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Abstract—This paper presents PICO, a distributed protocol
that manages group membership and keying in mobile ad-
hoc networks (MANETS). PICO tolerates a limited nhumber of
Byzantine nodes and an additional limited number of crashed
nodes. It allows clients to join or leave a dynamically chanigpg
group and provides group members with a dynamically updated
group encryption key. Since MANETs are characterized by
relatively high message loss and frequent network partitias,
PICO is built around a new Byzantine fault-tolerant agreement
protocol designed to cope with these conditions. The agreemt
protocol leverages weak (commutative) semantics to allow witi-
ple partitions to continue operating in parallel without sacrificing
correctness; it also copes well with unreilable communicabn
links because it uses cumulative messages instead of negfthe
retransmission of prior lost messages.
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et al. [3], to generate the group encryption key, and it uses a
threshold digital signature scheme to construct proofsdaa

be used to verify the messages of PICO patrticipants. Second,
it uses limited tamper-proof hardware to assemble shares of
the generated group key, hold the generated group key, and
use the current group key to encrypt and decrypt traffic. This
limited use of trusted hardware prevents a compromisedtclie
from divulging the group key to outsiders. Third, it uses a/ne
Byzantine fault-tolerant agreement protocol to agree an th
current group membership. This agreement protocol avoids
the need for acknowledgements or queues of undelivered
messages in the face of partitions and message loss. PIGO use
cumulative threshold cryptographic proofs that allow éfit
reconciliation by requiring only the “last” message to be
delivered. These proofs also allow a member to know who is

This paper addresses the problem of building a robust aipdthe group at the time it encrypts a message. Only those
highly available group management system, providing sesvi processors in the group when a message is encrypted can
for group membership management, cryptographic key ggsetentially decrypt that message because a change in group
eration, and secure key distribution. The group managmenémbership is tied to a change in the shared group key.
system is designed to work in MANETS that might have high

packet loss, temporary network partitions, a limited numbe T

. RELATED WORK

of compromised processors and a limited number of crashed

processors.

Several secure group communication systems, such as En-

Applications that use this service can join a group argemble [4], [5] and Secure Spread [6], have been built in
encrypt messages for one another using the group’s shatfeel so-called “fortress model,” where the group members

encryption key, thus facilitating secure communicatioroam

are assumed to be correct and use cryptography to protect

group members. This problem arose as part of our work on ttheeir communication from external attackers. Ensembles use

DARPA IAMANET (Intrinsically Assurable Mobile Ad-Hoc

group key distribution protocols to distribute a sharedugro

Networks) program. In our system, ZODIAC [1], dynamicallykey, while Secure Spread uses a contributory key agreement
formed groups of nodes must be able to communicate secuneigtocol in which every group member contributes an equal
with one another. The system is intended to operate inshare of the group secret.

MANET with short-lived links, high packet loss, and trangie

Group communication systems have also been developed in

network partitions. It must operate despite a limited numbethe Byzantine fault model [7]. In the Byzantine model, fgult

of compromised participants.

processes can fail arbitrarily. The Rampart system [8] &ed t

The key properties of PICO are as follows. It uses threshdBecureRing system [9] provide services for membership and
cryptography to achieve intrusion tolerance. PICO uses thedered message delivery, and they depend on failure desect
threshold coin-tossing scheme of Cachin, Kursawe, andghdo remove faulty processes from the membership. They rely
[2], as adapted for the group membership problem by Duterwa synchrony for both safety and liveness, since inconsigte
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can arise if a membership is installed that has one-third or
more faulty processes. Unlike Rampart and SecureRing, PICO
guarantees safety and liveness without relying on synghron

assumptions.



We emphasize that PICO is not a “group communicatiorhe process, even if it is Byzantine, cannot read the private
system” as the term applies to the systems above; it ddesy. When a controller sends a key share to a client, it
not provide the strong membership semantics or the reliabéncrypts the key share with the public key of the client's
ordered message delivery of these systems. Rather, itslldvardware, establishing a secure channel between a correct
applications to join a logical group and encrypt messages foontroller and the trusted hardware of the receiving client
one another using a dynamically generated symmetric grotipe client's hardware decrypts the key share and verifies the
encryption key. PICO provides security against both exerrcorrectness proof. When the hardware combifies 1 valid
and insider attacks, as Rampart and SecureRing do. PIEEY shares, it generates the group encryption key. Clieants ¢
does not provide any functionality to support the sendingse the hardware to encrypt application-level messages) usi
retransmission, or ordering of application data messages. the group key, but they cannot read the group key, even if

At the core of PICO is a Byzantine fault-tolerant agreemetitey are Byzantine. The same physical machine can host both
protocol. Over the last several years, much of the work Bnclient process and a controller process.

