
600.465 - Intro to NLP - J. Eisner 1

Finite-State Methods

600.465 - Intro to NLP - J. Eisner 2

Finite state acceptors (FSAs)

 Things you may
know about FSAs:
 Equivalence to

regexps
 Union, Kleene *,

concat, intersect,
complement,
reversal
 Determinization,

minimization
 Pumping,

Myhill-Nerode

a
c

ε

Defines the
language a? c*

= {a, ac, acc, accc, …,
, c, cc, ccc, …}

600.465 - Intro to NLP - J. Eisner 3

n-gram models not good enough

 Want to model grammaticality
 A “training” sentence known to be grammatical:

BOS mouse traps catch mouse traps EOS

 Resulting trigram model has to overgeneralize:
 allows sentences with 0 verbs
BOS mouse traps EOS
 allows sentences with 2 or more verbs
BOS mouse traps catch mouse traps

catch mouse traps catch mouse traps EOS

 Can’t remember whether it’s in subject or object
(i.e., whether it’s gotten to the verb yet)

trigram model must allow these trigrams

600.465 - Intro to NLP - J. Eisner 4

 Want to model grammaticality
BOS mouse traps catch mouse traps EOS

 Finite-state can capture the generalization here:

Finite-state models can “get it”

Noun+ Verb Noun+
Noun

Noun Verb

Noun

Noun

preverbal states
(still need a verb

to reach final state)

postverbal states
(verbs no longer

allowed)

Allows arbitrarily long
NPs (just keep looping
around for another
Noun modifier).

Still, never forgets
whether it’s preverbal
or postverbal!

(Unlike 50-gram model)

600.465 - Intro to NLP - J. Eisner 5

How powerful are regexps / FSAs?

 More powerful than n-gram models
 The hidden state may “remember” arbitrary past context
 With k states, can remember which of k “types” of context it’s in

 Equivalent to HMMs
 In both cases, you observe a sequence and it is “explained” by a

hidden path of states. The FSA states are like HMM tags.

 Appropriate for phonology and morphology
Word = Syllable+

= (Onset Nucleus Coda?)+
= (C+ V+ C*)+
= ((b|d|f|…)+ (a|e|i|o|u)+ (b|d|f|…)*)+

600.465 - Intro to NLP - J. Eisner 6

How powerful are regexps / FSAs?

 But less powerful than CFGs / pushdown automata
 Can’t do recursive center-embedding
 Hmm, humans have trouble processing those constructions too …

 This is the rat that ate the malt.
 This is the malt that the rat ate.

 This is the cat that bit the rat that ate the malt.
 This is the malt that the rat that the cat bit ate.

 This is the dog that chased the cat that bit the rat that ate the malt.
 This is the malt that [the rat that [the cat that [the dog chased] bit] ate].

finite-state can
handle this pattern
(can you write the

regexp?)

but not this pattern,
which requires a CFG

600.465 - Intro to NLP - J. Eisner 7

How powerful are regexps / FSAs?

 But less powerful than CFGs / pushdown automata
 More important: Less explanatory than CFGs
 An CFG without recursive center-embedding can be converted

into an equivalent FSA – but the FSA will usually be far larger
 Because FSAs can’t reuse the same phrase type in different places

Noun

Noun Verb

Noun

Noun
S =

duplicated
structure

duplicated
structure

Noun

NounNP =
NP Verb NP

S =

more elegant – using
nonterminals like this

is equivalent to a CFG

600.465 - Intro to NLP - J. Eisner 8600.465 - Intro to NLP - J. Eisner 8

We’ve already used FSAs this way …

 CFG with regular expression on the right-hand side:
X (A | B) G H (P | Q)
NP (Det |) Adj* N

 So each nonterminal has a finite-state automaton,
giving a “recursive transition network (RTN)”

A

B

P

QG H
X

Det

Adj

Adj

NNP

N

Automaton state
replaces dotted

rule (X A G . H P)

600.465 - Intro to NLP - J. Eisner 9600.465 - Intro to NLP - J. Eisner 9

We’ve already used FSAs once ..

NP rules from the WSJ grammar become a single DFA
NP ADJP ADJP JJ JJ NN NNS

| ADJP DT NN
| ADJP JJ NN
| ADJP JJ NN NNS
| ADJP JJ NNS
| ADJP NN
| ADJP NN NN
| ADJP NN NNS
| ADJP NNS
| ADJP NPR
| ADJP NPRS
| DT
| DT ADJP
| DT ADJP , JJ NN
| DT ADJP ADJP NN
| DT ADJP JJ JJ NN
| DT ADJP JJ NN
| DT ADJP JJ NN NN

etc.

regular
expression

DFA

ADJP

DTNP

NP

ADJP
ADJ

P

ADJP

600.465 - Intro to NLP - J. Eisner 10

But where can we put our weights?

