
601.465/665 — Natural Language Processing

Assignment 3: Smoothed Language Modeling

Prof. Jason Eisner — Fall 2018
Due date: Friday 5 October, 2 pm

Probabilistic models are an indispensable part of modern NLP. This assignment will try to
convince you that even simplistic and linguistically stupid models like n-gram models can be very
useful, provided their parameters are estimated carefully. See reading section A.

You now know enough about probability to build and use some trigram language models. You
will experiment with different types of smoothing. You will also get some experience in running
corpus experiments over training, development, and test sets. This is the only assignment in the
course to focus on that.

Reading: Read the handout attached to the end of this assignment!
Collaboration: You may work in teams of up to 2 on this assignment. That is, if

you choose, you may collaborate with 1 partner from the class, handing in a single homework with
multiple names on it. You are expected to do the work together, not divide it up: if you didn’t
work on a question, you don’t deserve credit for it! Your solutions should emerge from collaborative
real-time discussions with both of you present.

Programming language: You may work in any language that you like. However, we will give
you some useful code as a starting point.1 This code is currently provided in Java and Python.
If you want to use another language, then feel free to translate (or ignore?) our short code before
continuing with the assignment. Please send your translation to the course staff so that we can
make it available to the whole class.

On getting programming help: Since this is an upper-level NLP class, not a programming
class, I don’t want you wasting time on low-level issues like how to handle I/O or hash tables
of arrays. If you find yourself wasting time on programming issues, then by all means seek help
from someone who knows the language better! Your responsibility is the NLP stuff—you do have
to design, write, and debug the interesting code and data structures on your own. But I don’t
consider it cheating if another hacker (or the TA) helps you with your I/O routines or language
syntax or compiler warning messages. These aren’t InterestingTM.

How to hand in your written work: Via Gradescope as before. Besides the comments
you embed in your source files, put all other notes, documentation, and answers to questions in a
README.pdf file.

How to test and hand in your code:

• Your code and your trained parameters will need to be placed into a single submission direc-�1

tory, which you will zip and upload separately on Gradescope. We will post more detailed
instructions on Piazza.

1It counts word n-grams in a corpus, using hash tables, and uses the counts to calculate simple probability
estimates. We also supply a method that calls an optimization library to maximize a function.

• For the parts where we tell you exactly what to do, an autograder will check that you got it
right.

• For the open-ended challenge, an autograder will run your system and score its accuracy on
“dev-test” and “final-test” data.

– You should get a decent grade if you do at least as well as the “baseline” system provided
by the TAs. Better systems will get higher grades.

– Each time you submit a version of your system, you’ll be able to see the results on “dev
test” data and how they compare to the baseline system. You’ll also be able to see what
other teams tried and how their accuracies compared to yours. (Teams will use made-up
names, not real names.)

– The “dev-test” results are intended to help you develop your system. Grades will be
based on the “final-test” data that you have never seen.

1. Your starting point is the sample program fileprob.

It can be found on the ugrad machines (ugrad{1,2,...,24}.cs.jhu.edu) in the directory

/usr/local/data/cs465/hw-lm/code

There are subdirectories corresponding to different programming languages. Choose one to
copy as you like. Or, port to a new language.

You’re welcome to develop your code directly on these machines, if you want to avoid trans-
ferring the data.

Each language-specific subdirectory contains an INSTRUCTIONS file explaining how to get the
program running. Those instructions will let you automatically compute the log2-probability
of three sample files (speech/{sample1,sample2,sample3}). Try it!

Next, you should spend a little while looking at those sample files yourself, and in general,
browsing around the /usr/local/data/cs465/hw-lm directory to see what’s there. See read-
ing sections B and C for more information about the datasets.

If a language model is built from the speech/switchboard-small corpus, using add-0.01�2

smoothing, what is the model’s perplexity per word on each of the three sample files? (You
can compute this from the log2-probability that fileprob prints out, as discussed in class and
in your textbook. Use the command wc -w on a file to find out how many words it contains.)

What happens to the log2-probabilities and perplexities if you train instead on the larger�3

switchboard corpus? Why?

2. Modify fileprob to obtain a new program textcat that does text categorization. The two
programs should share code for smoothed language models, so that when you write new
smoothing methods later, they will immediately be available from both programs. See the
INSTRUCTIONS file for programming-language-specific directions about which files to copy,
alter, and submit for this problem.

textcat should be run from the command line almost exactly like fileprob. However, as
additional arguments,

2

• training needs to specify two training corpora rather than one: train1 and train2.

• testing needs to specify the prior probability of train1.

For example, you could train your system with a line like

textcat TRAIN add1 words-10.txt gen spam

which saves the trained models in a file but prints no output. In this example, gen and
spam are the training corpora, corresponding to “genuine” and spam emails. words-10.txt

is a lexicon containing word vectors, which will used by some later smoothing methods (see
problem 6) but is ignored for now.

Then you would test like this:

textcat TEST add1 words-10.txt gen spam 0.7 foo.txt bar.txt baz.txt

which loads the models from before and uses them to classify the remaining files. It should
print output that labels each file with a training corpus name (in this case gen or spam):

spam foo.txt

spam bar.txt

gen baz.txt

1 files were more probably gen (33.33%)

2 files were more probably spam (66.67%)

In other words, it classifies each file by printing its maximum a posteriori class (the file name
of the training corpus that probably generated it). Then it prints a summary.

The number 0.7 on the test command line specifies your prior probability that a test file will
be gen. (See reading section C.3.)

Please use the exact output formats above. If you would like to print any additional output
lines for your own use, please begin each additional line with a # symbol to indicate that it
is a comment. This will tell the autograder to ignore the additional lines.

As reading section D explains, both language models built by textcat should use the same
finite vocabulary. Define this vocabulary to all words that appeared ≥ 3 times in the union of
the two training corpora, plus oov. Your add-λ model doesn’t actually need to store the set
of words in the vocabulary, but it does need to know its size V , because the add-1 smoothing
method estimates p(z | xy) as c(xyz)+1

c(xy)+V . We’ve provided code to find V for you—see the
INSTRUCTIONS file for details.

3. In this question, you will evaluate your textcat program on one of two tasks. You can do
either language identification (the english spanish directory) or else spam detection (the
gen spam directory). Have a look at the development data in both directories to see which
one floats your boat. (Don’t peek at the test data!)

Using add-1 smoothing, run textcat on all the dev data for your chosen task:2

2It may be convenient to use symbolic links to avoid typing long filenames. E.g.,
ln -s /usr/local/data/cs465/hw-lm/english_spanish/train ~/estrain will create a subdirectory estrain

under your home directory; this subdirectory is really just a shortcut to the official training directory.

3

• For the language ID task, classify the files english spanish/dev/english/*/* using
the training corpora en.1K and sp.1K.
Then classify english spanish/dev/spanish/*/* similarly. Note that for this corpus,
the “words” are actually letters. Use 0.7 as your prior probability of English.

• Or, for the spam detection task, classify the files gen spam/dev/gen/* using the training
corpora gen and spam.
Then classify gen spam/dev/spam/* similarly. Use 0.7 as your prior probability of gen.

To simplify the wording below, I’ll assume that you’ve chosen the spam detection task.

(a) From the results, you should be able to compute a total error rate for the technique.�4

That is, what percentage of the dev files were classified incorrectly?

(b) How small do you have to make the prior probability of gen before textcat classifies�5

all the dev files as spam?

(c) Now try add-λ smoothing for λ 6= 1. First, use fileprob to experiment by hand with
different values of λ > 0. (You’ll be asked to discuss in question 4b why λ = 0 probably
won’t work well.)

What is the minimum cross-entropy per token that you can achieve on the gen devel-�6

opment files (when estimating a model from gen training files with add-λ smoothing)?
How about for spam?

Note: To check that you are smoothing correctly, the autograder will run your code on
small training and testing files.

(d) In principle, you could apply different amounts of smoothing to the gen and spam models,
and this might be wise—for example, if their training sets have different rates of novel
words.

However, for simplicity, your textcat program in this assignment smooths both models
in exactly the same way. So what is the minimum cross-entropy per token that you can�7

achieve on all development files together, if both models are smoothed with the same λ?

(To measure cross-entropy per token, find the total number of bits that it takes to predict
all of the development files from their respective models. This means running fileprob

twice: once for the gen data and once for the spam data.3 Add the two results, and then
divide by the total number of tokens in all of the development files.)

What value of λ gave you this minimum cross-entropy? Call this λ∗. (See reading�8

section E for why you are using cross-entropy to select λ∗.)

(e) Each of the dev files has a length. For language ID, the length in characters is given
by the directory name and is also embedded in the filename (as the first number). For
spam detection, the length in words is embedded in the filename (as the first number).

Come up with some way to quantify or graph the relation between file length and the
classification accuracy of add-λ∗ on development data. (Feel free to use Piazza to discuss
how to do this.) Write up your results. To include graphs, see http://cs.jhu.edu/�9

~jason/465/hw-lm/graphing.html.

3This is not quite the right thing to do, actually. Running fileprob on gen uses only a vocabulary derived from
gen, whereas textcat is going to use a larger vocabulary derived from gen ∪ spam. If this were a research paper, I’d
insist on using textcat’s vocabulary to tune λ∗. But for this assignment, take the shortcut and just run fileprob.

4

http://cs.jhu.edu/~jason/465/hw-lm/graphing.html
http://cs.jhu.edu/~jason/465/hw-lm/graphing.html
http://cs.jhu.edu/~jason/465/hw-lm/graphing.html
http://cs.jhu.edu/~jason/465/hw-lm/graphing.html

(f) Now try increasing the amount of training data. (Keep using add-λ∗, for simplicity.)
Compute the overall error rate on dev data for training sets of different sizes. Graph the�10

training size versus classification accuracy.

• For the language ID task, use training corpora of 6 different sizes: en.1K vs. sp.1K
(1000 characters each); en.2K vs. sp.2K (2000 characters each); and similarly for
5K, 10K, 20K, and 50K.