Byzantine fault-tolerant agreement has focused on Byzanti The network may be divided into multiplgartitions. In
fault-tolerant state machine replication (SMR) protod@lg)., an infinite execution, we say that there is a partitidn,
[10]-[14]). In the state machine approach [15], [16], agrofi if (1) P contains a subset (not necessarily proper) of the
servers totally orders all updates that cause state tiamsit processes, (2) for any two correct processeand b in P,

and then the servers apply the updates in the agreed uffom sends an infinite number of message$ thenb delivers
order. If the servers begin in the same initial state and the infinite number of messages from and (3) there is
updates are deterministic, the servers will remain comisist some time after which no process ihreceives any message
with one another. SMR protocols provide strong consistenfiypym a process outside aP. Although we define partitions
semantics, but they allow at most one partition to continde terms of properties that hold forever (beginning at some
executing new updates at a time. In contrast, PICO’s agreempoint in the execution), real executions may go through many
protocol guarantees weaker, commutative semantics lawtsll different partition configurations. In practice we are retted
multiple partitions to operate in parallel, which is deblmin in proving that the properties of PICO hold in those pantitio
MANETS. that last “long enough.”

PICO uses threshold cryptography [17] to implement its PICO supports secure group communication by generating
security services. Using threshold cryptography to previgand distributing a group encryption key. The group ser-
security in peer-to-peer and MANET settings is not newices for a group,GG, are implemented by a collection of
(see, for example, [18]-[22]). Narasimha et al. [21] discugroup controller processes. Each group has a fixed number
the use of threshold cryptography for admission control of group controllers,C¢, uniquely identified from the set
malicious environments. In the work of Narasimha et al. tHRs = {1,2,...,Cg}. At most f of the group controllers
current group members run a voting protocol (based onngay be Byzantine. Each group can support an arbitrary but
threshold digital signature scheme) to decide whether btao finite number ofclients, which communicate with the group
admit a potential group member. PICO also uses a threshotzhtrollers to join or leave the group. Clients are uniquely
digital signature scheme, but the voting is conducted amoitgntified from the seS¢ = {1,2,...}. Any number of client
group controller processes only. In addition to admissigrocesses may be Byzantine.
control, PICO requires a coordination protocol for groug ke As discussed in greater detail in Section IV, we make use
generation. of two threshold cryptosystems. First, each group uses an

The work most closely related to PICO is the Intrusiontf + 1, C¢) threshold digital signature scheme. Each group
Tolerant Enclaves protocol of Dutertre et al. [3], [23]. W&eu controller knows one share of the private key, which it cam us
a similar protocol architecture as Intrusion-Tolerant lawes, to generate partial signatures and proofs of correctness. W
and we adopt the same threshold key generation scheme §&Jsume threshold signatures are unforgeable without kigpwi
We highlight the differences between the two protocols iat least f + 1 secret shares. Second, each group uses an
Section V. (f + 1, Cg) threshold key generation scheme. Each group
controller knows one secret share, which it can use to genera
key shares and proofs of correctness. We assume one cannot

We assume a Byzantine fault model. Processesa@rect, construct the group encryption key without knowing at least
crashed, or faulty; correct processes follow the protocol specif + 1 key shares. Also as discussed in greater detail in Section
fication, crashed processes simply stop, while faulty pgsee |V, we make use of a public key infrastructure.
can deviate from the protocol specification arbitrarilyoPr  Coping with Faulty Clients: Like membership and key
cesses communicate by passing messages in an asynchromausagement systems, PICO must make an assumption about
communication network. Messages can be delayed, lost,the behavior of client processes. With no assumptionstyfaul
duplicated. group members can engage in two behaviors to compromise

We assume that each process has tamper-proof hardwarefidentiality: (1) broadcasting the group encryption key
that can hold a public/private key pair and can assemble amoh-group members, and (2) decrypting application message
verify key shares in the threshold key generation schemssing the group key and then re-broadcasting them to non-

IIl. SYSTEM MODEL AND ASSUMPTIONS



group members. There are two possible approaches to dealhgres (after which the dealer is no longer needed), and it
with this problem. The approach taken by the Intrusiomprovides verifiable secret sharing.
Tolerant Enclaves protocol [3] is to assume that all cliewes ~ Threshold key generation: A (k, n) threshold key
correct, in which case no enforcement is necessary. We majemeration scheme allows a set Jofout of n processes to
a different (weaker) assumption, constraining the befrasio generate a group encryption key, while any set of fewer than
faulty clients, by requiring that they incorporate a lintite & processes is unable to do so. Similar to the case of threshold
trusted computing base. To cope with the first problem, vefigital signatures, setting > f 41 ensures that the group key
assume trusted hardware for key manipulation, storage, amals generated using a share from at least one correct process
application. We believe this assumption is reasonablertaice  PICO uses the Diffie-Hellman based threshold coin-tossing
military environments and is likely to become more gengralscheme of Cachin, Kursawe, and Shoup [2] for key generation;
applicable in the future (see [24] for a description of mechhe coin-tossing scheme was adapted for the group member-
anisms in this direction). To cope with the second problership problem by Dutertre et al. [3]. A trusted dealer geresrat
one can use the approach of the ZODIAC system [1] (whighshares of an initial secret (as in [28]) and securely disteb
we do not describe in this paper) that leverages host sgcuréine share to each process (after which the dealer is no longer
virtual machines, and non-bypassable encryption impléetenneeded). To generate a group key, each process computes a
in trusted hardware. PICO can be deployed using either setkef share as a function of its secret share and some common
assumptions, although some aspects of the protocol (imgudstate. In PICO, this common state is based on the currenpgrou
trusted hardware) are not needed if all clients are assumediembership. Any process that combineskey shares can
be correct. combine them to form the group key. As in [26], the scheme
provides verifiable secret sharing, allowing each process t
IV. CRYPTOGRAPHIC RESOURCEES generate a proof that its key share was created using a valid

