
600.406 — Finite-State Methods in NLP, Part II
Assignment 4: Building Finite-State Operators

Prof. J. Eisner — Spring 2001

As discussed in class, this week’s exercises involve constructing new finite-state op-
erators from old ones. You will use the FSA Utilities toolkit—the third and last of the
finite-state packages that this course has exposed you too. You can review the interface
at http://www.cs.jhu.edu/˜jason/405/software.html .

The FSA Utilities have a powerful Prolog-based macro facility that is particularly
convenient for constructing new operators (either algebraically or by manipulating au-
tomata). In addition, the integrated graphical interface is useful for debugging. The
downside is that if you don’t know Prolog well, you may find the interface confusing.
We also can’t currently compile the Prolog because we haven’t licensed the compiler, so
your user-defined operators will run slowly.

1. The FSA Utilities define a same-length cross product operator xx . If A and B are
regular languages, then A xx B is defined as the regular relation that relates any
string in A to any string of the same length in B.

(a) Restate the above definition mathematically, in the form

A xx B
def
= {〈a, b〉 : . . .}

(b) Suppose you have nondeterministic finite-state automata that recognize the
sets A and B. Describe how to construct a finite-state transducer that recog-
nizes the relation A xx B.

(c) [Turned out to be a bad question; see solutions for discussion.]
Under what conditions is this machine sequentiable? (That is, equivalent to a
sequential machine, which is one that is deterministic on the input side. If so,
A xx B is called a sequential relation.)
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(d) Suppose you have regular expressions for A and B (call these expressions E
and F ). Using other standard finite-state operators available in FSA Utilities,
write a regular expression for A xx B. (You can test your expression using
the software, if you want.)

2. In class, we developed a left-to-right, longest-match replace operator, follow-
ing the construction of Gerdemann & Van Noord (1999). (Their implementation in
FSA Utilities is available locally at file:/users/rtfm/rflorian/software/
lib/fsa/GerdemannVannoord99/eacl99.pl .) This question asks you to mod-
ify their construction in various ways.

Recall that replace (T, L, R) denotes a transducer that effectively scans the input
from left to right, using transducer T to replace substrings as it goes. At a given
point in the string, a match is any substring that (1) starts at that point, (2) is in the
domain of T , (3) is preceded by a substring in L (taking into account any changes
already made to the preceding material), and (4) is followed by a substring in
R. At each point, the transducer replaces the longest match x (if any) with T (x),
and continues at the next available point in the string. The next available point is
defined as the next point in the input that falls after any replaced material.1

Also remember that we constructed the transducer replace (T, L, R) as a compo-
sition of several smaller transducers. The symbols <1, >1, <2, >2 are called marks
and are assumed to be disjoint from the input and output alphabets of the relation
we are defining. The smaller transducers are applied to the input in the following
order:

(A) Insert >2 before every (substring matching) R.

(B) Insert <2 before every domain (T )>2 (ignoring internal marks).

(C) Nondeterministically replace some nonoverlapping strings y that match
<2domain (T )>2 (ignoring internal marks) with <1 y′>1, where y′ is y without
marks.

(D) Eliminate outputs that contain substrings of the form <1domain (T )>2 (ignor-
ing internal marks) which themselves contain >1. This rules out non-longest
matches.

(E) Replace each substring y′ between <1 and >1 with T (y′).
1“Next” is meant strictly: the transducer does not attempt multiple replacements (e.g., of ε) at the same

point in the input. So if the transducer did not consume any input at this point—because there were no
matches or because the longest match was ε—then it leaves the next input character unchanged in the
output and looks for matches starting at the following input character.
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(F) Eliminate outputs containing <1 not preceded by L (ignoring marks). This
ensures that replacement was done only in the appropriate left context (given
other replacements).

(G) Eliminate outputs containing <2 preceded by L (ignoring marks). This checks
that replacement was done wherever possible.

(H) Delete all marks.

The above is a generate-and-test procedure. (Some of the steps can themselves
be performed by generate-and-test: for example, to implement step (A), nonde-
terministically insert >2 at some positions and then eliminate outputs where >2

appears without R (ignoring marks) or vice-versa.)