• Or, for the spam detection task, use training corpora of 4 different sizes: gen vs.
spam; gen-times2 vs. spam-times2 (twice as much training data); and similarly for
. . . -times4 and . . . -times8.

4. Reading section F gives an overview of several smoothing techniques beyond add-λ.

(a) At the end of question 2, V was carefully defined to include oov. So if you saw 19,999
different word types in training data, then V = 20, 000. What would go wrong with the�11

UNIFORM estimate if you mistakenly took V = 19, 999? What would go wrong with
the ADDL estimate?

(b) What would go wrong with the ADDL estimate if we set λ = 0? (Remark: This�12

naive historical estimate is commonly called the maximum-likelihood estimate, because
it maximizes the probability of the training corpus.)

(c) Let’s see on paper how backoff behaves with novel trigrams. If c(xyz) = c(xyz′) = 0,�13

then does it follow that p̂(z | xy) = p̂(z′ | xy) when those probabilities are estimated by
BACKOFF ADDL smoothing? In your answer, work out and state the value of p̂(z | xy)
in this case. How do these answers change if c(xyz) = c(xyz′) = 1?

(d) In the BACKOFF ADDL scheme, how does increasing λ affect the probability estimates?�14

(Think about your answer to the previous question.)

5. The code provided to you implements some smoothing techniques, but others are left for you
to implement—currently they just trigger error messages.

Add support for add-λ smoothing with backoff, ADDL BACKOFF. (This should allow both
fileprob and textcat to use that method.) See the INSTRUCTIONS file for language-specific
instructions.

This should be just a few lines of code. You will only need to understand how to look up
counts in the hash tables. Just study how the existing methods do it.

Hint: So p̂(z | xy) should back off to p̂(z | y), which should back off to p̂(z), which backs off
to . . . what?? Figure it out!

You will submit trained add-λ∗ models as in question 3d. For simplicity, just use the same
λ∗ as in that question, even though some other λ might work better with backoff.

6. (a) Add support for the LOGLIN model. See the INSTRUCTIONS file for language-specific in-
structions. Just as add-0.01 smoothing was selected by passing the model name add0.01
to fileprob and textcat, a log-linear model with C = 1 should be selected by passing
the model name loglin1. (C is the regularization coeffcient used during training: see
reading section H.1.)

5

Your code will need to compute p̂(z | xy) using the features in reading section F.5.1. It
should refer to the current parameters ~θ (the entries of the X and Y matrices).

You can use embeddings of your choice from the lexicons directory. (See the README file
in that directory. Make sure to use word embeddings for gen/spam, but character embed-
dings for english/spanish.) These word embeddings were derived from Wikipedia, a
large diverse corpus with lots of useful evidence about the usage of many English words.

(b) Implement stochastic gradient ascent (Algorithm 1 in reading section H.2) to find the X
and Y matrices that maximize F (~θ). See the INSTRUCTIONS file in the code directory for
details. For the autograder’s sake, when loglin is specified on the command line, please
train for E = 10 epochs, use the exact hyperparameters suggested in reading section I.1,
and print output in the following format (this is printing F (~θ) rather than Fi(~θ)):

Training from corpus en.1K

Vocabulary size is 30 types including OOV and EOS

epoch 1: F=-1.83284

epoch 2: F=-1.64174

... [you should print these epochs too]

epoch 10: F=-1.58733

Finished training on 992 tokens

(c) Training a log-linear model takes significantly more time than ADDL smoothing. There-
fore, we recommend that you experiment with the language ID task for this part.

Try your program out first by training a log-linear language model on en.1K, with char-
acter embeddings d = 10 (chars-10.txt) and regularization strength C = 1. As a
check, your numbers should match those shown in 6b above.

You should now be able to measure cross-entropies and text categorization error rates
under your fancy new language model! textcat should work as before. It will construct
two LOGLIN models as above, and then compare the probabilities of a new document
(dev or test) under these models.

Report cross-entropy and text categorization accuracy with C = 1, but also experiment�15

with other values of C > 0, including a small value such as C = 0.05. Let C∗ be the best
value you find. Using C = C∗, play with different embedding dimensions and report the
results. How and when did you use the training, development, and test data? What did
you find? How do your results compare to add-λ backoff smoothing?

(d) Now you get to have some fun! Add some new features to LOGLIN and report the�16

effect on its performance. Some possible features are suggested in reading section J.
You should make at least one non-trivial improvement; you can do more for extra credit,
including varying hyperparameters and training protocols (reading sections I.1 and I.5).

Your improved method should be selected by using the command-line argument improved
(in place of add1, loglin1, etc.). You will submit your system to Gradescope for auto-
grading, including the trained model.

You are free to submit many versions of your system—with different implementations
of improved. All will show up on the leaderboard, with comments, so that you and
your classmates can see what works well. For final grading, the autograder will take the
submitted version of your system that worked best on dev-test data, and then evaluate
its performance on final-test data.

6

(e) Extra credit: In your submission, you can also include a trained model for the spam
detection task. This doesn’t require very much extra work in principle, but training
will be much slower because of the larger vocabulary (slowing down

∑
z′) and the larger

training corpus (slowing down
∑

i). You may need to adjust C, using development data
as usual. See lexicons/README for various lexicons of embeddings that you could try.
To speed up training, you could try a smaller training set, a smaller vocabulary, or a
lower-dimensional embedding. Report what you did.

7. Finally, we turn briefly to speech recognition. In this task, instead of choosing the best model
for a given string, you will choose the best string for a given model.

The data are in the speech subdirectory. As usual, a development set and a test set are
available to you; you may experiment on the development set before getting your final results
from the test set. You should use the switchboard corpus as your training. Note that these
documents contain special “words” <s> and </s> (actually XML tags) that enclose each
utterance. These should be treated as actual words, distinct from the bos and eos symbols
that implicitly enclose each sequence ~w. Here is a sample file (dev/easy/easy025):

8 i found that to be %hesitation very helpful

0.375 -3524.81656881726 8 <s> i found that the uh it’s very helpful </s>

0.250 -3517.43670278477 9 <s> i i found that to be a very helpful </s>

0.125 -3517.19721540798 8 <s> i found that to be a very helpful </s>

0.375 -3524.07213817617 9 <s> oh i found out to be a very helpful </s>

0.375 -3521.50317920669 9 <s> i i’ve found out to be a very helpful </s>

0.375 -3525.89570470785 9 <s> but i found out to be a very helpful </s>

0.250 -3515.75259677371 8 <s> i’ve found that to be a very helpful </s>

0.125 -3517.19721540798 8 <s> i found that to be a very helpful </s>

0.500 -3513.58278343221 7 <s> i’ve found that’s be a very helpful </s>

Each file has 10 lines and represents a single audio-recorded utterance U . The first line of
the file is the correct transcription, preceded by its length in words. The remaining 9 lines
are some of the possible transcriptions that were considered by a speech recognition system—
including the one that the system actually chose to output. You will similarly write a program
that chooses among those 9 candidates.

Consider the last line of the sample file. The line shows a 7-word transcription ~w surrounded
by sentence delimiters <s>. . . </s> and preceded by its length, namely 7. The number
−3513.58 was the speech recognizer’s estimate of log2 p(U | ~w): that is, if someone really
were trying to say ~w, what is the log-probability that it would have come out of their mouth
sounding like U?4 Finally, 0.500 = 4

8 is the word error rate of this transcription, which had
4 errors against the 8-word true transcription on the first line of the file.5

According to Bayes’ Theorem, how should you choose among the 9 candidates? That is, what�17

quantity are you trying to maximize, and how should you compute it? (Hint: You want to
pick a candidate that both looks like English and looks like the audio utterance U . Your
trigram model tells you about the former, and −3513.58 is an estimate of the latter.)

4Actually, the real estimate was 15 times as large. Speech recognizers are really rather bad at estimating log p(U |
~w), so they all use a horrible hack of dividing this value by about 15 to prevent it from influencing the choice of
transcription too much! But for the sake of this question, just pretend that no hack was necessary and −3513.58 was
the actual value of log2 p(U | ~w) as stated above.

5The word error rate of each transcription has already been computed by a scoring program. The correct transcrip-
tion on the first line sometimes contains special notation that the scorer paid attention to. For example, %hesitation
on the first line told the scorer to count either uh or um as correct.

7

Extra Credit

8. Extra credit: Actually implement the speech recognition selection method in question 7, using
one of the language models you’ve already built.

(a) Modify fileprob to obtain a new program speechrec that chooses this best candidate.
As usual, see INSTRUCTIONS for details.

The program should look at each utterance file listed on the command line, choose one
of the 9 transcriptions according to Bayes’ Theorem, and report the word error rate of
that transcription (as given in the first column). Finally, it should summarize the overall
word error rate over all the utterances—the total number of errors divided by the total
number of words in the correct transcriptions (not counting <s> and </s>).

Of course, the program is not allowed to cheat: when choosing the transcription, it must
ignore each file’s first row and first column!

Sample input (please allow this format; switchboard is the training corpus):

speechrec add1 words-10.txt switchboard easy025 easy034

Sample output (please use this format—but you are not required to get the same num-
bers):

0.125 easy025

0.037 easy034

0.057 OVERALL

Notice that the overall error rate 0.057 is not an equal average of 0.125 and 0.037; this
is because easy034 is a longer utterance and counts more heavily.

Hints about how to read the file:

• For all lines but the first, you should read a few numbers, and then as many words
as the integer told you to read (plus 2 for <s> and </s>). Alternatively, you could
read the whole line at once and break it up into an array of whitespace-delimited
strings.

• For the first line, you should read the initial integer, then read the rest of the line.
The rest of the line is only there for your interest, so you can throw it away. The
scorer has already considered the first line when computing the scores that start
each remaining line.
Warning: For the first line, the notational conventions are bizarre, so in this case
the initial integer does not necessarily tell you how many whitespace-delimited
words are on the line. Thus, just throw away the rest of the line! (If necessary,
read and discard characters up through the end-of-line symbol \n.)

(b) What is your program’s overall error rate on the carefully chosen utterances in test/easy?,18

How about on the random sample of utterances in test/unrestricted? Answer for 3-
gram, 2-gram, and 1-gram models.

