
600.465 - Intro to NLP - J. Eisner 1

Smoothing

There are more principled
smoothing methods, too. We’ll
look next at log-linear models,
which are a good and popular
general technique.

But the traditional methods are
easy to implement, run fast, and
will give you intuitions about
what you want from a smoothing
method.

This dark art is why
NLP is taught in the
engineering school.

Never trust a sample under 30

20 200

2000 2000000

Never trust a sample under 30

Smooth out
the bumpy
histograms
to look more
like the truth
(we hope!)

Smoothing reduces variance

20 20

20 20

Different samples of size 20 vary considerably
(though on average, they give the correct bell curve!)

600.465 - Intro to NLP - J. Eisner
5

Smoothing reduces variance

truth

unsmoothed estimates
from different samples

estimates are correct on average:
such an estimation method

is called unbiased

estimates are typically far from truth
(high variance = mean squared error)

smoothed estimates
from different samples

estimates are incorrect on average:
such an estimation method

is called biased

but estimates are typically close to average
(high variance = mean squared distance)
and so may tend to be closer to truth, too

truth

average

600.465 - Intro to NLP - J. Eisner 6

Parameter Estimation

p(x1=h, x2=o, x3=r, x4=s, x5=e, x6=s, …)

 p(h | BOS, BOS)
* p(o | BOS, h)
* p(r | h, o)
* p(s | o, r)
* p(e | r, s)
* p(s | s, e)
* …

4470/52108

395/ 4470

1417/14765

1573/26412

1610/12253

2044/21250

trigram model’s
parameters

values of
those
parameters,
as naively
estimated
from Brown
corpus.

 Word type = distinct vocabulary item
 A dictionary is a list of types (once each)

 Word token = occurrence of that type
 A corpus is a list of tokens (each type has many tokens)

 We’ll estimate probabilities of the dictionary types
by counting the corpus tokens

7

Terminology: Types vs. Tokens

a 100
b 0
c 0
d 200
e 0
…
z 0

Total 300

26 types 300 tokens
100 tokens of this type

200 tokens of this type

0 tokens of this type

(in context)

600.465 - Intro to NLP - J. Eisner 8

How to Estimate?

 p(z | xy) = ?
 Suppose our training data includes

… xya ..
… xyd …
… xyd …

but never xyz
 Should we conclude

p(a | xy) = 1/3?
p(d | xy) = 2/3?
p(z | xy) = 0/3?

 NO! Absence of xyz might just be bad luck.

600.465 - Intro to NLP - J. Eisner 9

Smoothing the Estimates

 Should we conclude
p(a | xy) = 1/3? reduce this
p(d | xy) = 2/3? reduce this
p(z | xy) = 0/3? increase this

 Discount the positive counts somewhat
 Reallocate that probability to the zeroes
 Especially if the denominator is small …
 1/3 probably too high, 100/300 probably about right

 Especially if numerator is small …
 1/300 probably too high, 100/300 probably about right

600.465 - Intro to NLP - J. Eisner 10

Add-One Smoothing

xya 1 1/3 2 2/29
xyb 0 0/3 1 1/29
xyc 0 0/3 1 1/29
xyd 2 2/3 3 3/29
xye 0 0/3 1 1/29

…
xyz 0 0/3 1 1/29

Total xy 3 3/3 29 29/29

600.465 - Intro to NLP - J. Eisner 11

Add-One Smoothing

xya 100 100/300 101 101/326
xyb 0 0/300 1 1/326
xyc 0 0/300 1 1/326
xyd 200 200/300 201 201/326
xye 0 0/300 1 1/326

…
xyz 0 0/300 1 1/326

Total xy 300 300/300 326 326/326

300 observations instead of 3 – better data, less smoothing

600.465 - Intro to NLP - J. Eisner 12

Problem with Add-One Smoothing

xya 1 1/3 2 2/29
xyb 0 0/3 1 1/29
xyc 0 0/3 1 1/29
xyd 2 2/3 3 3/29
xye 0 0/3 1 1/29

…
xyz 0 0/3 1 1/29

Total xy 3 3/3 29 29/29

We’ve been considering just 26 letter types …

600.465 - Intro to NLP - J. Eisner 13

Problem with Add-One Smoothing
Suppose we’re considering 20000 word types, not 26 letters

see the abacus 1 1/3 2 2/20003
see the abbot 0 0/3 1 1/20003

see the abduct 0 0/3 1 1/20003
see the above 2 2/3 3 3/20003
see the Abram 0 0/3 1 1/20003