secret share.
PICO makes use of two threshold cryptosystems: athreshpub"C Key Infrastructure: ~Each process has a pub-

old digital signature scheme (used to enforce correct t“elﬂclprivate key pair signed by a trusted certification auityo
behavior and facilitate efficient reconciliation) and aeifrold ), employ digital signatures, and we make use of a cryp-
key generation scheme (used to generate the shared groupggy,ohic hash function for computing message digests. We
that group members use to encrypt application-level MeSSagaote a message signed by processas (im),,. We assume
for one other). We now describe both cryptosystems and thgit o) agversaries, including faulty controllers aneits, are

ass_,ociated security properties. We _also dgscribe the WaycB}nputationally bounded such that they cannot subverethes
which PICO makes use of a public key infrastructure fo(fryptographic mechanisms.

simple message signing.

Threshold digital signatures: A (k, n) threshold digital
signature scheme allows a set bfout of n processes to
generate a digital signature; any set of fewer thgrocesses  In this section we describe the PICO architecture and its
is unable to generate a valid signature. When f+1, where security properties. We then discuss the design of one of the
f is the maximum number of processes that may be maliciowsre algorithmic components of PICO, tigeoup controller
generating a threshold signature on a message implies ttrardination protocol.
at least one correct process participated in the protocdl an A PICO group consists of a collection of clients that
assented to the content of the message. share an encryption key, which the clients use to protect

In a typical threshold signature scheme, a private key ftiseir application-level data. This key is dynamically con-
divided into n key shares, where each process knows os#ructed by PICO and is dynamically changed when the group
key share. To sign a message, each process uses its keynembership changes. A pre-defined set of group controllers
share to generate @artial signature on m. Any process that is responsible for providing security services to the ¢ien
collects k partial signatures can then combine them to forincluding handling join and leave requests according taigro
a threshold signature om. An important property provided policy and distributing shares of the group key to the group
by some threshold signature schemes, especially in maticianembers. Each group member is presented wittea of the
environments, is verifiable secret sharing [25]: each m®cenembership, which is a list of the processes currently in the
can use its key share to generate a proof of correctnessngrogroup. Any change in group membership will be acompanied
that the partial signature was properly generated usingaeeshby a key change.
from the initial key split. The PICO architecture is inspired by the architecture of the

Our current implementation of PICO uses the Shoup RSAtrusion-Tolerant Enclaves protocol [3]. It has the faling
threshold digital signature scheme [26]. The signatures gesecurity goals:
erated using this scheme are standard RSA signatures [27],
which can be verified using the public key corresponding to PROPERTY5.1: VALID AUTHENTICATION — Only an
the divided private key. The scheme assumes a trusted dealghorized client can join the group.
to divide the private key and securely distribute the ihkigy

V. SYSTEM ARCHITECTURE AND DESIGN



Protocol Step Entity Taking Action are only guaranteed to be combinable when the membership
) ; stabilizes. If join and leave requests are continuouslyrstibd
1. Client submits request Joining or leaving client . X ] X .
to group controllers 9 9 too quickly, then there is the potential for livelock if the
2. Request validation Each group controller that controllers are unable to converge on the set of accepted
receives the client request operations. This is the price of forgoing the total orderaig
ec.:.oc;:gm tci:g:t;?gte(:cm All group controllers SMR. Note, however, thz?\t a steady stream of joins.and Ieave_zs
would cause the encryption key to change very rapidly even if
4. Key share generation Each group controller that SMR were used for coordination. Therefore, in practice¢hes
and dissemination accepts the operation . . ..
systems must be augmented with mechanisms to rate limit the
5. Combining of key shares, | Trusted hardware of each joins and leaves from both correct and faulty processes.
group key generation group member . . . . ..
To capture this requirement in PICO, we define a partition
Fig. 1: Outline of the PICO protocol. P as stable with respect to time if no client in P submits

a new join or leave request after In practice, we want to

PROPERTY 5.2: SECUREKEYING — If group member ¢ is provide liveness during sufficiently long stable period<C®
given f + 1 shares for group encryption key k for view v, guarantees the following liveness property:
only the members of v will ever generate k.