To get your answer, you need to choose a smoothing method, so pick one that seems
to work well on the development data dev/easy and dev/unrestricted. Be sure to,19

tell us which method you picked and why! What would be an unfair way to choose a
smoothing method?

Hint: Some options for handling the 2-gram and 1-gram models:

8

• You’ll already have a probs(x, y, z) function. You could add probs(y, z) and probs(z).

• You could give probs(x, y, z) an extra argument that controls which kind of model
it computes. For example, for a 2-gram model, it would ignore x.

9. Extra credit: We have been assuming a finite vocabulary by replacing all unknown words with
a special oov symbol. But an alternative is an open-vocabulary language model (reading
section D.5).

Devise a sensible way to estimate the word trigram probability p(z | xy) by backing off to a,20

letter n-gram model of z if z is an unknown word. Also describe how you would train the
letter n-gram model.

Just give the formulas for your estimate—you don’t have to implement and test your idea,
although that would be nice too!

Notes:

• x and/or y and/or z may be unknown; be sure you make sensible estimates of p(z | xy)
in all these cases

• be sure that
∑

z p(z | xy) = 1

10. Extra credit: Previous students had to implement Witten-Bell backoff instead of a log-linear
model. You are welcome to do this too, for extra credit. Even if you don’t do the whole
problem, it’s worth spending a little time reading it.

Witten-Bell backoff as described in reading section F.4 is conceptually pretty simple. The
tricky part will be finding the right α values to make the probabilities sum to 1. You have to
work out a few formulas, and then rearrange the loops in order to reduce a large runtime to
O(N).

(a) Witten-Bell discounting will discount some probabilities more than others. When is,21

pdisc(z | xy) very close to the naive historical estimate c(xyz)/c(xy)? When is it far less
(i.e., heavily discounted)? Give a practical justification for this policy.

(b) What if we changed the Witten-Bell discounting formulas to make all T values be zero?,22

What would happen to the discounted estimates? What would the α values have to be,
in order to make the distributions sum to 1?

(c) Observe that the set of zero-count words {z : c(z) = 0} has size V − T ().6 What is the,23

simple formula for α()?

(d) Now let’s consider α(xy), which is to be set so that
∑

z p(z | xy) = 1. From (7) we see

6You might think that this set is just {oov}, but that depends on how the finite vocabulary was chosen. There
might be other zero-count words as well: this is true for your gen and spam (or english and spanish) models, since
the vocabulary is taken from the union of both corpora. Conversely, it is certainly possible for c(oov) > 0, since our
vocabulary omits rarely observed words, treating them as oov when they appear in training.

9

that

∑
z

p̂(z | xy) =

 ∑
z: c(xyz)>0

pdisc(z | xy)

+

α(xy) ·
∑

z: c(xyz)=0

p̂(z | y)

 (1)

=

 ∑
z: c(xyz)>0

pdisc(z | xy)

+ α(xy) ·

1−
∑

z: c(xyz)>0

p̂(z | y)

 (2)

To make
∑

z p̂(z | xy) = 1, solving the equation shows that you will need7

α(xy) =
1−

∑
z: c(xyz)>0 pdisc(z | xy)

1−
∑

z: c(xyz)>0 p̂(z | y)
(3)

Got that? Now, step (2) above assumed that
∑

z p̂(z | y) = 1. Give a formula for α(y),24

that ensures this. The formula will be analogous to the one we just derived for α(xy).
(Hint: You’ll want to sum over z such that c(yz) > 0.)

(e) Finally, we should figure out how the above formula for α(xy) can be computed efficiently.
Smoothing code can take up a lot of the execution time. It’s always important to look
for ways to speed up critical code—in this case by cleverly rearranging the formula. The
slow part is those two summations . . .

i. Simplify the subexpression
∑

z: c(xyz)>0 pdisc(z | xy) in the numerator, by using the,25

definition of pdisc and any facts you know about c(xy) and c(xyz). You should be
able to eliminate the

∑
sign altogether.

ii. Now consider the
∑

sign in the denominator. Argue that c(yz) > 0 for any z such,26

that c(xyz) > 0. That allows the following simplification:
∑

z: c(xyz)>0 p(z | y) =∑
z: c(xyz)>0 pdisc(z | y) =

∑
z: c(xyz)>0 c(yz)

c(y)+T (y) .

(Warning: You can’t use this simplification when it leads to 0/0. But in that special
case, what can you say about the context xy? What follows about α(xy)?)

iii. The above simplification still leaves you with a sum in the denominator. But you
can compute this sum efficiently in advance.
Write a few lines of pseudocode that show how to compute

∑
z: c(xyz)>0 c(yz) for,27

every observed bigram xy. You can compute and store these sums immediately
after you finish reading in the training corpus. At that point, you will have a
list of trigrams xyz that have actually been observed (the provided code helpfully
accumulates such a list for you), and you will know c(yz) for each such trigram.
Armed with these sums, you will be able to compute α(xy) in O(1) time when you
need it during testing. You should not have to do any summation during testing.

Remark: Of course, another way to avoid summation during testing would be for
training to precompute p̂(z | xy) for all possible trigrams xyz. However, since
there are V 3 possible trigrams, that would take a lot of time and memory. Instead,

7Should we worry about division by 0 (in which case the equation has no solution)? Since p(z | y) is smoothed to
be > 0 for all z, this problem occurs if and only if every z in the vocabulary, including oov, has appeared following
xy. Fortunately, you defined the vocabulary to include all words that were actually observed, so no oov words can
ever have appeared following xy. So the problem cannot occur for you.

10

you’d like training for an n-gram model to only take time about proportional to
the number of tokens N in the training data (which is usually far less than V n,
and does not grow as you increase n), and memory that is about proportional to
the number of n-gram types that are actually observed in training (which is even
smaller than N). That’s what you just achieved by rearranging the computation.

(f) Explain how to compute the formula for α(y) efficiently. Just use the same techniques,28

as you did for α(xy) above. This is easy, but it’s helpful to write out the solution before
you start coding.

(g) If you’re curious, implement Witten-Bell backoff using the techniques above. How does,29

this smoothing method (which does not use any λ) affect your error rate compared to
add-λ backoff?

Hint: Here are two techniques to check that you are computing the α values correctly:

• Write a loop that checks that
∑

z p̂(z | xy) = 1 for all x, y. (This check will slow
things down since it takes O(V 3) time, so only use it for testing and debugging.)

• Use a tiny 5-word training corpus. Then you will be able to check your smoothed
probabilities by hand.

(h) Problem 10a asked you to justify Witten-Bell discounting. Suppose you redefined T (xy)
in Witten-Bell discounting to be the number of word types z that have been observed
exactly once following xy in the training corpus. What is the intuition behind this,30

change? Why might it help (or hurt, or not matter much)? If you dare, try it out and
report how it affects your results.

11

601.465/665 — Natural Language Processing

Reading for Assignment 3: Smoothed Language Modeling

Prof. Jason Eisner — Fall 2018

We don’t have a required textbook for this course. Instead, handouts like this one are the main
readings. This handout accompanies assignment 3, which refers to it.

A Are trigram models useful?

Why build n-gram models when we know they are a poor linguistic theory? Answer: A linguistic
system without statistics is often fragile, and may break when run on real data. It will also be
unable to resolve ambiguities. So our first priority is to get some numbers into the system somehow.
An n-gram model is a starting point, and may get reasonable results even though it doesn’t have
any real linguistics yet.

Speech recognition. Speech recognition systems have made heavy use of trigram models for
decades. Alternative approaches that don’t look at the trigrams do worse. One can do better
by building fancy language models that combine trigrams with syntax, topic, and so on. But
only a little better—dramatic improvements over trigram models are hard to get. In the language
modeling community, a rule of thumb was that you had enough for a Ph.D. dissertation if you
had managed to reduce a standard trigram model’s perplexity per word by 10% (equivalent to a
cross-entropy reduction of just 0.152 bits per word).

Machine translation. In the same way, machine translation (MT) systems have often included
5-gram models trained on quite massive amounts of data. An MT system has to generate a new
fluent sentence of English, and 5-grams do a better job than 3-grams of memorizing common phrases
and local grammatical phenomena.

Why doesn’t a speech recognition system need 5-grams? Because it is not generating a new
sentence. It only has to determine what words have already been said by an English speaker. A
3-gram model helps to choose between“flower,” “flour,” and “floor” by using one word of context
on either side. That already provides most of the value that we can get out of local context. Going
to a 5-gram model wouldn’t help too much with this choice, because it still wouldn’t look at enough
of the sentence to determine whether we’re talking about gardening, baking, or cleaning.

Neural language models. In the 2010’s, language models based on recurrent neural networks
finally started to show dramatic gains over trigram models. These neural language models are
much slower to train, but they are not limited to trigrams, and can learn to notice complex ways
in which the context affects the next word. We won’t quite be covering them in this course, but
the starting point is the word embeddings used in this assignment and the previous one.

Neural language models have become increasingly popular since the mid-2010’s. However,
cleverly smoothed 7-gram models can still do about as well by looking at lots of features of the
previous 6-gram, according to Pelemans et al. (2016).

R-1

https://transacl.org/ojs/index.php/tacl/article/view/561

B Boundary symbols

Remember from the previous assignment that a language model estimates the probability of any
word sequence ~w. In a trigram model, we use the chain rule and backoff to assume that

p(~w) =

N∏
i=1

p(wi | wi−2, wi−1)

with start and end boundary symbols handled as in the previous assignment.
In other words, wN = eos (“end of sequence”), while for i < 1, wi = bos (“beginning of

sequence”). Thus, ~w consists of N − 1 words plus an eos symbol. Notice that we do not generate
bos but condition on it (it was always there). Conversely, we do generate eos but never condition
on it (nothing follows it). The boundary symbols bos,eos are special symbols that do not appear
among w1 . . . wN−1.

In assignment 3, we will consider every file to implicitly start with bos and end with eos. A
file might be a sentence, or an email message, or a fragment of text.