…

see the zygote 0 0/3 1 1/20003
Total 3 3/3 20003 20003/20003

600.465 - Intro to NLP - J. Eisner 14

Problem with Add-One Smoothing
Suppose we’re considering 20000 word types, not 26 letters

see the abacus 1 1/3 2 2/20003
see the abbot 0 0/3 1 1/20003

see the abduct 0 0/3 1 1/20003
see the above 2 2/3 3 3/20003
see the Abram 0 0/3 1 1/20003

…

see the zygote 0 0/3 1 1/20003
Total 3 3/3 20003 20003/20003

“Novel event” = 0-count event (never happened in training data).
Here: 19998 novel events, with total estimated probability 19998/20003.
So add-one smoothing thinks we are extremely likely to see novel events,

rather than words we’ve seen in training data.
It thinks this only because we have a big dictionary: 20000 possible events.

Is this a good reason?

600.465 - Intro to NLP - J. Eisner 15

Infinite Dictionary?
In fact, aren’t there infinitely many possible word types?

see the aaaaa 1 1/3 2 2/(∞+3)
see the aaaab 0 0/3 1 1/(∞+3)
see the aaaac 0 0/3 1 1/(∞+3)
see the aaaad 2 2/3 3 3/(∞+3)
see the aaaae 0 0/3 1 1/(∞+3)

…

see the zzzzz 0 0/3 1 1/(∞+3)
Total 3 3/3 (∞+3) (∞+3)/(∞+3)

600.465 - Intro to NLP - J. Eisner 16

Add-Lambda Smoothing
 A large dictionary makes novel events too probable.

 To fix: Instead of adding 1 to all counts, add = 0.01?
 This gives much less probability to novel events.

 But how to pick best value for ?
 That is, how much should we smooth?

600.465 - Intro to NLP - J. Eisner 17

Add-0.001 Smoothing

xya 1 1/3 1.001 0.331
xyb 0 0/3 0.001 0.0003
xyc 0 0/3 0.001 0.0003
xyd 2 2/3 2.001 0.661
xye 0 0/3 0.001 0.0003

…
xyz 0 0/3 0.001 0.0003

Total xy 3 3/3 3.026 1

Doesn’t smooth much (estimated distribution has high variance)

600.465 - Intro to NLP - J. Eisner 18

Add-1000 Smoothing

xya 1 1/3 1001 1/26
xyb 0 0/3 1000 1/26
xyc 0 0/3 1000 1/26
xyd 2 2/3 1002 1/26
xye 0 0/3 1000 1/26

…
xyz 0 0/3 1000 1/26

Total xy 3 3/3 26003 1

Smooths too much (estimated distribution has high bias)

600.465 - Intro to NLP - J. Eisner 19

Add-Lambda Smoothing
 A large dictionary makes novel events too probable.

 To fix: Instead of adding 1 to all counts, add = 0.01?
 This gives much less probability to novel events.

 But how to pick best value for ?
 That is, how much should we smooth?
 E.g., how much probability to “set aside” for novel events?
 Depends on how likely novel events really are!
 Which may depend on the type of text, size of training corpus, …

 Can we figure it out from the data?
 We’ll look at a few methods for deciding how much to smooth.

600.465 - Intro to NLP - J. Eisner 20

Setting Smoothing Parameters
 How to pick best value for ? (in add- smoothing)
 Try many values & report the one that gets best results?

 How to measure whether a particular gets good results?
 Is it fair to measure that on test data (for setting)?
 Story: Stock scam …
 Moral: Selective reporting on test data can make a method look artificially

good. So it is unethical.
 Rule: Test data cannot influence system development. No peeking! Use it

only to evaluate the final system(s). Report all results on it.

TestTraining

General Rule of Experimental Ethics:
Never skew anything in your favor.
Applies to experimental design, reporting, analysis, discussion.
Feynman’s Advice: “The first principle is that you must not
fool yourself, and you are the easiest person to fool.”

Also, tenure letters …

600.465 - Intro to NLP - J. Eisner 21

Setting Smoothing Parameters

TestTraining

Dev. Training

Pick that
gets best
results on
this 20% …

… when we collect counts
from this 80% and smooth
them using add- smoothing.

Now use
that to get
smoothed
counts from
all 100% …

… and
report
results of
that final
model on
test data.

 How to pick best value for ?
 Try many values & report the one that gets best results?