Which steps in the above would you modify, and how, to get each of the following
effects? (Answer at the same level of detail.)

(a) Optional longest-match replacement. This is a nondeterministic version of
replace that, at each point, either does nothing or else replaces the longest
match.

(b) Probabilistic longest-match replacement. Same as 2a, but the choice is stochas-
tic: the replacement happens with probability p. The choices at different
points are statistically independent.

(c) Shortest-match replacement. That is, at each point replace the shortest match,
not the longest. (Be careful!)

(d) ? [Turned out to be a bad question; see solutions for discussion.]
Probabilistic lengthening-match replacement. The (new!) operator
replace (T, L, R, p) should yield a conditional stochastic transducer that, for
each input, produces several outputs whose probabilities sum to one. The
new argument p is a probability.
As usual, the transducer scans the string from left to right. At each point, it
may replace some match starting at that point. With probability p it replaces
the shortest match (perhaps ε) if any; if not, with probability p it replaces the
next-shortest match if any; and so on until it has either made a replacement
or run out of available matches. Then it continues at the next available point
in the string, as usual. All choices are statistically independent.

(e) [Turned out to be a bad question; see solutions for discussion.]
Probabilistic shortening-match replacement. Same as 2d, but tries longer
matches first. (This is like 2b except that the transducer considers shorter
matches if it decides not to replace the longest.)
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Remarks: There are of course many other possible variants. As discussed in class,
the replacement is directed in the sense that it matches R against the input but L
against the output, but we could modify the construction to match either L or R
against either input or output (and xfst provides a full family of such operators).2

There are also interesting possibilities for varying probabilistic replacement. For
example, it might be possible to define a version that will never turn down its last
chance to replace a match, or a version where the probability of replacing a match
x is not a constant p but rather depends on the string x and/or the strings that
match the context.

3. To solve the following problem, you will make use of a different way of stochas-
ticizing a replacement transducer that was first proposed (though in a more re-
stricted form) by Mohri & Sproat (1996). (You should not need to use your answers
to the previous problem.)

Recall that in Assigment 3, you were given a “bigram tag model” that mapped
any string of tags to its bigram probability. Briefly describe how to construct such a
model in the finite-state calculus, by using the original replace (T, L, R) operator.
(Assume that you know the probability pxy that tag x will be followed by tag y:
pxy = Pr(ti = y | ti−1 = x).) Be careful that your solution handles a string like xyyyz
appropriately: it should include the probabilities of starting with x and stopping
after z, and it should handle the repeated y’s correctly.

4. In class, we looked at Optimality Theory (OT) with directional constraints. In this
problem, you will use the FSA Utilities to construct a new “directional constraint”
operator.

This operator is useful in building dialect-specific transducers that map the “deep”
phonological representation of a morpheme, word, or sentence to its “surface”
representation (which could then be mapped to phonetics with a stochastic trans-
ducer).

Eisner (2000) showed how to carry out the same operation by directly manipulat-
ing the states and arcs of finite-state machines, but in this exercise you will get the
same result by combining operators of the finite-state algebra. As usual, this gives
a cleaner but possibly slower implementation of the new operator. It is analogous
to programming in a high-level language instead of assembly language. (Of course
the transducer returned by the operator runs fast, if it can be determinized—in fact

2However, I don’t think there is a way to define 2d or 2e as a stochastic process unless R is matched
against the input.
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the FSA Utilities can produce C++ code for you; what is slow is constructing that
transducer!)

In order to test the operator, you will write an example candidate generator and
some example constraints. It’s easiest to explain the operator’s behavior in terms
of this concrete example. Read the material below carefully before you start!

In the example, you will use an alphabet {a,b,c,d,e } of 3 consonants and two
vowels. The deep representation is written as a string of lowercase letters. The
surface representation is written as a string of capital letters, with square brack-
ets [] enclosing each syllable. The following table illustrates the input-to-output
mapping for some simple cases:

Deep Surface
da [DA] [CV ] is a good syllable. (C=consonant, V =vowel)
dab [DAB] [CV C] is equally good (at least in this exercise).
edab [E][DAB] We also tolerate [V ]
ecdab [EC][DAB] and [V C], but we don’t like them as much . . .
dabe [DA][BE] . . . which is why we prefer [DA][BE] to [DAB][E]
dabec [DA][BEC] and prefer [DA][BEC] to [DAB][EC] .