Some files also contain sentence boundary symbols <s> and </s>. You should consider these to
be just ordinary words.

C Datasets for Assignment 3

Assignment 3 will have corpora for three tasks: language identification, spam detection, and speech
recognition. Each corpus has a README file that you should look at.

C.1 The train/dev/test split

Each corpus has already been divided for you into training, development, and test sets, which are
in separate directories.

You will collect counts on the training set, tune the “hyperparameters” like λ to maximize
performance on the development set, and then evaluate your performance on the test set.

In this case, we actually have two test sets.

• The “dev test” set is for use as you develop your system. If you experiment on it repeatedly,
there is a danger that you will “overfit” to it—that is, you might find your way to a method
that seems really good, but is actually only good for that particular dataset, not in general.

• Thus, for fairness, we have to find out whether your system can do well in a blind test, when
we run it on data you’ve never seen. Your grade will therefore be determined based on a new
“final test” set.

C.2 Domain mismatch

In this assignment, the training set is unfortunately a bit different from the others. To simplify the
command-line syntax for you, I’ve assumed that the training set consists of a single big file. That
means that there is only one bos and one eos in the whole training set.

By contrast, bos and eos are much more common in the dev set and the test sets. This is a
case of domain mismatch, where the training data is somewhat unlike the test data.

R-2

Domain mismatch is a common source of errors in applied NLP. In this case, the only practical
implication is that your language models won’t do a very good job of modeling what tends to
happen at the very start or very end of a file—because it has seen only one file!

C.3 Class ratios

In the assignment, you’ll have to specify a prior probability that a file will be genuine email (rather
than spam) or English (rather than Spanish). In other words, how often do you expect the real
world to produce genuine email or English in your test data? We will ask you to guess 0.7.

Of course, your system won’t know the true fraction on test data, because it doesn’t know the
true classes—it is trying to predict them.

We can try to estimate the fraction from training data. It happens that 2
3 of the documents are

genuine email, and 1
2 are English.1 In this case, the prior probability is a parameter of the model,

to be estimated from training data (with smoothing!) like any other parameter.
But if you think that test data might have a different rate of spam or Spanish than training

data, then the prior probability is not necessarily something that you should represent within the
model and estimate from training data. Instead it can be used to represent your personal guess
about what you think test data will be like.

Indeed, in the assignment, you’ll use training data only to get the smoothed language models,
which define the likelihood of the different classes. This leaves you free to specify your prior
probability of the classes on the command line. This setup would let you apply the system to
different test datasets about which you have different prior beliefs—the spam-infested email account
that you abandoned, versus your new private email account that only your family knows about.

Does it seem strange to you that a guess or assumption might have a role in statistics? That
is actually central to the Bayesian view of statistics—which says that you can’t get something
for nothing. Just as you can’t get theorems without assuming axioms, you can’t get posterior
probabilities without assuming prior probabilities.

D The vocabulary

D.1 Choosing a finite vocabulary

All the smoothing methods assume a finite vocabulary, so that they can easily allocate probability
to all the words. But is this assumption justified? Aren’t there infinitely many potential words
of English that might show up in a test corpus (like xyzzy and JacrobinsteinIndustries and
fruitylicious)?

Yes there are . . . so we will force the vocabulary to be finite by a standard trick. Choose some
fixed, finite vocabulary at the start. Then add one special symbol oov that represents all other
words. You should regard these other words as nothing more than variant spellings of the oov
symbol.

Note that OOV stands for “out of vocabulary,” not for “out of corpus,” so OOV words may
have token count > 0 and in-vocabulary words may have count 0.

1These numbers are actually derived from dev data rather than training data, because of the domain mismatch
issue above—the training data are not divided into documents.

R-3

D.2 Consequences for evaluating a model

For example, when you are considering the test sentence

i saw snuffleupagus on the tv

what you will actually compute is the probability of

i saw oov on the tv

which is really the total probability of all sentences of the form

i saw [some out-of-vocabulary word] on the tv

Admittedly, this total probability is higher than the probability of the particular sentence involving
snuffleupagus. But in most of this assignment, we only wish to compare the probability of
the snuffleupagus sentence under different models. Replacing snuffleupagus with oov raises the
sentence’s probability under all the models at once, so it need not invalidate the comparison.2

D.3 Comparing apples to apples

We do have to make sure that if snuffleupagus is regarded as oov by one model, then it is regarded
as oov by all the other models, too. It’s not appropriate to compare pmodel1(i saw oov on the tv)
with pmodel2(i saw snuffleupagus on the tv), since the former is actually the total probability
of many sentences, and so will tend to be larger.

So all the models must have the same finite vocabulary, chosen up front. In principle, this
shared vocabulary could be any list of words that you pick by any means, perhaps using some
external dictionary.

Even if the context “oov on” never appeared in the training corpus, the smoothing method
is required to give a reasonable value anyway to p(the | oov, on), for example by backing off to
p(the | on).

Similarly, the smoothing method must give a reasonable (non-zero) probability to p(oov |
i, saw). Because we’re merging all out-of-vocabulary words into a single word oov, we avoid
having to decide how to split this probability among them.

D.4 How to choose the vocabulary

How should you choose the vocabulary? For this assignment, simply take it to be the set of word
types that appeared ≥ 3 times anywhere in training data. Then augment this set with a special
oov symbol. Let V be the size of the resulting set (including oov). Whenever you read a training
or test word, you should immediately convert it to oov if it’s not in the vocabulary. This is fast
to check if you store the vocabulary in a hash set.

To help you understand/debug your programs, we have grafted brackets onto all out-of-vocabulary
words in one of the datasets (the speech directory, where the training data is assumed to be
train/switchboard). This lets you identify such words at a glance. In this dataset, for example,
we convert uncertain to [uncertain]—this doesn’t change its count, but does indicate that this
is one of the words that your code ought to convert to oov.

2Problem 9 explores a more elegant approach that may also work better for text categorization.

R-4

D.5 Open-vocabulary language modeling

In this assignment, we assume a fixed finite vocabulary. However, an open-vocabulary language
model does not limit in advance to a finite vocabulary. Question 9 (extra credit) explores this
possibility.

An open-vocabulary model must be able to assign positive probability to any word—that is, to
any string of letters that might ever arise. If the alphabet is finite, you could do this with a letter
n-gram model!

Such a model is sensitive to the spelling and length of the unknown word. Longer words will
generally receive lower probabilities, which is why it is possible for the probabilities of all unknown
words to sum to 1, even though there are infinitely many of them. (Just as 1

2 + 1
4 + 1

8 + · · · = 1.)

E Performance metrics

In this assignment, you will measure your performance in two ways. To measure the predictive
power of the model, you will use cross-entropy (per token). To measure how well the model does
at a task, you will use error rate (per document). In both cases, smaller is better.

Error rate may be what you really care about! However, it doesn’t give a lot of information on
a small dev set. If your dev set has only 100 documents, then the error rate can only be one of the
numbers { 0

100 ,
1

100 , . . . ,
100
100}. It can tell you if your changes helped by correcting a wrong answer.

But it can’t tell you that your changes were “moving in the right direction” by merely increasing
the probability of right answers.

In particular, for some of the tasks we are considering here, the error rate is just not very
sensitive to the smoothing parameter λ: there are many λ values that will give the same integer
number of errors on dev data. That is why you will use cross-entropy to select your smoothing
parameter λ on dev data: it will give you clearer guidance.

E.1 Other possible metrics

As an alternative, could you devise a continuously varying version of the error rate? Yes, because
our system3 doesn’t merely compute a single output class for each document. It constructs a
probability distribution over those classes, using Bayes’ Theorem. So we can evaluate whether that
distribution puts high probability on the correct answer.

• One option is the expected error rate. Suppose document #1 is gen. If the system thinks
p(gen | document1) = 0.49, then sadly the system will output spam, which ordinary error
rate would count as 1 error. But suppose you pretend—just for evaluation purposes—that
the system chooses its output randomly from its posterior distribution (“stochastic decoding”
rather than “MAP decoding”). In that case, it only has probability 0.51 of choosing spam, so
the expected number of errors on this document is only 0.51. Partial credit!

Notice that expected error rate gives us a lot of credit for increasing p(gen | document1) from
0.01 to 0.49, and little additional credit for increasing it to 0.51. By contrast, the actual
error rate only gives us credit for the increase from 0.49 to 0.51, since that’s where the actual
system output would change.

3Unlike rule-based classifiers and some other ML classifiers.

R-5

• Another continuous error metric is the log-loss, which is the system’s expected surprisal about
the correct answer. The system’s surprisal on document 1 is − log2 p(gen | document1) =
− log2 0.49 = 1.03 bits.

Both expected error rate and log-loss are averages over the documents that are used to
evaluate. So document 1 contributes 0.51 errors to the former average, and contributes 1.03
bits to the latter average.

In general, a single document contributes a number in [0, 1] to the expected error rate, but a
number in [0,∞] to the log-loss. In particular, a system that thinks that p(gen | document1) =
0 is infinitely surprised by the correct answer (− log2 0 =∞). So optimizing for log-loss would
dissuade you infinitely strongly from using this system . . . basically on the grounds that a
system that is completely confident in even one wrong answer can’t possibly have the correct
probability distribution. To put it more precisely, if the dev set has size 100, then changing
the system’s behavior on a single document can change the error rate or the expected error
rate by at most 1

100—after all, it’s just one document!—whereas it can change the log-loss by
an unbounded amount.

What is the relation between the log-loss and cross-entropy metrics? They are both average
surprisals.4 However, they are very different:

metric what it evaluates probability used units long docs count more?

log-loss the whole classification system p(gen | document1) bits per document no
cross-entropy the gen model within the system p(document1 | gen) bits per gen token yes

E.2 Generative vs. discriminative

The error rate, expected error rate, and log-loss are all said to be discriminative metrics because
they measure how well the system discriminates between correct and incorrect classes. By contrast,
the cross-entropy is a generative metric because it measures how good the system would be at
randomly generating the observed data.