 How to fairly measure whether a gets good results?
 Hold out some “development data” for this purpose

600.465 - Intro to NLP - J. Eisner 22

Setting Smoothing Parameters

TestTraining

Dev. Training

Pick that
gets best
results on
this 20% …

… when we collect counts
from this 80% and smooth
them using add- smoothing.

Now use
that to get
smoothed
counts from
all 100% …

… and
report
results of
that final
model on
test data.

Here we held out 20% of our training set (yellow) for development.
Would like to use > 20% yellow:
Would like to use > 80% blue:

Could we let the yellow and blue sets overlap?

 20% not enough to reliably assess
 Best for smoothing 80%

 best for smoothing 100%
 Ethical, but foolish

600.465 - Intro to NLP - J. Eisner 23

5-fold Cross-Validation (“Jackknifing”)

 Old version: Train on 80%, test on 20%

 If 20% yellow too little: try 5 training/dev splits as below
 Pick that gets best average performance

 Tests on all 100% as yellow, so we can more reliably assess
 Still picks a that’s good at smoothing the 80% size, not 100%.
 But now we can grow that 80% without trouble …

Dev. Training

Dev.
Dev.

Dev.
Dev.

Dev.

Would like to use > 20% yellow:
Would like to use > 80% blue:

 20% not enough to reliably assess
 Best for smoothing 80%

 best for smoothing 100%

animation

Test

600.465 - Intro to NLP - J. Eisner 24

 for in {0.01, 0.02, 0.03, … 9.99}
 for each of the 5 blue/yellow splits
 train on the 80% blue data, using to smooth the counts
 test on the 20% yellow data, and measure performance

 goodness of this = average performance over the 5 splits

 using best we found above:
 train on 100% of the training data, using to smooth the counts
 test on the red test data, measure performance & report it

Dev.
Dev.

Dev.
Dev.

Dev.

Cross-Validation Pseudocode

TestTraining

600.465 - Intro to NLP - J. Eisner 25

N-fold Cross-Validation (“Leave One Out”)

 To evaluate a particular during dev, test on all the training data:
test each sentence with smoothed model from other N-1 sentences

 Still tests on all 100% as yellow, so we can reliably assess
 Trains on nearly 100% blue data ((N-1)/N) to measure whether is

good for smoothing that much data: nearly matches true test conditions
 Surprisingly fast: why?
 Usually easy to retrain on blue by adding/subtracting 1 sentence’s counts

…

(more extreme
version of strategy
from last slide)

Test

Smoothing reduces variance

20 20

20 20

Remember: So does backoff
(by increasing size of sample). Use both?

200

600.465 - Intro to NLP - J. Eisner 27

Use the backoff, Luke!

 Why are we treating all novel events as the same?
 p(zygote | see the) vs. p(baby | see the)
 Unsmoothed probs: count(see the zygote) / count(see the)
 Smoothed probs: (count(see the zygote) + 1) / (count(see the) + V)
 What if count(see the zygote) = count(see the baby) = 0?

 baby beats zygote as a unigram
 the baby beats the zygote as a bigram
 see the baby beats see the zygote ?

(even if both have the same count, such as 0)

 Backoff introduces bias, as usual:
 Lower-order probabilities (unigram, bigram) aren’t quite what we want
 But we do have enuf data to estimate them & they’re better than nothing.

600.465 - Intro to NLP - J. Eisner 28

Early idea: Model averaging

 Jelinek-Mercer smoothing (“deleted interpolation”):
 Use a weighted average of backed-off naïve models:

paverage(z | xy) = 3 p(z | xy) + 2 p(z | y) + 1 p(z)
where 3 + 2 + 1 = 1 and all are 0

 The weights can depend on the context xy
 If we have “enough data” in context xy, can make 3 large. E.g.:
 If count(xy) is high
 If the entropy of z is low in the context xy

 Learn the weights on held-out data w/ jackknifing
 Different 3 when xy is observed 1 time, 2 times, 3-5 times, …

 We’ll see some better approaches shortly

More Ideas for Smoothing

 Cross-validation is a general-purpose wrench for tweaking
any constants in any system.
 Here, the system will train the counts from blue data, but we use

yellow data to tweak how much the system smooths them () and
how much it backs off for different kinds of contexts (3 etc.)

 Is there anything more specific to try in this case?
 Remember, we’re trying to decide how much to smooth.
 E.g., how much probability to “set aside” for novel events?
 Depends on how likely novel events really are …
 Which may depend on the type of text, size of training corpus, …

 Can we figure this out from the data?