However, some more complicated cases have different surface forms in different
languages or dialects. Many languages rule out syllables like [CCV ] or [CV CC]
that contain two consonants in a row, perhaps because such “clusters” are hard to
pronounce or understand.

Deep Surface
abcde [AB][CDE] Language L1 allows the bad syllable.

[ABC][DE] Language L2 allows a different bad syllable.
[AB]C[DE] Language L3 doesn’t syllabify everything.
[AB][CE] Language L4 deletes extra consonants.
[AC][DE] Language L5 is the same, but prefers to delete early.
[AB][C V ][DE] Language L6 inserts extra vowels. (V ∈ {A, E})
[A][B V C][DE] Language L7 is the same, but prefers to insert early.

Notice that multiple surface forms are allowed in some cases: [AB][C V ][DE]
stands for the set {[AB][CA][DE] ,[AB][CE][DE] }. So the mapping from deep
to surface is in general a nondeterministic transduction.

An OT grammar consists of a generating transducer gen and a sequence of con-
straint transducers C1, C2, . . . Cn. The above languages can be described by almost
exactly the same grammar—the only difference is the order of the constraints.
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gen maps the deep string to infinitely many possible candidates. We will define
gen so that it inserts surface symbols arbitrarily into the deep string. For exam-
ple, gen maps abcde to many candidates such as [aAbB][cCA][dDeE] , each of
which contains a copy of the input abcde . A series of constraints then applies,
and each constraint may remove (“prune”) some of the candidates in a manner to
be described later.

Let T0 denote gen : it maps abcde to many candidates. Pruning T0 by C1 yields
a transducer T1 that maps abcde to a subset of those candidates. Pruning T1 by
C2 yields a transducer T2 that maps abcde to a subset of those candidates, and
so on until we get the full grammar, a transducer Tn. The full grammar for our
language L6 maps abcde to only two candidates: [aAbB][cCA][dDeE] and
[aAbB][cCE][dDeE] . All of the other infinitely many candidates were pruned
away by one constraint or another. Note that in the surviving candidates, every
surface (capital) letter—except for the inserted vowel—can be seen to correspond
to a deep (lowercase) letter.

To find the surface form, we compose Tn with a transducer that removes the deep
symbols (lowercase letters), leaving [AB][CA][DE] and [AB][CE][DE] as shown
in the table above. We had to preserve the deep symbols at intermediate stages, for
consideration by correspondence constraints that considered how well the deep
symbols match the surface symbols. The other constraints are surface constraints
that ignore the deep symbols.

Now, what is a constraint and how does pruning work? There are a few possible
answers that correspond to different pruning operators:

hard constraints A constraint Ci is a regular language. It prunes any candidates
that are not in the language. For this case we can use the simple transducer
composition Ti = Ti−1 o Ci. Of course this is an operator we already have.

binary constraints A constraint Ci is a regular language. It prunes any candidates
that are not in the language, unless this would prune all the remaining candi-
dates for this input, in which case it prunes nothing! For this case we use the
notation Ti = Ti−1 oo Ci. Formally, Ti is defined to be the relation that maps
input x to the set Ti−1(x)∩Ci if that set is non-empty and to Ti−1(x) otherwise.
The operator oo was introduced by Karttunen (1998); it is reminiscent of com-
position and stands for “optimality operator.” In the OT spirit, it makes Ci

violable. That is, it refrains from pruning the best candidates available, even
if they violate Ci. At least one candidate always survives.
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counting constraints A constraint Ci is a transducer that inserts 0 or more stars *
into a candidate—one star at every place the constraint doesn’t like. (Remem-
ber star means “bad” in linguistics. For example, if the constraint doesn’t like
syllables, then it might map [aAbB][cCE][dDeE] to [*aAbB][*cCE][*dDeE] ,
which has one star per syllable.)
Pruning with Ci keeps the candidates with the fewest stars and prunes the
rest. For this case we use the notation Ti = Ti−1 o+ Ci. Formally, let N(z)
denote the number of stars in a string z. Then Ti is defined to be the relation
that maps x to the set {y ∈ Ti−1(x) : (∀y′ ∈ Ti−1(x))N(Ci(y)) ≤ N(Ci(y