Methods for setting hyperparameters or parameters are said to be generative or discriminative
according to whether they optimize a generative or discriminative metric.

A generative model includes a probability distribution p(input) that accounts for the input
data. Thus, this assignment uses generative models (language models). A discriminative model
only tries to predict output from input, possibly using p(output | input). Thus, a conditional
log-linear model for text classification would be discriminative. A discriminative model or training
procedure focuses less on explaining the input data and more on solving a particular task—less
science, more engineering.

F Smoothing techniques

Here are the smoothing techniques we’ll consider, writing p̂ for our smoothed estimate of p.

4Technically, you could regard the log-loss as a conditional cross-entropy . . . to be precise, it’s the conditional
cross-entropy between empirical and system distributions over the output class. By contrast, the metric you’ll use
on this assignment is the cross-entropy between empirical and system distributions over the input text. The output
and the input are different random variables, so log-loss is quite different from the cross-entropy we’ve been using to
evaluate a language model!

R-6

F.1 Uniform distribution (UNIFORM)

p̂(z | xy) is the same for every xyz; namely,

p̂(z | xy) = 1/V (4)

where V is the size of the vocabulary including oov.

F.2 Add-λ (ADDL)

Add a constant λ ≥ 0 to every trigram count c(xyz):

p̂(z | xy) =
c(xyz) + λ

c(xy) + λV
(5)

where V is defined as above. (Observe that λ = 1 gives the add-one estimate. And λ = 0 gives the
naive historical estimate c(xyz)/c(xy).)

F.3 Add-λ backoff (BACKOFF ADDL)

Suppose both z and z′ have rarely been seen in context xy. These small trigram counts are
unreliable, so we’d like to rely largely on backed-off bigram estimates to distinguish z from z′:

p̂(z | xy) =
c(xyz) + λV · p̂(z | y)

c(xy) + λV
(6)

where p̂(z | y) is a backed-off bigram estimate, which is estimated recursively by a similar formula.
(If p̂(z | y) were the UNIFORM estimate 1/V instead, this scheme would be identical to ADDL.)

So the formula for p̂(z | xy) backs off to p̂(z | y), whose formula backs off to p̂(z), whose formula
backs off to . . . what?? Figure it out!

F.4 Witten-Bell backoff (BACKOFF WB)

As mentioned in class, this is a backoff scheme where we explicitly reduce (“discount”) the prob-
abilities of things we’ve seen, and divide up the resulting probability mass among only the things
we haven’t seen.

p̂(z | xy) =

{
pdisc(z | xy) if c(xyz) > 0
α(xy)p̂(z | y) otherwise

(7)

p̂(z | y) =

{
pdisc(z | y) if c(yz) > 0
α(y)p̂(z) otherwise

(8)

p̂(z) =

{
pdisc(z) if c(z) > 0
α() otherwise

(9)

R-7

Some new notation appears in the above formulas. The discounted probabilities pdisc are defined
by using the Witten-Bell discounting technique:

pdisc(z | xy) =
c(xyz)

c(xy) + T (xy)
(10)

pdisc(z | y) =
c(yz)

c(y) + T (y)
(11)

pdisc(z) =
c(z)

c() + T ()
(12)

where

• T (xy) is the number of different word types z that have been observed to follow the context
xy

• T (y) is the number of different word types z that have been observed to follow the context y

• T () is the number of different word types z that have been observed at all (this is the same
as V except that it doesn’t include oov)

• c() is the number of tokens in the training corpus, otherwise known as N . This count includes
the eos token at the end of each sequence.

Given all the above definitions, the values α(xy), α(y), and α() will be chosen so as to ensure
that

∑
z p̂(z | xy) = 1,

∑
z p̂(z | y) = 1, and

∑
z p̂(z) = 1, respectively. (You are defining probability

distributions over the vocabulary, including oov, so each of these summations will have V terms.)
Question 10 (extra credit) challenges you to work out the details.

F.5 Conditional log-linear modeling (LOGLIN)

In the previous assignment, you learned how to construct log-linear models. Let’s restate that
construction in our current notation.5

Given a trigram xyz, our model p̂ is defined by

p̂(z | xy)
def
=

u(xyz)

Z(xy)
(13)

where

u(xyz)
def
= exp

∑
k

θk · fk(xyz)

 = exp
(
~θ · ~f(xyz)

)
(14)

Z(xy)
def
=
∑
z

u(xyz) (15)

Here ~f(xyz) is the feature vector extracted from xyz, and ~θ is the model’s weight vector.
∑

z sums
over the V words in the vocabulary (including oov) in order to ensure that you end up with a
probability distribution over this chosen vocabulary. That is the goal of all these language models;
you saw a similar

∑
z in BACKOFF WB.

5Unfortunately, the tutorial also used the variable names x and y, but to mean something different than they
mean in this assignment. The previous notation is pretty standard in machine learning.

R-8

F.5.1 Bigrams and skip-bigram features from word embeddings

What features should we use in the log-linear model?
A natural idea is to use one binary feature for each specific unigram z, bigram yz, and trigram

xyz (see reading section J.2 below).
Instead, however, let’s start with the following model based on word embeddings:

u(xyz)
def
= exp

(
~x>X~z + ~y>Y ~z

)
(16)

where the vectors ~x, ~y, ~z are specific d-dimensional embeddings of the word types x, y, z, while X,Y
are d× d matrices. The > superscript is the matrix transposition operator, used here to transpose
a column vector to get a row vector.

This model may be a little hard to understand at first, so here’s some guidance.

What’s the role of the word embeddings? Note that the language model is still defined as
a conditional probability distribution over the vocabulary. The lexicon, which you will specify on
the command line, is merely an external resource that lets the model look up some attributes of
the vocabulary words. Just like the dictionary on your shelf, it may also list information about
some words you don’t need, and it may lack information about some words you do need. In short,
the existence of a lexicon doesn’t affect the interpretation of

∑
z in (15): that formula remains the

same regardless of whether the model’s features happen to consult a lexicon!
For oov, or for any other type in your vocabulary that has no embedding listed in the lexicon,

your features should back off to the embedding of ool—a special “out of lexicon” symbol that
stands for “all other words.” ool is listed in the lexicon, just as oov is included in the vocabulary.

Note that even if an specific out-of-vocabulary word is listed in the lexicon, you must not use
that listing.6 For an out-of-vocabulary word, you are supposed to be computing probabilities like
p(oov | xy), which is the probability of the whole oov class—it doesn’t even mention the specific
word that was replaced by oov. (See reading section D.2.)

Is this really a log-linear model? Now, what’s up with (16)? It’s a valid formula: you can al-
ways get a probability distribution by defining p̂(z | xy) = 1

Z(xy) exp(any function of x, y, z that you like)!

But is (16) really a log-linear function? Yes it is! Let’s write out those d-dimensional vector-matrix-
vector multiplications more explicitly:

u(xyz) = exp

 d∑
j=1

d∑
m=1

xjXjmzm +
d∑
j=1

d∑
m=1

yjYjmzm

 (17)

= exp

 d∑
j=1

d∑
m=1

Xjm · (xjzm) +

d∑
j=1

d∑
m=1

Yjm · (yjzm)

 (18)

6This issue would not arise if we simply defined the vocabulary to be the set of words that appear in the lexicon.
This simple strategy is certainly sensible, but it would slow down normalization because our lexicon is quite large.

R-9

This does have the log-linear form of (14). Suppose d = 2. Then implicitly, we are using a weight
vector ~θ of length d2 + d2 = 8, defined by

〈 θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 〉
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
〈X11 , X12 , X21 , X22 , Y11 , Y12 , Y21 , Y22 〉

(19)

for a vector ~f(xyz) of 8 features

〈f1(xyz), f2(xyz), f3(xyz), f4(xyz), f5(xyz), f6(xyz), f7(xyz), f8(xyz) 〉
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

〈 x1z1, x1z2, x2z1, x2z2, y1z1, y1z2, y2z1, y2z2 〉
(20)

Remember that the optimizer’s job is to automatically manipulate some control sliders. This
particular model with d = 2 has a control panel with 8 sliders, arranged in two d×d grids (X and Y).
The point is that we can also refer to those same 8 sliders as θ1, . . . θ8 if we like. What features are
these sliders (weights) be connected to? The ones in (20): if we adopt those feature definitions, then
our general log-linear formula (14) will yield up our specific model (18) (= (16)) as a special case.

As always, ~θ is incredibly important: it determines all the probabilities in the model.

Is this a sensible model? The feature definitions in (20) are pairwise products of embedding
dimensions. Why on earth would such features be useful? First imagine that the embedding
dimensions were bits (0 or 1). Then x2z1 = 1 iff (x2 = 1 and z1 = 1), so you could think of
multiplication as a kind of feature conjunction. Multiplication has a similar conjunctive effect even
when the embedding dimensions are in R. For example, suppose z1 > 0 indicates the degree to which
z is a human-like noun, while x2 > 0 indicates the degree to which x is a verb whose direct objects
are usually human.7 Then the product x2z1 will be larger for trigrams like kiss the baby and
marry the policeman. So by learning a positive weight X21 (nicknamed θ3 above), the optimizer
can drive p̂(baby | kiss the) higher, at the expense of probabilities like p̂(benzene | kiss the).
p̂(bunny | kiss the) might be somewhere in the middle since bunnies are a bit human-like and
thus bunny1 might be numerically somewhere between baby1 and benzene1.

Example. As an example, let’s calculate the letter trigram probability p̂(s | er). Suppose the
relevant letter embeddings and the feature weights are given by

~e =

[
−.5
1

]
, ~r =

[
0
.5

]
, ~s =

[
.5
.5

]
, X =

[
1 0
0 .5

]
, Y =

[
2 0
0 1

]
7You might wonder: What if the embedding dimensions don’t have such nice interpretations? What if z1 doesn’t

represent a single property like humanness, but rather a linear combination of such properties? That actually
doesn’t make much difference. Suppose z can be regarded as Mz̃ where z̃ is a more interpretable vector of properties.
(Equivalently: each zj is a linear combination of the properties in z̃.) Then x>Xz can be expressed as (Mx̃)>X(Mỹ) =
x̃>(M>XM)ỹ. So now it’s X̃ = M>XM that can be regarded as the matrix of weights on the interpretable products.
If there exists a good X̃ and M is invertible, then there exists a good X as well, namely X = (M>)−1X̃M−1.