 CFG / RTN

 bigram model
of words or tags
(first-order
Markov Model)

 Hidden Markov Model of
words and tags together??

Det

Adj

Adj

N
NP

N

Det

Start

Adj
Noun

Verb

Prep

Stop

600.465 - Intro to NLP - J. Eisner 11

Another useful FSA …

/usr/dict/words

FSM

17728 states,
37100 arcs

0.6 sec
25K words
206K chars

clear
clever
ear
ever
fat

father

Wordlist

compile

rlc ae

v e
e

t h
f

a

Network

slide courtesy of L. Karttunen (modified)

600.465 - Intro to NLP - J. Eisner 12

Weights are useful here too!
slide courtesy of L. Karttunen (modified)

clear 0
clever 1
ear 2
ever 3
fat 4
father 5

Wordlist

compile

Network
r/0l/0c/0 a/0e/0

v/1 e/0
e/2

t/0 h/1
f/4

a/0

Computes a perfect hash!
Sum the weights along a word’s accepting path.

600.465 - Intro to NLP - J. Eisner 13

 Successor states partition the path set
 Use offsets of successor states as arc weights
 Q: Would this work for an arbitrary numbering of the words?

Example: Weighted acceptor
slide courtesy of L. Karttunen (modified)

clear 0
clever 1
ear 2
ever 3
fat 4
father 5

Wordlist

compile

Network

16 2 22 1
rlc ae

1

v e

2 2

e

t h
f

2
a

 Compute number of paths from each state (Q: how?)

r/0l/0c/0 a/0e/0

v/1 e/0
e/2

t/0 h/1
f/4

a/0

A: recursively, like DFS

600.465 - Intro to NLP - J. Eisner 14

Example: Unweighted transducer

VP [head=vouloir,...]

V[head=vouloir,
tense=Present,
num=SG, person=P3]

...

veut

600.465 - Intro to NLP - J. Eisner 15

Example: Unweighted transducer

veut

vouloir +Pres +Sing + P3

Finite-state
transducer

inflected form

canonical form inflection codes
v o u l o i r +Pres +Sing +P3

v e u t

slide courtesy of L. Karttunen (modified)

VP [head=vouloir,...]

V[head=vouloir,
tense=Present,
num=SG, person=P3]

...

veut

the relevant path

600.465 - Intro to NLP - J. Eisner 16

veut

vouloir +Pres +Sing + P3

Finite-state
transducer

inflected form

canonical form inflection codes
v o u l o i r +Pres +Sing +P3

v e u t

Example: Unweighted transducer

 Bidirectional: generation or analysis
 Compact and fast
 Xerox sells for about 20 languges

including English, German, Dutch,
French, Italian, Spanish,
Portuguese, Finnish, Russian,
Turkish, Japanese, ...

 Research systems for many other
languages, including Arabic, Malay

slide courtesy of L. Karttunen

the relevant path

What is a function?

 Formally, a set of <input, output> pairs
where each input ∈ domain, output ∈ co-domain.
 Moreover, ∀x ∈ domain, ∃ exactly one y

such that <x,y> ∈ the function.

 square: int int
= { <0,0>, <1,1>, <-1,1>, <2,4>, <-2,4>,

<3,9>, <-3,9>, ... }
 domain(square) = {0, 1, -1, 2, -2, 3, -3, …}
 range(square) = {0, 1, 4, 9, ...}

600.465 - Intro to NLP - J. Eisner 17

domain co-domain

What is a relation?
 square: int int

= { <0,0>, <1,1>, <-1,1>, <2,4>, <-2,4>,
<3,9>, <-3,9>, ... }

 inverse(square): int int
= { <0,0>, <1,1>, <1,-1>, <4,2>, <4,-2>,

<9,3>, <9,-3>, ... }
 Is inverse(square) a function?
 0 ↦ {0} 9 ↦ {3,-3} 7 ↦ {} -1 ↦ {}

 No - we need a more general notion!
 A relation is any set of <input, output> pairs

600.465 - Intro to NLP - J. Eisner 18

600.465 - Intro to NLP - J. Eisner 19

 Relation: like a function, but multiple outputs ok
 Regular: finite-state
 Transducer: automaton w/ outputs

 b ? a ?
 aaaaa ?

Regular Relation (of strings)

b:b

a:a

a:

a:c

b:

b:b

?:c

?:a

?:b

{b} {}
{ac, aca, acab,

acabc}
 Invertible?
 Closed under composition?

600.465 - Intro to NLP - J. Eisner 20

 Can weight the arcs: vs.
 b {b} a {}
 aaaaa {ac, aca, acab,

acabc}

 How to find best outputs?
 For aaaaa?
 For all inputs at once?

