_i | v_i) = 0.9 + 0.1 / syn(v_i) if w_i = v_i
     p(w_i | v_i) = 0.1 / syn(v_i)       if w_i is in syn(v_i) but w_i != v_i
     p(w_i | v_i) = 0                    otherwise

    (Remark: A more complex model might say that if v_i is a function
    word, then the student has a 98% chance of leaving it alone, but
    if v_i is a content word, then the student has only an 80% chance
    of leaving it alone.)

    (These numbers such as 0.9, 0.98, 0.8 don’t have to be hard-coded.
    They could be learned parameters of the model.  But we would need
    Synglish data to learn them from.)

    Note that are other possible models.  For example, another model
    is that the student first chooses k words from the n word sentence
    to replace, and then replaces those.  This means that replacing
    one word makes the student less likely to replace other words.
    That is different from making an independent decision for each
    word.

5d. Model (A) is like a 100-gram model that is trained on C, and just
    memorizes C.

    Model (B) is a 3-gram model that is trained on C, so it may
    generalize to sentences outside of C.

    In general, reducing the value of n in an n-gram model will
    increase the bias (bad) but reduce the variance (good).

    i. Model (B) suffers from greater bias because it pretends that
       English is a trigram model.  Model (B) cannot ever learn
       properties of English like "a sentence almost always has
       exactly one main verb."

       Model (A) is not biased at all, because ON AVERAGE it will give
       you the correct distribution of English.  (If you average over
       many random training sets C.)

    ii. Model (A) suffers from greater variance because the estimates
        are highly sensitive to the particular training set C.  In
        particular, model (A) estimates sentences that are in C to



        have probability 1/|C|, but estimates sentences that are not
        in C to have probabability 0, which is worse by a factor
        of infinity!

        Model (B) smooths the training data somewhat simply by using a
        trigram model, so that it can assign positive probability to
        sentences outside C.  But model (A) doesn’t smooth the
        training data at all.

    iii. There are a lot of options between a 3-gram model and a
         100-gram model.  How about a 4-gram model?  Better yet, how
         about a 100-gram model estimated with backoff smoothing?

         Another possibility is to take a linear interpolation of the
         two models:

            p(V) = lambda * p_A(V) + (1-lambda) * p_B(V)

         But this is probably not as clever as using backoff
         smoothing, which factors p(V) into a product of contextual
         probabilities, each of which can be interpolated to a
         *different* degree depending on how well its context was
         observed in C.

5e. i. We want V that maximizes p(V) * p(W | V).
       (Note that in question 4c, we summed over the possible source
       sentences V, but here we are looking for the single most likely
       one.)

    ii. Decoding.

        (We have a noisy channel model.  V is the source sentence, and
        synonym substitution is the noisy channel that messes up V
        into W.  We observe W and want to "decode" this message to
        recover V.)