R-10

First, we compute the unnormalized probability.

u(ers) = exp

[−.5 1]

[
1 0
0 .5

][
.5
.5

]
+ [0 .5]

[
2 0
0 1

][
.5
.5

]
= exp(−.5× 1× .5 + 1× .5× .5 + 0× 2× .5 + .5× 1× .5) = exp 0.25 = 1.284

We then normalize u(ers).

p̂(s | er)
def
=

u(ers)

Z(er)
=

u(ers)

u(era) + u(erb) + · · ·+ u(erz)
=

1.284

1.284 + · · ·
(21)

Speedup. The example illustrates that the denominator

Z(xy) =
∑
z′

u(xyz′) =
∑
z′

exp
(
~x>X~z′ + ~y>Y ~z′

)
(22)

is expensive to compute because of the summation over all z′ in the vocabulary. Fortunately, you
can compute x>Xz′ ∈ R simultaneously for all z′.8 The results can be found as the elements of the
row vector x>XE, where E is a d × V matrix whose columns are the embeddings of the various
words z′ in the vocabulary. This is easy to see, and computing this vector still requires just as
many scalar multiplications and additions as before . . . but we have now expressed the computation
as a pair of vector-matrix mutiplications, (x>X)E, which you can perform using a matrix library
(such as numpy or jblas). That can be considerably faster than looping over all z′. That is because
the library call is highly optimized and exploits hardware support for matrix operations (e.g.,
parallelism).

F.6 Other smoothing schemes

Numerous other smoothing schemes exist. In past years, for example, our course assignments
have used Katz backoff with Good-Turing discounting. (We discussed Good-Turing in class: it is
attractive but a bit tricky in practice, and has to be combined with backoff.)

In practical settings, the most popular n-gram smoothing scheme is something called modified
Kneser-Ney. One can also use a more principled Bayesian method based on the hierarchical Pitman-
Yor process—the result is very close to modified Kneser-Ney.

Remember: While these techniques are effective, a really good language model would do more
than just smooth n-gram probabilities well. To predict a word sequence as accurately as a human
can finish another human’s sentence, it would go beyond the whole n-gram family to consider
syntax, semantics, and topic. This is an active area of research that uses grammars, recurrent
neural networks, and other techniques.

G Safe practices for working with log-probabilities

G.1 Use natural log for internal computations

In this assignment, as in most of mathematics, log means loge (the log to base e, or natural log,
sometimes written ln). This is also the standard behavior of the log function in most programming
languages.

8The same trick works for y>Y z′, of course.

R-11

https://stackoverflow.com/a/21563036
http://schabby.de/jblas-simple-example/

With natural log, the calculus comes out nicely, thanks to the fact that d
dZ logZ = 1

Z . It’s
only with natural log that the gradient of the log-likelihood of a log-linear model can be directly
expressed as observed features minus expected features.

On the other hand, information theory conventionally talks about bits, and quantities like en-
tropy and cross-entropy are conventionally measured in bits. Bits are the unit of − log2 probability.
A probability of 0.25 is reported “in negative-log space” as − log2 0.25 = 2 bits. Some people do
report that value more simply as − loge 0.25 = 1.386 nats. But it is more conventional to use bits
as the unit of measurement. (The term “bits” was coined in 1948 by Claude Shannon to refer to
“binary digits,” and “nats” was later defined by analogy to refer to the use of natural log instead
of log base 2. The unit conversion factor is 1

log 2 ≈ 1.443 bits/nat.)
Even if you are planning to print bit values, it’s still wise to standardize on loge-probabilities

for all of your formulas, variables, and internal computations. Why? They’re just easier! If you
tried to use negative log2-probabilities throughout your computation, then whenever you called the
log function or took a derivative, you’d have to remember to convert the result. It’s too easy to
make a mistake by omitting this step or by getting it wrong. So the best practice is to do this
conversion only when you print: at that point convert your loge-probability to bits by dividing by
− log 2 ≈ −0.693. This is a unit conversion.

G.2 Avoid exponentiating big numbers (not necessary for this assignment)

Log-linear models require calling the exp function. Unfortunately, exp(710) is already too large
for a 64-bit floating-point number to represent, and will generate a runtime error (“overflow”).
Conversely, exp(−746) is too close to 0 to represent, and will simply return 0 (“underflow”).

That shouldn’t be a problem for this assignment if you stick to the language ID task. If you
are experiencing an overflow issue there, then your parameters probably became too positive or too
negative as you ran stochastic gradient descent. That could mean that your stepsize was too large,
or more likely, that you have a bug in your computation of the gradient.

But to avoid these problems elsewhere—including with the spam detection task—standard trick
is to represent all values “in log-space.” In other words, simply store 710 and −746 rather than
attempting to exponentiate them.

But how can you do arithmetic in log-space? Suppose you have two numbers p, q, which you
are representing in memory by their logs, lp and lq.

• Multiplication: You can represent pq by its log, log(pq) = log(p) + log(q) = lp+ lq. That is,
multiplication corresponds to log-space addition.

• Division: You can represent p/q by its log, log(p/q) = log(p) − log(q) = lp − lq. That is,
division corresponds to log-space subtraction.

• Addition: You can represent p + q by its log. log(p + q) = log(exp(lp) + exp(lq)) =
logsumexp(lp, lq). See the discussion of logsumexp in the future Assignment 6 handout.

For training a log-linear model, you can work almost entirely in log space, representing u and
Z in memory by their logs, log u and logZ. In order to compute the expected feature vector in
(27) below, you will need to come out of log space and find p(z′ | xy) = u′/Z for each word z′. But
computing u′ and Z separately is dangerous: they might be too large or too small. Instead, rewrite
p(z′ | xy) as exp(log u′ − logZ). Since u′ ≤ Z, this is exp of a negative number, so it will never

R-12

http://cs.jhu.edu/~jason/465/hw-hmm/hw-hmm.pdf

overflow. It might underflow to 0 for some words z′, but that’s ok: it just means that p(z′ | xy)
really is extremely close to 0, and so ~f(xyz′) should make only a negligible contribution to the
expected feature vector.

H Training a log-linear model

H.1 The training objective

To implement the conditional log-linear model, the main work is to train ~θ (given some training
data and a regularization coefficient C). As usual, you’ll set ~θ to maximize

F (~θ)
def
=

1

N

 N∑
i=1

log p̂(wi | wi−2 wi−1)

︸ ︷︷ ︸

log likelihood

−

C ·∑
k

θ2
k

︸ ︷︷ ︸

L2 regularizer

 (23)

which is the regularized log-likelihood per word token. (There are N word tokens.)
So we want ~θ to make our training corpus probable, or equivalently, to make the N events in

the corpus (including the final eos) probable on average given their bigram contexts. At the same
time, we also want the weights in ~θ to be close to 0, other things equal (regularization).9

The regularization coefficient C ≥ 0 can be selected based on dev data.

H.2 Stochastic gradient descent

Fortunately, concave functions like F (~θ) in (23) are “easy” to maximize. You can implement a
simple stochastic gradient descent (SGD) method to do this optimization.

More properly, this should be called stochastic gradient ascent, since we are maximizing rather
than minimizing, but that’s just a simple change of sign. The pseudocode is given by Algorithm
1. We rewrite the objective F (~θ) given in (23) as an average of local objectives Fi(~θ) that each

9As explained on the previous homework, this can also be interpreted as maximizing p(~θ | ~w)—that is, choosing

the most probable ~θ given the training corpus. By Bayes’ Theorem, p(~θ | ~w) is proportional to

p(~w | ~θ)︸ ︷︷ ︸
likelihood

· p(~θ)︸︷︷︸
prior

(24)

Let’s assume an independent Gaussian prior over each θk, with variance σ2. Then if we take C = 1/2σ2, maximizing
(23) is just maximizing the log of (24). The reason we maximize the log is to avoid underflow, and because the
derivatives of the log happen to have a simple “observed− expected” form (since the log sort of cancels out the exp
in the definition of u(xyz).)

R-13

predict a single word, by moving the regularization term into the summation.

F (~θ) =
1

N

N∑
i=1

log p̂(wi | wi−2 wi−1)− C

N
·
∑
k

θ2
k

︸ ︷︷ ︸

call this Fi(~θ)

(25)

=
1

N

N∑
i=1

Fi(~θ) (26)

The gradient of this average, ∇F (~θ), is therefore the average value of ∇Fi(~θ).

Algorithm 1 Stochastic gradient ascent

Input: Initial stepsize γ0, initial parameter values ~θ(0), training corpus D = (w1, w2, · · · , wN),
regularization coefficient C, number of epochs E

1: procedure SGATrain
2: ~θ ← ~θ(0)

3: t← 0 . number of updates so far
4: for e : 1→ E : . do E passes over the training data, or “epochs”
5: for i : 1→ N : . loop over summands of (25)

6: γ ← γ0

1 + γ0 · 2C
N · t

. current stepsize—decreases gradually

7: ~θ ← ~θ + γ · ∇Fi(~θ) . move ~θ slightly in a direction that increases Fi(~θ)
8: t← t+ 1

9: return ~θ

Discussion. On each iteration, the algorithm picks some word i and pushes ~θ in the direction
∇Fi(~θ), which is the direction that gets the fastest increase in Fi(~θ). The updates from different
i will partly cancel one another out,10 but their average direction is ∇F (~θ), so their average effect
will be to improve the overall objective F (~θ). Since we are training a log-linear model, our F (~θ)
is a concave function with a single global maximum; a theorem guarantees that the algorithm will
converge to that maximum if allowed to run forever (E =∞).