600.465 - Intro to NLP - J. Eisner 30

How likely are novel events?

a 150 0
both 18 0

candy 0 1
donuts 0 2
every 50 versus 0
farina 0 0

grapes 0 1
his 38 0

ice cream 0 7
…

20000 types 300 tokens 300 tokens

0/300 0/300

which zero would you expect is really rare?

Is there any theoretically nice way to pick λ?

600.465 - Intro to NLP - J. Eisner 31

How likely are novel events?

a 150 0
both 18 0

candy 0 1
donuts 0 2
every 50 versus 0
farina 0 0

grapes 0 1
his 38 0

ice cream 0 7
…

20000 types 300 tokens 300 tokens

determiners:
a closed class

600.465 - Intro to NLP - J. Eisner 32

How likely are novel events?

a 150 0
both 18 0

candy 0 1
donuts 0 2
every 50 versus 0
farina 0 0

grapes 0 1
his 38 0

ice cream 0 7
…

20000 types 300 tokens 300 tokens

(food) nouns:
an open class

How common are novel events?

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

N0 *

N1 *

N2 *

N3 *

N4 *

N5 *

N6 *

Counts from Brown Corpus (N 1 million tokens)

novel words (in dictionary but never occur)
singletons (occur once)
doubletons (occur twice)

N2 = # doubleton types
N2 * 2 = # doubleton tokens

r Nr = total # types = T (purple bars)
r (Nr * r) = total # tokens = N (all bars)

0 10000 20000 30000 40000 50000 60000 70000 80000

0

1

2

3

4

5

6

52108

69836

How common are novel events?

N0 *

N1 *
N2 *

N3 *

N4 *

N5 *

N6 *

1*

1*

abaringe, Babatinde, cabaret …

aback, Babbitt, cabanas …
Abbas, babel, Cabot …

abdominal, Bach, cabana …

aberrant, backlog, cabinets …
abdomen, bachelor, Caesar …

the
EOS

Witten-Bell Smoothing Idea

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

N0 *

N1 *

N2 *

N3 *

N4 *

N5 *

N6 *

novel words
singletons
doubletons

If T/N is large, we’ve seen lots of novel types
in the past, so we expect lots more.

• Imagine scanning the corpus in order.
• Each type’s first token was novel.
• So we saw T novel types (purple).

unsmoothed smoothed
2/N 2/(N+T)

1/N 1/(N+T)

0/N (T/(N+T)) / N0

Intuition: When we see a new type w in training, ++count(w); ++count(novel)
So p(novel) is estimated as T/(N+T), divided among N0 specific novel types

0 0.005 0.01 0.015 0.02 0.025

0/N

1/N

2/N

3/N

4/N

5/N

6/N

Good-Turing Smoothing Idea

N0*

N1*

N2*

N3*

N4*

N5*

N6*
Partition the type vocabulary into classes

(novel, singletons, doubletons, …)
by how often they occurred in training data

Use observed total probability of class r+1
to estimate total probability of class r

unsmoothed smoothed

(N3*3/N)/N2

(N2*2/N)/N1

(N1*1/N)/N0

r/N = (Nr*r/N)/Nr (Nr+1*(r+1)/N)/Nr

obs. p(singleton)
est. p(novel)

2%

obs. p(doubleton)
est. p(singleton)

1.5%

obs. (tripleton)
est. p(doubleton)

1.2%
2/N (N3*3/N)/N2

1/N (N2*2/N)/N1

0/N (N1*1/N)/N0

 Justified by leave-one-out training! (Leave out 1 word at a time.)
 Instead of just tuning , we will tune
 p(novel)=0.02 [= frac. of yellow dev. words that were novel in blue training]
 p(singleton)=0.015 [= frac. of yellow dev. words that were singletons in blue training]
 p(doubleton)=0.012 [= frac. of yellow dev. words that were doubletons in blue training]

i.e.,
 p(novel) = fraction of singletons in full training
 p(singleton) = fraction of doubletons in full training, etc.

 Example: c(aback)=2. On the 2 folds where yellow=aback, aback was a
singleton in blue data, so we’d be rewarded for assigning a high prob to
training singletons. Overall, we’ll get such a reward on 1.5% of the folds.