′))}.
This o+ is the traditional pruning operator in OT. Unfortunately, as we saw
in class (and Frank & Satta (1998) first showed), it cannot be implemented
in the finite-state calculus. Even if Ti−1 and Ci are rational (i.e., finite-state),
Ti−1 o+ Ci might not be rational.3

directional left-to-right constraints A constraint Ci is a transducer that inserts 0
or more stars * into a candidate, as described above. It prunes candidates
that have “unnecessarily early” stars relative to the deep symbols. For this
case we use the notation Ti = Ti−1 o> Ci. To judge how early the stars are, we
delete all the surface symbols:
[*aAbB][*cCE][*dDeE] → *ab*c*de → 〈1, 0, 1, 1, 0, 0〉
[*aAb*B][**cCE][dDeE]* → *ab***cde* → 〈1, 0, 3, 0, 0, 1〉
[aAb*B][**cCE][dDeE]* → ab***cde* → 〈0, 0, 3, 0, 0, 1〉

If z is a string in the first column, let S(z) denote the star pattern in the second
column. These strings can be ordered alphabetically, taking * to be the last
symbol in the alphabet. (Equivalently, let S(z) denote the vector in the third
column, which says how many stars fall at each position in abcde in the
star pattern, and order these vectors lexicographically.) S(z) is greatest in the
second row and smallest in the third row. For a given input, pruning keeps
only the candidates for which S(z) is smallest: that is, Ti maps x to the set
{y ∈ Ti−1(x) : (∀y′ ∈ Ti−1(x))S(Ci(y)) ≤ S(Ci(y

′))}.

directional right-to-left constraints The mirror image of the previous case: it prunes
candidates that have “unnecessarily late” stars. For this case we use the nota-
tion Ti = Ti−1 <o Ci.

3However, Ellison (1994) (as reformulated by Eisner (1997)) pointed out that for any input x, Ti(x) is
regular, and can be found from Ti−1(x) and Ci by a best-paths operation. Thus we have a way to find
the set of surviving surface candidates Tn(x) for any deep x. The trouble is that the relation Tn is not a
transducer, so we can’t invert it or compose it with others.
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Now for the problems!

(a) To warm up, let’s deal with binary constraints.

i. Explain why a binary constraint is a kind of counting constraint.
ii. ? Frank and Satta (1998) showed that the binary constraint optimality

operator oo can be implemented in the finite-state calculus although the
counting version o+ cannot be. Give an expression in the language of the
FSA Utilities for T oo C in terms of the relation T and the language C.
(Hint: First give an expression in terms of relations Q and R for the pri-
ority union of Q and R, which is the relation Q ∪ {〈x, y〉 ∈ R : Q(x) = ∅}
that maps x to the set Q(x) if that set is non-empty and to R(x) otherwise.
This formulation is due to Karttunen (1998). If you really get stuck, check
out the latter at http://www.xrce.xerox.com/publis/mltt/pto/
bilkent.html .)

iii. Suppose C is a “bounded” counting constraint that can only count up to
3. Show that you can express T o+ C in terms of oo .

(b) Now we’ll do directional constraints. Download a copy of the file http:
//www.cs.jhu.edu/˜jason/405/otdir.plg . This is a full solution to
the problem, but some of the definitions have been removed. Follow the di-
rections (read carefully!) to fill in the missing definitions, and test that they
work as expected. Hand in just the definitions you filled in:

i. constraint(Lif,Lthen,Rif,Rthen)

ii. ? surfconstraint(Lif,Lthen,Rif,Rthen)

iii. noins

iv. onset

v. nocomplex

vi. singlenuc

vii. worsen

viii. ? prune lr(TC)

ix. T do C (the program’s notation for T <o C)
x. lang one

xi. lang two

xii. lang three

xiii. lang four

xiv. lang five
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xv. lang seven

(c) What does your lang three transducer do on the input abcccccde ? Why?
Could you have given a different grammar that also predicted all the above
data for L3 but made a different prediction on abcccddde ?