How far the algorithm pushes ~θ is controlled by γ, known as the “step size” or “learning rate.”
This starts at γ0, but needs to decrease over time in order to guarantee convergence of the algorithm.
The rule in line 6 for gradually decreasing γ is the one recommended by Bottou (2012), “Stochastic
gradient descent tricks,” which you should read in full if you want to use this method “for real” on
your own problems.

Note that t increases and the stepsize decreases on every pass through the inner loop. This is
important because N might be extremely large in general. Suppose you are training on the whole
web—then the stochastic gradient ascent algorithm should have essentially converged even before
you finish the first epoch! See reading section I.5 for some more thoughts about epochs.

10For example, in the training sentence eat your dinner but first eat your words, ∇F3(~θ) is trying to raise

the probability of dinner, while ∇F8(~θ) is trying to raise the probability of words (at the expense of dinner!) in the
same context.

R-14

http://research.microsoft.com/pubs/192769/tricks-2012.pdf
http://research.microsoft.com/pubs/192769/tricks-2012.pdf

H.3 The gradient vector

The gradient vector ∇Fi(~θ) is merely the vector of partial derivatives

(
∂Fi(~θ)
∂θ1

, ∂Fi(~θ)
∂θ2

, . . .

)
. where

Fi(~θ) was defined in (25). As you’ll recall from the previous assignment, each partial derivative
takes a simple and beautiful form11

∂Fi(~θ)

∂θk
= fk(xyz)︸ ︷︷ ︸

observed value of feature fk

−
∑
z′

p̂(z′ | xy)fk(xyz
′)︸ ︷︷ ︸

expected value of feature fk, according to current p̂

− 2C

N
θk︸ ︷︷ ︸

pulls θk towards 0

(27)

where x, y, z respectively denote wi−2, wi−1, wi, and the summation variable z′ in the second term
ranges over all V words in the vocabulary, including oov. This obtains the partial derivative by
summing multiples of three values: the observed feature count in the training data, the expected
feature counts ccording to the current p̂ (which is based on the entire current ~θ, not just θk), and
the current weight θk itself.

H.4 The gradient for the embedding-based model

When we use the specific model in (16), the feature weights are the entries of the X and Y matrices,
as shown in (18). The partial derivatives with respect to these weights are

∂Fi(~θ)

∂Xjm
= xjzm −

∑
z′

p̂(z′ | xy)xjz
′
m −

2C

N
Xjm (28)

∂Fi(~θ)

∂Yjm
= yjzm −

∑
z′

p̂(z′ | xy)yjz
′
m −

2C

N
Yjm (29)

where as before, we use ~x, ~y, ~z, ~z ′ to denote the embeddings of the words x, y, z, z′. Thus, the
update to ~θ (Algorithm 1, line 7) is

(∀j,m = 1, 2, . . . d) Xjm ← Xjm + γ · ∂Fi(
~θ)

∂Xjm
(30)

(∀j,m = 1, 2, . . . d) Yjm ← Yjm + γ · ∂Fi(
~θ)

∂Yjm
(31)

I Practical hints for stochastic gradient ascent

I.1 Choose your hyperparameters carefully

In practice, the convergence rate of stochastic gradient ascent is sensitive to the initial guess ~θ(0)

and the learning rate γ0. It’s common to take ~θ(0) = ~0 (e.g., initialize all entries of X and V to 0),
and we recommend trying γ0 = 0.1 for spam detection or γ0 = 0.01 for language ID.

11If you prefer to think of computing the whole gradient vector at once, using vector computations, you can
equivalently write this as

∇Fi(~θ) = ~f(xyz)−
∑
z′

p̂(z′ | xy)~f(xyz′)− 2C

N
~θ

.

R-15

(Note that the assignment asks you to use the hyperparameters recommended above when
loglin is selected (question 6b). This will let you and us check that your implementation is
correct. However, you may want to experiment with different settings, and you are free to use
those other settings when improved is selected, to get better performance.)

I.2 Don’t modify the parameters as you compute the gradient

Make sure that at line 7 of Algorithm 1, you compute the entire gradient before modifying ~θ. If
you were to update each parameter immediately after computing its partial derivative, then the
subsequent partial derivatives would be incorrect.

I.3 Compute the gradient efficiently

Optimization should be reasonably fast (seconds per epoch).
Be careful that you compute the second term of (27) in time O(V). If you’re not careful, you

might use O(V 2) time, because each of the V summands has a factor p̂(z′ | xy) whose denominator
Z(xy) itself takes O(V) time to compute. The salvation is that xy remains the same throughout
example i. So when you’re computing a gradient vector ∇Fi(~θ), you only have to compute Z(xy)
once and reuse it for all z′ and all k.12 Warning: However, as Z(xy) depends on ~θ, it will become
out-of-date once you update ~θ. You can’t save it to reuse for some future example j where wj−2wj−1

also equals xy (not even if j = i so that you’re processing the very same example again).
Constant factors can also play a big role in the speed. For the particular log-linear model used

here, reading section F.5.1 gave a way to speed up the gradient computation. In general, replacing
for-loops with library vector/matrix operations (via numpy or jblas) will probably speed you up a
lot.

If you really want to get fancy, you could completely eliminate the need to sum over the whole
vocabulary by predicting each word one bit at a time, as in the hierarchical log-bilinear language
model of Mnih and Hinton (2009); then you are making log2 V binary predictions, instead of a
V -way prediction.

I.4 Compute the gradient correctly: The finite-difference check

It’s easy to make a mistake when computing the gradient, which will mess everything up. One way
to test your gradient computation code is to use the finite-difference approximation (see Bouttou
(2012), section 4.2, or Vieira (2017)). We won’t require this test, but it can help you debug your
code; it’s generally wise to test that what you’re computing really is the gradient!

Suppose you’ve just computed Fi(~θ) for your current i and θ. Remember that Fi is differentiable
at ~θ (and everywhere), which means it can be approximated locally by a linear function. So try
adding a small number δ to one of the weights θk to obtain a new weight vector ~θ′. By the definition

of partial derivatives, you’d predict that Fi(~θ′) ≈ Fi(~θ) + δ · ∂F (~θ)
∂θk

.

You can check this prediction by actually evaluating Fi(~θ′). By making δ small enough (say
1e-6), you should be able to make the predictions match the truth arbitrarily well (say to within

12Alternatively, note that you can rewrite the second term from the previous footnote as

∑
z′ u(xyz′)~f(xyz′)∑

z′ u(xyz′)
.

Then a single loop over z′ serves to compute the numerator (a vector) and the denominator (the scalar Z(xy)) in

parallel. You can then increment ~θ by γ/Z(xy) times the numerator vector.

R-16

http://www.numpy.org/
http://jblas.org/
https://pdfs.semanticscholar.org/1005/645c05585c2042e3410daeed638b55e2474d.pdf
http://research.microsoft.com/pubs/192769/tricks-2012.pdf
http://research.microsoft.com/pubs/192769/tricks-2012.pdf
https://timvieira.github.io/blog/post/2017/04/21/how-to-test-gradient-implementations/

1e-10). If you can’t, then either there’s a bug in your gradient computation or (unlikely) you need
to be using higher-precision floating-point arithmetic.

(Your program doesn’t have to check every single partial derivative if that’s too slow: each time
you compute a partial derivative, you can flip a weighted coin to decide whether or not to check it.
Once you’re sure that the gradient computation is correct, you can turn the checks off.)

More generally, you can check that Fi(~θ + ~δ) ≈ Fi(~θ) + ~δ · ∇Fi(~θ) where ~δ is any small vector,
perhaps a vector of small random numbers, or a vector that is mostly 0’s, or a small multiple
of ∇Fi(~θ) itself. (Again, you don’t have to do this check every time you compute a gradient.) A

slightly better version is the symmetric finite-difference approximation, 1
2

(
Fi(~θ + ~δ)− Fi(~θ − ~δ)

)
≈

~δ · ∇Fi(~θ), which should be even more accurate, although it requires two extra computations of Fi
instead of just one.

Thinking about why all these approximations are valid may help you remember how partial
derivatives work.

I.5 How much training is enough?

In reading H.2, you may have wondered how to choose E, the number of epochs. The following
improvements are not required for the assignment, but they might help. You should read this
section in any case.

We are using a fixed number of epochs only to keep things simple. A better approach is to
continue running until the function appears to have converged “well enough.” For example, you
could stop if the average gradient over the past epoch (or the past m examples) was very small.
Or you could evaluate the accuracy or cross-entropy on development data at the end of each epoch
(or after each group of m examples), and stop if it has failed to improve (say) 3 times in a row;
then you can use the parameter vector ~θ that performed best on development data.

In theory, stochastic gradient descent shouldn’t even use epochs. There should only be one loop,
not two nested loops. At each iteration, you pick a random example from the training corpus, and
update ~θ based on that example. That’s why it is called ”stochastic” (i.e., random). The insight
here is that the regularized log-likelihood per token, namely F (~θ), is actually just the average value
of Fi(~θ) over all of the examples (see (25)). So if you compute the gradient on one example, it is
the correct gradient on average (since the gradient of an average is the average gradient). So line 7
is going in the correct direction on average if you choose a random example at each step.

In practice, a common approach to randomization is to still use epochs, so that each example is
visited once per epoch, but to shuffle the examples into a random order at the start of training or
at the start of each epoch. To see why shuffling can help, imagine that the first half of your corpus
consists of Democratic talking points and the second half consists of Republican talking points.
If you shuffle, your stochastic gradients will roughly alternate between the two, like alternating
between left and right strokes when you paddle a canoe; thus, your average direction over any short
time period will be roughly centrist. By contrast, since Algorithm 1 doesn’t shuffle, it will paddle
left for the half of each epoch and then right for the other half, which will make significantly slower
progress in the desired centrist direction.

R-17

J Ideas for log-linear features

Here are some ideas for extending your log-linear model. Most of them are not very hard, although
training may be slow. Or you could come up with your own!

Adding features means throwing some more parameters into the definition of the unnormalized
probability. For example, extending the definition (16) with additional features (in the case d = 2)
gives

u(xyz)
def
= exp

(
~x>X~z + ~y>Y ~z + θ9f9(xyz) + θ10f10(xyz) + . . .