Regular Relation (of strings)

b:b

a:a

a:

a:c

b:

b:b

?:c

?:a

?:b

600.465 - Intro to NLP - J. Eisner 21

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true} strings

numbers (string, num) pairs

600.465 - Intro to NLP - J. Eisner 22

Sample functions

Acceptors (FSAs) Transducers (FSTs)

Unweighted

Weighted

{false, true} strings

numbers (string, num) pairs

Grammatical?

How grammatical?
Better, how probable?

Markup
Correction
Translation

Good markups
Good corrections
Good translations

600.465 - Intro to NLP - J. Eisner 23

Terminology (acceptors)

String

Regexp FSA
compiles into

implements

Regular language
defines recognizes

600.465 - Intro to NLP - J. Eisner 24

Terminology (transducers)

String pair

Regexp FST
compiles into

implements

Regular relation
defines recognizes

?

600.465 - Intro to NLP - J. Eisner 25

Perspectives on a Transducer
 Remember these CFG perspectives:

 Similarly, 3 views of a transducer:
 Given 0 strings, generate a new string pair (by picking a path)
 Given one string (upper or lower), transduce it to the other kind
 Given two strings (upper & lower), decide whether to accept the pair

FST just defines the regular relation (mathematical object: set of pairs).
What’s “input” and “output” depends on what one asks about the relation.
The 0, 1, or 2 given string(s) constrain which paths you can use.

3 views of a context-free rule

 generation (production): S NP VP
 parsing (comprehension): S NP VP
 verification (checking): S = NP VP

(randsent)
(parse)

v o u l o i r +Pres +Sing +P3

v e u t

600.465 - Intro to NLP - J. Eisner 26

Functions

ab?d abcd

f
α β χ δ

g

600.465 - Intro to NLP - J. Eisner 27

Functions

ab?d α β χ δ

Function composition: f g

[first f, then g – intuitive notation, but opposite of the traditional math notation]

Like the Unix pipe: cat x | f | g > y
Example: Pass the input through a sequence of ciphers

600.465 - Intro to NLP - J. Eisner 28

From Functions to Relations

ab?d abcd

α β ε δabed

abjd

3

2

6

4

2

8
α βδ

...

f
α β χ δ

g

600.465 - Intro to NLP - J. Eisner 29

From Functions to Relations

ab?d α β χ δ

α β ε δ

α βδ

...

Relation composition: f g
6

4

2

8

3

22

600.465 - Intro to NLP - J. Eisner 30

From Functions to Relations

ab?d α β χ δ

α β ε δ

α βδ

...

Relation composition: f g

3+4

2+2

2+8

600.465 - Intro to NLP - J. Eisner 31

From Functions to Relations

ab?d

α β ε δ

Often in NLP, all of the functions or relations involved
can be described as finite-state machines, and
manipulated using standard algorithms.

Pick min-cost or max-prob output
2+2

600.465 - Intro to NLP - J. Eisner 32

Inverting Relations

ab?d abcd

α β ε δabed

abjd

3

2

6

4

2

8
α βδ

...

f
α βχδ

g

600.465 - Intro to NLP - J. Eisner 33

Inverting Relations

ab?d abcd

α β ε δabed

abjd

3

2

6

4

2

8
α βδ

...

f-1

α β χ δ

g-1

600.465 - Intro to NLP - J. Eisner 34

Inverting Relations

ab?d α β χ δ

α β ε δ

α βδ

...

(f g)-1 = g-1 f-1

3+4

2+2

2+8

600.465 - Intro to NLP - J. Eisner 35

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

Compiler

Regular Expressions
for Rules

Composed
Rule FSTs

Lexical Transducer
(a single FST)composition

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

b i g +Adj

r

+Comp

b i g g e

one path

600.465 - Intro to NLP - J. Eisner 36

Building a lexical transducer

 Actually, the lexicon must contain elements like
big +Adj +Comp

 So write it as a more complicated expression:
(big | clear | clever | fat | ...) +Adj (| +Comp | +Sup) adjectives

| (ear | father | ...) +Noun (+Sing | +Pl) nouns
|

 Q: Why do we need a lexicon at all?

Regular Expression
Lexicon

Lexicon
FSA

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

600.465 - Intro to NLP - J. Eisner 37

Weighted version of transducer:
Assigns a weight to each string pair

payer+IndP+SG+P1

paie

paye

Weighted French Transducer

suis

suivre+Imp+SG + P2

suivre+IndP+SG+P2

suivre+IndP+SG+P1

être+IndP +SG + P1

“upper language”

“lower language”

slide courtesy of L. Karttunen (modified)

4
19

20
50

3

12