PROPERTY 5.3: PICO-LIVENESS — Let P be a partition

Figure 1 presents an outline of the PICO protocol. Whenveth at least f+ 1 correct group controllers, where P is stable
client wants to join or leave the group, it sends a requestabtime ¢. Let M be the set of correct clients in P whose last
the group controllers. If a group controller determinest thaubmitted operation is a join. Then there exists a time ¢’ > ¢
the request is authorized (i.e., if @pproves the request), after which the members of M share an encryption key.
it proposes that the request be agreed upon by sending a
message in the group controller coordination protocol. A
controller accepts the requested operation when it becomes In this section we describe the PICO protocol in detail. In
agreed upon as a result of the coordination protocol. Oncéaction VI-A, we introduce the terminology used in our pro-
controller accepts an operation, it updates its view of ttoeig tocol description, and we present several key data strestur
membership and sends a message, containing a share oflth8ection VI-B, we present the three basic components of
group key, to each group member. The message is encryp®@@O: theclient protocol, used to join or leave the group; the
with the public key of the trusted hardware of the receivingroup controller coordination protocol, used to agree upon join
group member. Each group member combines a threshalid leave requests; and thekey protocol, used to generate a
number of key shares (in its trusted hardware) to construww group key when the membership changes. Section VI-C
the group key. addresses the problem of how a client can determine which

A critical property of the threshold key generation protoc@ncryption key is the most recent, which is made difficult by
is that, in order for key shares to be combinable, they must the fact that operations are not totally ordered and communi
computed based on some common state. In PICO, the comneation is asynchronous. Section VI-D presents techniqoes f
state on which the controllers compute their key shares @fficient state reconciliation and garbage collection.akyn
the set of operations (join and leave requests) that have b&ection VI-E discusses how the PICO architecture can stippor
accepted. Thus, the group controller coordination prdtocprocess ejections.
must facilitate agreement, among the group controllerghen
set of accepted operations.

Several factors make Intrusion-Tolerant Enclaves unisigita As mentioned above, the group controllers must agree on
for use in the PICO environment. First, the coordinatiort@ro the set of operations (join and leave requests) that have
col is not partitionable. Although it leverages weak seritant been accepted. Operations are uniquely identified dhign-
to avoid synchrony assumptions, it still requires collegti tID, operationID) pairs. PICO enforces that clients submit
messages from all correct servels{ f) in order to guarantee operations with increasing, contiguous operation idesfi
that a new join or leave request can be accepted. Second,heginning with 1, which must correspond to a join request. As
identified a flaw in the coordination protocol where, simplgxplained below, this prevents faulty clients from premeitu
due to network asynchrony, there are scenarios in which exhausting the space of operation identifiers, and it allfmws
authorized client will never be admitted into the group. Duthe use of cumulative threshold-signed proofs for efficitate
to space limitations, we describe this flaw in the extendedconciliation. All valid join operations have odd iderif$,
version of this paper [29]. Finally, the coordination praib and all valid leaves have even identifiers.
assumes reliable communication links between correcesgrv  Each controller maintains the state of accepted operaitions
all protocol-level messages must eventually be delivered am array,lastOpsAccepted[], where lastOpsAccepted[con-
order to ensure that all valid operations are eventuallgedr tains the operation identifier of the last operation that the
upon. controller has accepted for cliemt By agreeing on lastOp-

In both Intrusion-Tolerant Enclaves and PICO, key sharséccepted[], the controllers implicitly agree on the cuatre

VI. THE PICO PROTOCOL

A. Terminology and Data Structures
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Request Proposal Rekey authorized
2) If r should contain a proof, confirm that one is present.

. == 3) If r contains a proof, verify it using the group’s
public key, and confirm that it proves that operation
(7, opID — 1) was accepted.

4) If ¢ has already accepted an operationy}, j > opID,

Fig. 2: Basic operation of the PICO protocol, with = 1. Client 1 is discard the request, becauge j) must have already
requesting a new operation; Client 2 is already in the gr@vipen a controller b
een accepted.