)
(32)

= exp

θ1f1(xyz) + · · ·+ θ8f8(xyz)︸ ︷︷ ︸
as defined in (19)–(20)

+ θ9f9(xyz) + θ10f10(xyz) + . . .

 (33)

J.1 Unigram log-probability

A possible problem with the model so far is that it doesn’t have any parameters that keep track of
how frequent specific words are in the training corpus! Rather, it backs off from the words to their
embeddings. Its probability estimates are based only on the embeddings.

One way to fix that (see section J.2 below) would be to have a binary feature fw for each word
w in the vocabulary, such that fw(xyz) is 1 if z = w and 0 otherwise.

But first, here’s a simpler method: just add a single non-binary feature defined by

funigram(xyz) = log p̂unigram(z) (34)

where p̂unigram(z) is estimated by add-1 smoothing. Surely we have enough training data to learn
an appropriate weight for this single feature. In fact, because every training token wi provides
evidence about this single feature, its weight will tend to converge quickly to a reasonable value
during SGD.

This is not the only feature in the model—as usual, you will use SGD to train the weights of
all features to work together, computing the gradient via (27). Let β = θunigram denote the weight
that we learn for the new feature. By including this feature in our definition of p̂unigram(z), we are
basically multiplying a factor of (p̂unigram(z))β into the numerator u(xyz) (check (14) to see that
this is true). This means that in the special case where β = 1 and X = Y = 0, we simply have
u(xyz) = p̂unigram, so that the LOGLIN model gives exactly the same probabilities as the add-1
smoothed unigram model p̂unigram. However, by training the parameters, we might learn to trust
the unigram model less (0 < β < 1) and rely more on the word embeddings (X,Y 6= 0) to judge
which words z are likely in the context xy.

A simpler way to implement this scheme is to define

funigram(xyz) = log(c(z) + 1) (where c(z) is the count of z in training data) (35)

This gives the same model, since p̂unigram(z) is just c(z) + 1 divided by a constant, and our model
renormalizes u(xyz) by a constant anyway.

R-18

J.2 Unigram, bigram, and trigram indicator features

Try adding a unigram feature fw for each word w in the vocabulary. That is, fw(xyz) is 1 if z = w
and 0 otherwise. Does this work better than the log-unigram feature from section J.1?

Now try also adding a binary feature for each bigram and trigram that appears at least 3 times
in training data. How good is the resulting model?

In all cases, you will want to tune C on development data to prevent overfitting. This is
important—the original model had only 2d2 + 1 parameters where d is the dimensionality of the
embeddings, but your new model has enough parameters that it can easily overfit the training
data. In fact, if C = 0, the new model will exactly predict the unsmoothed probabilities, as if
you were not smoothing at all (add-0)! The reason is that the maximum of the concave function
F (~θ) =

∑N
i=1 Fi(

~θ) is achieved when its partial derivatives are 0. So for each unigram feature fw
defined in the previous paragraph, we have, from equation (27) with C = 0,

∂F (~θ)

∂θw
=

N∑
i=1

∂Fi(~θ)

∂θw
(36)

=
N∑
i=1

fw(xyz)︸ ︷︷ ︸
observed count of w in corpus

−
N∑
i=1

∑
z′

p̂(z′ | xy)fw(xyz′)︸ ︷︷ ︸
predicted count of w in corpus

(37)

Hence SGD will adjust ~θ until this is 0, that is, until the predicted count of w exactly matches the
observed count c(w). For example, if c(w) = 0, then SGD will try to allocate 0 probability to word
w in all contexts (no smoothing), by driving θw → −∞. Taking C > 0 prevents this by encouraging
θw to stay close to 0.

J.3 Embedding-based features on unigrams and trigrams

Oddly, (16) only includes features that evaluate the bigram yz (via weights in the Y matrix) and
the skip-bigram xz (via weights in the X matrix). After all, you can see in (18) that the features
have the form yjzm and xjzm. This seems weaker than ADDL BACKOFF. Thus, add unigram
features of the form zm and trigram features of the form xhyjzm.

J.4 Embedding-based features based on more distant skip-bigrams

For a log-linear model, there’s no reason to limit yourself to trigram context. Why not look at 10
previous words rather than 2 previous words? In other words, your language model can use the
estimate p(wi | wi−10, wi−9, . . . wi−1).

There are various ways to accomplish this. You may want to reuse the X matrix at all positions
i−10, i−9, . . . , i−2 (while still using a separate Y matrix at position i−1). This means that having
the word “bread” anywhere in the recent history (except at position wi−1) will have the same effect
on wi. Such a design is called “tying” the feature weights: if you think of different positions having
different features associated with them, you are insisting that certain related features have weights
that are “tied together” (i.e., they share a weight).

You could further improve the design by saying that “bread” has weaker influence when it is in
the more distant past. This could be done by redefining the features: for example, in your version

R-19

of (18), you could scale down the feature value (xjzm) by the number of word tokens that fall
between x and z.13

Note: The provided code has separate methods for 3-grams, 2-grams, and 1-grams. To support
general n-grams, you’ll want to replace these with a single method that takes a list of n words. It’s
probably easiest to streamline the provided code so that it does this for all smoothing methods.

J.5 Spelling-based features

The word embeddings were automatically computed based on which words tend to appear near
one another. They don’t consider how the words are spelled! So, augment each word’s embedding
with additional dimensions that describe properties of the spelling. For example, you could have
dimensions that ask whether the word ends in -ing, -ed, etc. Each dimension will be 1 or 0
according to whether the word has the relevant property.

Just throw in a dimension for each suffix that is common in the data. You could also in-
clude properties relating to word length, capitalization patterns, vowel/consonant patterns, etc.—
anything that you think might help!

You could easily come up with thousands of properties in this way. Fortunately, a given word
such as burgeoning will have only a few properties, so the new embeddings will be sparse. That is,
they consist mostly of 0’s with a few nonzero elements (usually 1’s). This situation is very common
in NLP. As a result, you don’t need to store all the new dimensions: you can compute them on
demand when you are computing summations like

∑d
j=1

∑d
m=1 Yjm · (yjzm) in (18). In such a

summation, j ranges over possible suffixes of y and m ranges over possible suffixes of z (among
other properties, including the original dimensions). To compute the summation, you only have to
loop over the few dimensions j for which yj 6= 0 and the few dimensions m for which zm 6= 0. (All
other summands are 0 and can be skipped.)

It is easy to identify these few dimensions. For example, burgeoning has the -ing property
but not any of the other 3-letter-suffix properties. In the trigram xyz = demand was burgeoning,
the summation would include a feature weight Yjm for j = -was and m = -ing, which is included
because yz has that particular pair of suffixes and so yjvm = 1. In practice, Y can be represented
as a hash map whose keys are pairs of properties, such as pairs of suffixes.

J.6 Meaning-based features

If you can find online dictionaries or other resources, you may be able to obtain other, linguistically
interesting properties of words. You can then proceed as with the spelling features above.

J.7 Repetition

Since words tend to repeat, you could have a feature that asks whether wi appeared in the set
{wi−10, wi−9, . . . wi−1}. This feature will typically get a positive weight, meaning that recently

13A fancier approach is to learn how much to scale down this influence. For example, you could keep the feature
value defined as (xjzm), but say that the feature weights for position i − 6 (for example) are given by the matrix
λ6X. Now X is shared across all positions, but the various multipliers such as λ6 are learned by SGD along with
the entries of X and Y . If you learn that λ6 is close to 0, then you have learned that wi−6 has little influence on wi.
(In this case, the model is technically log-quadratic rather than log-linear, and the objective function is no longer
concave, but SGD will probably find good parameters anyway. You will have to work out the partial derivatives with
respect to the entries of λ as well as X and Y .)

R-20

seen words are likely to appear again. Since 10 is arbitrary, you should actually include similar
features for several different history sizes: for example, another feature asks whether wi appeared
in {wi−20, wi−19, . . . wi−1}.

J.8 Ensemble modeling

Recall that (34) included the log-probability of another model as a feature within your LOGLIN
model. You could include other log-probabilities in the same way, such as smoothed bigram or
trigram probabilities. The LOGLIN model then becomes an “ensemble model” that combines the
probabilities of several other models, learning how strongly to weight each of these other models.

If you want to be fancy, your log-linear model can include various trigram-model features, each
of which returns log p̂trigram(z | xy) but only when c(xy) falls into a particular range, and returns
0 otherwise. Training might learn different weights for these features. That is, it might learn that
the trigram model is trustworthy when the context xy is well-observed, but not when it is rarely
observed.

R-21

	Are trigram models useful?
	Boundary symbols
	Datasets for Assignment 3
	The train/dev/test split
	Domain mismatch
	Class ratios

	The vocabulary
	Choosing a finite vocabulary
	Consequences for evaluating a model
	Comparing apples to apples
	How to choose the vocabulary
	Open-vocabulary language modeling

	Performance metrics
	Other possible metrics
	Generative vs. discriminative

	Smoothing techniques
	Uniform distribution (UNIFORM)
	Add- (ADDL)
	Add- backoff (BACKOFF_ADDL)
	Witten-Bell backoff (BACKOFF_WB)
	Conditional log-linear modeling (LOGLIN)
	Bigrams and skip-bigram features from word embeddings

	Other smoothing schemes

	Safe practices for working with log-probabilities
	Use natural log for internal computations
	Avoid exponentiating big numbers (not necessary for this assignment)

	Training a log-linear model
	The training objective
	Stochastic gradient descent
	The gradient vector
	The gradient for the embedding-based model

	Practical hints for stochastic gradient ascent
	Choose your hyperparameters carefully
	Don't modify the parameters as you compute the gradient
	Compute the gradient efficiently
	Compute the gradient correctly: The finite-difference check
	How much training is enough?

	Ideas for log-linear features
	Unigram log-probability
	Unigram, bigram, and trigram indicator features
	Embedding-based features on unigrams and trigrams
	Embedding-based features based on more distant skip-bigrams
	Spelling-based features
	Meaning-based features
	Repetition
	Ensemble modeling