(d) Describe how to add a constraint to your grammar for L6 so that the inserted
vowel will always be A, not E. So the modified grammar maps abcde only to
[AB][CA][DE] , not [AB][CE][DE] . (Just explain how to modify the gram-
mar; you don’t have to try it out.)

(e) Explain why ignore is used in the definitions of addstarwhere and del-
starwhere .

(f) We only intend to apply the grammar to strings that match deep* . Would
the implementation remain correct (on such strings) if we removed deep* o
from the definition of gen? If not, why not? If so, are there other reasons not
to remove it? (Feel free to try this out!)

(g) Examine the transducer for syllabify . It is rather complex. But you can
probably imagine a simple 2-state transducer that does the job of starring any
surface segment that is not in a syllable. (The two states would stand for
“currently in a syllable” and “currently not in a syllable.”) Let’s try some
optimizations in order to get a better machine.

i. How many states in t minimize(syllabify) ? (Use the “Count FA”
button at the bottom of the GUI window.)

ii. How many states in t minimize(syllabify) ?
iii. We can assume that a constraint will only apply to a star-free string with

matched brackets. Use the trick of question 4f to modify the definition of
constraint() accordingly. (Hint: use range(gen) .) Now how many
states in t minimize(syllabify) ?

iv. Explain what the arc labels in t minimize(syllabify) mean. (The
top of otdir.pl explains how to read them.) Why are they so much
messier than the arc labels in syllabify ?

(h) A transducer like lang five is rather large and messy. It appears to have
arcs that deal with individual letters like B, C, and Dseparately. So we should
be concerned that it will get larger and messier with a bigger alphabet. To
check this, we can ask whether it would get smaller with a smaller alphabet.
Write an expression lang five small in terms of lang five that does the
same thing as lang five but only on the smaller symbol set {a, b, A, B, [ , ]},
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so that it allows only one consonant and one vowel. How many states are in
each of t minimize(lang five) and t minimize(lang five small) ?
Notice that the latter machine is reasonably easy to understand by inspection.
(The function t minimize minimizes a transducer in FSA Utilities.)

(i) ? Ideally, we would have a machine as small as t minimize(lang five small)
even with a large alphabet. This might be possible if we allowed the output
letters to be lowercase. Then instead of separate arcs for b:B , c:C , and so on,
we could have just one arc ? that says “copy a symbol,” or one arc b..d that
says “copy a consonant.”4

i. Briefly, how would you implement this strategy? (Hint: To get a small
machine, you will not be able to use anything like corrpair (nor a low-
ercase equivalent) when defining noins and nodel . That would result
in deleting one symbol and inserting it again later, not copying it using
?. So you will actually have to change the way candidates are encoded as
strings.)

ii. The determinization algorithm (available as t determinize ) may post-
pone an arc’s output to a later arc. For example, when we determinize E,
an arc labeled b:B might become b: ε and a later arc such as c:BC would
output the B. (This postponement is necessary if we need to look ahead
farther in the input to tell whether it is the b:B arc or some other b: · · ·
arc that we need to follow if we are to be able to read rest of the input
after b.)
It is also possible to postpone the output of an arc labeled b, since that
is equivalent to b:b . But what if the arc is labeled ? or b..d , so that
the output is unified with the input? Can the output still be deferred?
Does this prevent us from determinizing the transducer—hence also from
minimizing it?
Experiment with some simple expressions in FSA Utilities to see what
happens in this case. Briefly describe what you did and what you con-
cluded from it.

4Remember that a language L is coerced to the identity relation 〈w,w〉 : w ∈ L, which copies any string
in L from input to the output. So an arc labeled b is considered to copy b (it is equivalent to b:b ), and an
arc labeled ? copies any symbol.
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