collects f + 1 valid PROPOSALMessages, it accepts the requested operation
and sends ®EKEY message to the requesting client and all current group If all of the above checks succeed, then contralléroad-

members. TheREKEY sent to Client 1 only contains a key share if this iscggtg a<PROPOSAL clientlD, oplD, partiaISig,, message
a join request. ThREKEY sent to existing group members (i.e., Client 2) . N .
contains an updated key share to reflect the new group mehipers to the rest of the controllers. ThelientiD and oplD fields
uniquely identify the requested operation. TetialSg field
membership of the group: Clientis currently in the group is a partial signature computed over the hash of the (clien-
if lastOpsAccepted] corresponds to a join operation. IntID, opID) pair, along with a proof that the partial signagur
addition, the controllers implicitly agree on the total faen was computed correctly.
of operations that have been accepted for all clients, whichA controller considers @ROPOSALmMessage as valid if it
(following [3]) we call the view number. As described in is properly signed and contains a partial signature withlia va
Section VI-C, clients use the view number to determine whiaorrectness proof. Upon collectin§ + 1 valid PROPOSAL
group encryption key is the most up to date. messages for operation, (j) from distinct controllers, a
. . controller accepts the operation and takes several stégs. F
B. Basic Protocol Operation it combines thg partial psignatures to construct a ther]zisihold
Figure 2 depicts the basic protocol operation of PICO. Whejiyned proof thati( j) was legitimately accepted. Since this
a client wants to join or leave the group, it broadcasts proof is on a single operation, we refer to it asiagleOp
REQUEST message to the group controllers. As we describgoof. As described in Section VI-D, the singleOp proof
below, although the client broadcasts tReQUEST PICO can be passed to other controllers to convince them that the
provides liveness as long as the message is received bysat lgperation was legitimately accepted. Second, the coatroll
f + 1 correct controllers in the partition to which the cliengetg lastOpsAcceptedi[to j and updates the view number.
belongs. The group controllers then excharRROPOSAL Finally, the controller performs the requested operatign b
messages to agree to accept the requested operation. UggHer adding clienti to, or removing clienti from, the
accepting the operation, the group controllers serREREY membership list.

message to the client and all current group members. We nowrhe group controller coordination protocol (GCCP) meets

Client 1
Client 2

Controller 1

Controller 2

Controller 3

examine each phase of the protocol in more detail. the following two correctness properties:
Client Protocol: When clienti wants to join or leave
the group, it broadcasts(@®EQUEST opID, proof,, message  ProPERTY6.1: GCCRVALIDITY — If some correct

to the controllers. ThepID field is the operation identifier controller accepts operation (i, j), then some (potentially
chosen by the client for this operation. If this request hagfferent) correct controller approved the operation.

an operation identifier of 1, then thgroof field is empty.

Otherwise,proof is a threshold-signed proof that operation PROPERTY6.2: GCCPAGREEMENT — If some correct
(i, oplD — 1) was legitimately accepted by at least ongontroller in partition P accepts operation (i, j), then all
controller. Thus, to request an operation with identifiethe  correct controllers in P eventually accept the operation.
client must present proof that operatign- 1 was accepted.

After submitting the request, the client waits fo#-1 valid ~ Observe that the group controller coordination protocol
REKEY messages from the group controllers, indicating thaéquires a controller to collect onlf+1 matchingPROPOSAL
they have accepted the operation. The responses conté#l pafessages in order to accept an operation, instead of theatypi
signatures that can be combined to generate proof that the — f) messages required by Byzantine fault-tolerant state
operation was accepted. In addition, if the operation wasre j machine replication protocols and Intrusion-TolerantlBves.
request, the responses contain key shares that can be @mbime implication of this difference is that PICO guarantéwes t
to form the group encryption key. The client retransmits itgny partition with at leasf + 1 correct controllers can accept
request if it does not receive the necessary replies withinnaw join and leave operations, provided there is sufficient
timeout period. connectivity among the controllers and clients. More fdiyna

Group Controller Coordination Protocol: Upon receiv-
ing REQUEST message: from client i, controllerc performs PROPERTY 6.3: GCCP-LIVENESS — Let P be a partition
the following validation steps. In each step, if the validat with at least f + 1 correct group controllers. Then if a
fails, the request is discarded. correct client in P submits an operation (i, j), Some correct

1) Verify the signature om using client:’s public key, and controller in P accepts the operation.

consult the group policy to determine if the operation is



If N > 3f+1, then multiple partitions, operating in parallelthat, if p[m| = n, then the operatiofrn, n) was legitimately
can guarantee the liveness of join and leave requests. Hoeepted in the controller coordination protocol. Furtkarce
controllers eventually agree on the set of accepted opeati we force clients to use contiguous sequence numbers, all
This is a weaker agreement problem than consensus, becapsrations(m, n’),n’ < n, have been legitimately accepted
controllers never need to make an irrevocable decisiory, th@.e., the proof iscumulative).
give their best guess of what the current set is and only needr'he preceding discussion implies that group controllers ca
to converge eventually. This allows PICO to circumvent these the proofs contained REQUESTMessages to perform rec-
FLP impossibility result [30] and guarantee safety andilass onciliation on the set of accepted operations. Upon recgivi
without relying on synchrony. a (REQUEST, opID, p),, message from client, a controller