Justification of Good-Turing

…

0 0.005 0.01 0.015 0.02 0.025

0/N

1/N

2/N

3/N

4/N

5/N

6/N

obs. p(singleton)

est. p(novel)
2%

obs. p(doubleton)

est. p(singleton)
1.5%

obs. (tripleton)

est. p(doubleton)
1.2%

Better variant: leave out 1 document at a time?

600.465 - Intro to NLP - J. Eisner 38

Witten-Bell vs. Good-Turing

 Estimate p(z | xy) using just the tokens we’ve
seen in context xy. Might be a small set …
 Witten-Bell intuition: If those tokens were

distributed over many different types, then novel
types are likely in future.
 Formerly covered on homework 3

 Good-Turing intuition: If many of those tokens
came from singleton types , then novel types are
likely in future.
 Very nice idea (but a bit tricky in practice)
 See the paper “Good-Turing smoothing without tears”

600.465 - Intro to NLP - J. Eisner 39

Good-Turing (old slides)

 Intuition: Can judge rate of novel events
(in a context) by rate of singletons (in that
context)

 Let Nr = # of word types with r training
tokens
 e.g., N0 = number of unobserved words
 e.g., N1 = number of singletons

 Let N = r Nr = total # of training tokens

600.465 - Intro to NLP - J. Eisner 40

Good-Turing (old slides)

 Let Nr = # of word types with r training tokens
 Let N = r Nr = total # of training tokens

 Naïve estimate: if x has r tokens, p(x) = ?
 Answer: r/N

 Total naïve probability of all word types with r tokens?
 Answer: Nr r / N.

 Good-Turing estimate of this total probability:
 Defined as: Nr+1 (r+1) / N
 So proportion of novel words in test data is estimated by

proportion of singletons in training data.
 Proportion in test data of the N1 singletons is estimated by

proportion of the N2 doubletons in training data. Etc.
 So what is Good-Turing estimate of p(x)?

600.465 - Intro to NLP - J. Eisner 41

Smoothing + backoff
 Basic smoothing (e.g., add-, Good-Turing, Witten-Bell):
 Holds out some probability mass for novel events
 E.g., Good-Turing gives them total mass of N1/N
 Divided up evenly among the novel events

 Backoff smoothing
 Holds out same amount of probability mass for novel events
 But divide up unevenly in proportion to backoff prob.
 When defining p(z | xy), the backoff prob for novel z is p(z | y)
 Novel events are types z that were never observed after xy.

 When defining p(z | y), the backoff prob for novel z is p(z)
 Here novel events are types z that were never observed after y.
 Even if z was never observed after xy, it may have been observed

after the shorter, more frequent context y. Then p(z | y) can be
estimated without further backoff. If not, we back off further to p(z).

 When defining p(z), do we need a backoff prob for novel z?
 What are novel z in this case? What could the backoff prob be? What

if the vocabulary is known and finite? What if it’s potentially infinite?

600.465 - Intro to NLP - J. Eisner 42

Smoothing + backoff

 Note: The best known backoff smoothing methods:
 modified Kneser-Ney (smart engineering)
 Witten-Bell + one small improvement (Carpenter 2005)
 hierarchical Pitman-Yor (clean Bayesian statistics)
 All are about equally good.

 Note:
 A given context like xy may be quite rare – perhaps we’ve only

observed it a few times.
 Then it may be hard for Good-Turing, Witten-Bell, etc. to

accurately guess that context’s novel-event rate as required
 We could try to make a better guess by aggregating xy with other

contexts (all contexts? similar contexts?).
 This is another form of backoff. By contrast, basic Good-Turing,

Witten-Bell, etc. were limited to a single implicit context.
 Log-linear models accomplish this very naturally.

600.465 - Intro to NLP - J. Eisner 43

Smoothing

There are more principled
smoothing methods, too. We’ll
look next at log-linear models,
which are a good and popular
general technique.

This dark art is why
NLP is taught in the
engineering school.

600.465 - Intro to NLP - J. Eisner 44

Smoothing as Optimization

There are more principled
smoothing methods, too. We’ll
look next at log-linear models,
which are a good and popular
general technique.

 Given a context x
 Which outcomes y are likely in that context?
 We need a conditional distribution p(y | x)
 A black-box function that we call on x, y
 p(NextWord=y | PrecedingWords=x)
 y is a unigram
 x is an (n-1)-gram

 p(Category=y | Text=x)
 y {personal email, work email, spam email}
 x * (it’s a string: the text of the email)

 Remember: p can be any function over (x,y)!
 Provided that p(y | x) 0, and y p(y | x) = 1

Conditional Modeling

600.465 - Intro to NLP - J. Eisner 45

 We need a conditional distribution p(y | x)
 Convert our linear scoring function to this distribution p
 Require that p(y | x) 0, and y p(y | x) = 1; not true of score(x,y)

Linear Scoring

How well does y go with x?
Simplest option: a linear function of (x,y). But (x,y) isn’t a number.