Rekey Protocol: After accepting an operation, controller performs the following two steps (in addition to those de-
generates &REKEY, partialSig, lastOpsAccepted, keyShare scribed in Section VI-B). First, for each clieht the controller
message. TheartialSg field is a partial signature computedsets lastOpsAccepted[ to max(lastOpsAccepted], p[k]).
over the hash ot's lastOpsAccepted[] data structure. Ther&Ve say that the controllepplies the arrayOp proof to its data
are two cases to consider. If the operation being acceptedstaictures. Second, if any entry in lastOpsAccepted[] gedn
a join, thenkeyShare is a key share computed over the hasthe controller updates the view number and membership list,
of lastOpsAccepted[], and theEKEY message is sent to alland it computes a ne®EKEY message. We also impose the
current group members, including the client that just jdinerule that a client only processeRaKey message if the view
If the operation being accepted is a leave, then controlleaumber implied by the lastOpsAccepted field is higher than
¢ generates two distincREKEY messages. The first is senthe view number of the last group key it adopted.
only to the leaving group member and do®s contain a key  Each group member periodically broadcasts the arrayOp
share; this message serves only to allow the leaving membpeoof corrresponding to its current group key in a
to obtain proof that the leave operation was accepted. Treeonciliation message,(RECONG proof),,. When a
secondREKEY message contains a new key share and is saointroller receives ®ECONC message, it applies the proof
to all remaining group members. To overcome message loss,its data structures and generates a REKEY message
a controller periodically retransmits theEKEY messages for if it learned of new accepted operations. Thus, when client
its last accepted operation. ¢ moves from one partition to another, it carries with it

A client validates arREKEY message by verifying the the snapshot (i.e., the proof) corresponding to key it is
signature, along with the proof of correctness of the plartiaurrently using. Eventually, the clients in the new paotiti
signature and the key share (if one is present). When a clievill either adopt a key with the same view number as the one
collectsf+1 valid REKEYs for the saméastOpsAccepted data, ¢ was using (in which case they will install the exact same
from distinct controllers, it first combines the partialrsigures membership ag) or a greater view number (in which case
to form a threshold-signed proof reflecting the acceptaricetbey all converge on a new membership). We formalize this
the operation. Since this proof is generated on the arragsdf [property as:
accepted operations, we refer to it as anayOp proof. We
denote the?” entry of proofp aspli]. If the REKEY messages PROPERTY 6.4: REKEY-FORWARD-PROGRESS Let P be
contain key shares, the client combines them to compute th@artition with at least f + 1 correct group controllers. If a
group encryption key. We refer to the sum of the entries worrect client in P ever successfully generated a group key
the arrayOp proof on which the key shares were computedwith view number v, then there exists a time after which each
the view number of the key. correct group controller in P only sends REKEY messages

) . corresponding to a view number v’ > v.
C. Choosing an Encryption Key

In this section we address the following practical problem: To help elucidate the intuition behind the mechanism de-
Given that client requests are not totally ordered, and thedribed above, we conclude this section with an example.
clients collect key shares asynchronously, how does atcligfigure 3 depicts a system with four clients, where the networ
know which group encryption key is the most up-to-date® split into two partitions,A and B. Suppose all controllers
Our solution is to leverage the threshold cryptographiofso in A agree on the set of accepted operations (with a lastOp-
already used by the protocol so that a client can choose #¥eccepted array of5, 4, 1,0]), all controllers inB agree on
correct key by using the one with the highest view numbera different set of accepted operation$, (, 1, 1]), and no

Recall that aREQUEST message sent by clientfor oper- new join or leave requests are submitted. Clients 1 and 2
ation j contains an arrayOp proofi, wherep[i] = j — 1. are currently in partitionAd. Client 1 is using a group key
More generallyp[k] contains the last accepted operation focorresponding to the arrafp, 4,1,0] (with a view number
clientk at the time theREKEY messages containing the partiabf 10). Client 2 is not currently a member of the group,
signatures combined to form were generated. Thus, proofand last had a group key corresponding[03,1,0] (with
p can be viewed as anapshot of the state off + 1 group a view number of 9). It has an arrayOp proof corresponding
controllers, at least one of which is correct. Therefore, ta [5,4, 1, 0], which it collected after completing the operation
controller receiving &REQUESTmessage containing knows (2, 4) (i.e., after it left the group). Clients 3 and 4 are in



- nlE (e A RV, wrapping each proofp, in a (RECONG p),, message.
[“’"v"” ] [ 11,1 ] [ m‘r“] Upon receiving aRECONC message, a controller applies
updatingRV and lastOpsAccepted(] j5 reflects more knowl-

Ci 1 Ci 2 Ci 3
[5,4,1,0] [5,4,1,0] [5,4,1,0]

[ Client 1 ] Stz [ Client3 [ Client4 ] edge than what it currently has in its data structures. More
K=[5,4,1,0] P;[5:4,’1:0] K=[0,1,1,1] K=[0,1,1,1] . . . . . .
formally, if p is a singleOp proof for operation,(j), then
Partition A Partition B if j > lastOpsAccepted], the controller replace®V[i] with

Fig. 3: A PICO system with 6 group controllers and four clgerntontrollers p and sets IastOpsAccept@'hto j- It pis an arrayOp proof,
1, 2, and 3 have lastOpsAccepted [5,4,1,0], and Controllers 4, 5, and then for each slok in p, if p[k] > lastOpsAccepted], then
6 have lastOpsAcceptes: [0,1,1,1]. Client 1 is a member of the group the controller set&V [k] to p and lastOpsAccepted] to p[k].
and is using the key corresponding to the arfay, 1,0]. Client 2 !s_ not a Since proofs are cumulative. PICO requires only thet
member of the group and last had a key corresponding,t8, 1, 0]; it has !
an arrayOp proof fof5,4,1,0]. Clients 3 and 4 are currently members offeconciliation message to be received for each client irrord
the group and share the key corresponding0td,, 1, 1]. to reconcile all of that client's accepted operations. This
facilitates efficient reconciliation when two partitionserge;
partition B and are using a group key corresponding to th@ther than requiring state proportional to the number of op
array [0, 1,1, 1] (with a view number of 3). erations that were accepted in each partition to be tramsfer
Now suppose client 2 moves to partitiégh We would like each controller must transfer at most one message per client
the client to be able to share a group key with clients 3 and @ultiple slots may have the same proof, which can be sent
Since client 2 was last using a group key with view number §jy once). This also makes the coordination protocol ofer
in partition A, it must have an arrayOp progf, corresponding of message loss: once any correct controller in a partitiyn,
to a key with a view number of at least 9. In this cage, collects f + 1 PROPOSALMessages for an operatiofi, j),
consists of the arrafp, 4, 1,0] and a corresponding thresholdy)| subsequenPROPOSAL messages fofi, j) need not be
signature. When client 2 requests to join in partitiBn its  gelivered in order for all controllers i to accept it.
REQUESTMessage contains After applyingp, the controllers  opserve that PICO avoids the need for unbounded message
in partition B will update their view number to 11, since theygyeyes. Each controller must retransmit at most one proof
compute the maximum of each slot in the array. Thus, Wher client, and oldPrRoPOSAL messages do not need to be
client 2's new join request is accepted, it will compute augro gjiaply delivered. Thus, garbage collection in PICO is liip
key based on the arra§, 5, 1, 1], which has a view number gnq s done simply by updating th&V and discarding
of 12. In addition, cI_|ents 3 and 4 receive the c:orrespond|ngposm_messages for operations §) if RV [i].opID > j.
REKEY messages (since they are members of the group) Rdcontrast, protocols requiring reliable links operatinga
will adopt the same group key. partitionable environment would require an explicit gayba
collection mechanism to determine which messages had been

delivered to all processes and could be deleted.
The constraints imposed by the MANET environment dic-

_tate that PICO should m_eet two import_ant_ properties. _Fir%,. Support for Process Ejection
it should not rely on reliable communication links. Given
that message loss can be high and partitions long-lived,PICO can be extended to support the ejection (irreversible
reliable links would consume bandwidth with acknowledgeevocation) of both controller and client processes.
ments and would require unbounded message queues. Secondle first consider the ejection of faulty clients. We assume
PICO must provide efficient reconciliation when two pastits  that some trusted entity generates and signs an ejection mes
merge. Again, since partitions can be long-lived, PICO #housage, which contains the process identifier of the cliemdei
specifically avoid passing all of the operations that wergected. This entity can be made fault-tolerant via thrisho
accepted in one partition to the other partition when thayptographic techniques. Ejection messages impact wheth
network heals. or not (1) a controller sendsEKEY messages to a client, and
We now describe how we use the threshold-signed prod® a controller processesREQUESTmessage from a client.
already in PICO to build a simple and efficient reconciliatioA correct controller never sendsREKEY message to a client
and garbage collection mechanism. Each group controlitiknows to be ejected, and it ignores subsequeBQUEST
maintains a data structure calledRaconciliation Vector, or messages from clients it knows to be ejected.
RV. The RV is simply an array of proofs, wher&V[i| Note, however, that correct controllers continue to accept
contains the proof reflecting the latest accepted operdtion join and leave operations for ejected clients when knowdedg
client 7. For convenience, we denote the operation identifief these operations comes from any other source (i.e., in
of this operation asRV[i].opID. Note that a proof might proofs received from other processes). In this way, thetiejec
be a singleOp proof (constructed during the group controlldoes not impact the properties guaranteed by the rest of the
coordination protocol) or an arrayOp proof (constructedaby protocol. The join/leave status agreed upon for an ejected
client during the rekey protocol and passed to the controllelient does not matter because clients are treated as group
in either aREQUESTOr a RECONC message). members only if (1) their last operation is a join and (2) they
Each controllerg, periodically broadcasts the contents of ithave not been ejected.