So describe it by one or more numbers:“numeric features” that you pick.
Then just use a linear function of those numbers.

Ranges over all features,
e.g., k=5 (numbered features)

or k=“see Det Noun” (named features)

Whether (x,y) has feature k(0 or 1)
Or how many times it fires (0)
Or how strongly it fires (real #)

Weight of feature k
To be learned …

What features should we use?

 p(NextWord=y | PrecedingWords=x)
 y is a unigram
 x is an (n-1)-gram

 p(Category=y | Text=x)
 y {personal email, work email, spam email}
 x * (it’s a string: the text of the email)

Ranges over all features,
e.g., k=5 (numbered features)

or k=“see Det Noun” (named features)

Whether (x,y) has feature k (0 or 1)
Or how many times it fires (0)
Or how strongly it fires (real #)

Weight of feature k
To be learned …

Log-Linear Conditional Probability
(interpret score as a log-prob, up to a constant)

600.465 - Intro to NLP - J. Eisner 48

where we choose Z(x) to ensure that

unnormalized
prob (at least
it’s positive!)

thus, sum of unnormalized
probabilities of all the
output candidates y’

Sometimes just written as Z

Training

 n training examples
 feature functions f1, f2, …
 Want to maximize p(training data|)

 Easier to maximize the log of that:

This version is “discriminative training”:
to learn to predict y from x, maximize p(y|x).

Whereas “joint training” learns
to model x, too, by maximizing p(x,y).

Alas, some weights i may be optimal at - or +.
When would this happen? What’s going “wrong”?

Training

 n training examples
 feature functions f1, f2, …
 Want to maximize p(training data|) pprior()

 Easier to maximize the log of that:

This version is “discriminative training”:
to learn to predict y from x, maximize p(y|x).

Whereas “joint training” learns
to model x, too, by maximizing p(x,y).

Encourages weights close to 0: “L2 regularization” (other choices possible)

Corresponds to a Gaussian prior, since Gaussian bell curve is just exp(quadratic).

 Gradually adjust in a direction that increases this

 For this, use your favorite function maximization algorithm.
 gradient descent, conjugate gradient, variable metric,etc.
 (Go take an optimization course: 550.{361,661,662}.)
 (Or just download some software!)

Gradient-based training

nasty non-differentiable cost
function with local minima

nice smooth and convex cost
function: pick one of these

 Gradually adjust in a direction that improves this

Gradient-based training

Gradient ascent to gradually increase f():

while (f() 0) // not at a local max or min
 = + f() // for some small > 0

Remember: f() = (f()/1, f()/2, …)
So update just means: k += f()/k
This takes a little step “uphill”

(direction of steepest increase).
This is why you took calculus.

Gradient-based training

 Gradually adjust in a direction that improves this

 The key part of the gradient works out as …

600.465 - Intro to NLP - J. Eisner 54

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.
 Question: Now what is your guess for p(C | m)?

 Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

 Question: Now what is your guess for p(C | m),
if m contains Buy?

 OUCH!

600.465 - Intro to NLP - J. Eisner 55

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

 Column A sums to 0.55 (“55% of all messages are in class A”)

600.465 - Intro to NLP - J. Eisner 56

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

 Column A sums to 0.55
 Row Buy sums to 0.1 (“10% of all messages contain Buy”)

600.465 - Intro to NLP - J. Eisner 57

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …
Largest if probabilities are evenly distributed

600.465 - Intro to NLP - J. Eisner 58

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

 Now p(Buy, C) = .029 and p(C | Buy) = .29
 We got a compromise: p(C | Buy) < p(A | Buy) < .55

600.465 - Intro to NLP - J. Eisner 59

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

 Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

 Now p(Buy, C) = .029 and p(C | Buy) = .29
 We got a compromise: p(C | Buy) < p(A | Buy) < .55

 Punchline: This is exactly the maximum-likelihood log-
linear distribution p(y) that uses 3 binary feature
functions that ask: Is y in column A? Is y in row Buy? Is
y one of the yellow cells? So, find it by gradient ascent.