D. Reconciliation and Garbage Collection



Group controllers within a partition must also convergef combining the key shares into the group key increases as
on the set of ejected processes (in addition to the set pfincreases. We measured the latency for combining to be
accepted operations). To facilitate this convergencatiejeg 23.7 ms whenf = 1, 50 ms whenf = 3, and 91 ms when
messages can be periodically transmitted by extending the- 5.

Reconciliation Vector to include the ejection status ofleac Aggregating Membership Changes: In many settings,
process. join and leave operations are not likely to require realetim

PICO supports the ejection of group controllers in the santencies. Therefore, we believe the latencies presertedea
way. A correct process will ignore messages sent by an ejectee likely to be acceptable for many applications. Nevédetwe
controller. However, if too many group controllers are &e¢ if membership changes are frequent, the cost of generatitig a
then PICO will no longer guarantee liveness. That is, PIC&mbining partial signatures and key shares can become high
only guarantees liveness in partitions with at legstl correct To help reduce this cost, a controller can aggregate several
(i.e., not faulty and not ejected) controllers. membership change operations before generatirRgREY
message, which contains its partial signature and key share
This amortizes the cryptographic cost over several oparsti

The PICO protocol is being implemented as part akducing the average load per operation.

DARPA’s Intrinsically Assurable Mobile Ad-Hoc Networks

program. Although integration with our full system, ZODIAC VIIl. PROOF OF CORRECTNESS

is not yet complete, in this section we briefly comment on
some of the implementation and performance considerations
of PICO. We first evaluate the cryptographic overhead of our Proof Strategy: We first proveGCCP-AGREEMENT (Prop-
implementation. We then describe a simple optimization therty 6.2) andGCCP-LIVENESS (Property 6.3) of the group
can be used to reduce the computational load. controller coordination protocol. Using these propertiee

Our implementation is written in C and uses the OpenS3irove Lemma 8.1, which states that all correct controllers
library [31]. We measured the latency of the different typés in a stable partition eventually converge on the set of ac-
cryptographic operations when running on a 3.2 GHz, 64-lsiepted operations (i.e., their lastOpsAccepted[] dataciires
Intel Xeon computer. Each computer can generate a 10244icome identical). Once the correct controllers converge,
standard RSA signature in 1.3 ms and verify a signature \ive ProveREKEY-FORWARD-PROGRESS(Property 6.4), which
0.07 ms. shows that correct controllers will eventually genemxEeyY

Threshold RSA Signatures: As described in Section VI, messages for a view number that will be adopted by the correct
a group controller combineg + 1 partial signatures when group members. The liveness of the overall PICO protocol,
it accepts an operation, and a client combirfes 1 partial PICO-LIVENESS (Property 5.3), follows directly from these
signatures when its operation completes. We used the OperiO properties.
implementation of Shoup’s threshold RSA signature schemeProof of GCCP-Agreement: When a correct controller,
[26]. The cost of generating a partial signature, along with in partition P accepts operatiofi, j), it obtains a proof,
its proof of correctness, was measured to be 3.9 ms. Thisthat (i, j) was legitimately accepted. We must show that
cost remains fixed as the number of tolerated faults incegasall correct controllers inP eventually accepti, j). If ¢ never
because the number of exponentiations required to compatzepts a later operation farthen it continues to periodically
the partial signature remains the same. retransmitp, which will eventually be received by all correct

On the other hand, the cost of combinifig-1 partial signa- controllers inP. If ¢ does accept a later operation foit will
tures grows ag increases. We optimized for the common-caseplaceRV [i] with a new proofp’, for some operatiofi, j').
operation by attempting to combine partial signaturesavith In turn, ¢ may replacep’ with a later proof,p”, and so on.
first verifying their correctness proofs. If the resultifgesh- Eventually, a correct controller will receive one of theseqgds
old signature verifies, then the shares were correct. Haweugall it p*, for operation;*), at which point it will implicitly
if the signature does not verify, then we check each proatcept all operation&, j”) with j7 < j*, including (i, j),
and can detect which shares were invalid. Since all messabesause proofs are cumulative.
are digitally signed, the invalid share can be broadcast asProof of GCCP-Liveness: We must show that if client
a proof that the corresponding controller is compromisedubmits requesti, j) in a partition, P, with at leastf + 1
and the controller can subsequently be blacklisted. Usiigy tgroup controllers, ther(i, j) will eventually be accepted.
technigue, we measured the latency for combining to be 1.3 @bent ; periodically retransmits the request until it receives
when f =1, 2.1 ms whenf = 3, and3.4 ms whenf = 5. proof that (i, j) was accepted. The request is eventually

Threshold Key Generation: We implemented the thresh-received by at leasf + 1 correct group controllers, each
old key generation scheme of Cachin, Kursawe, and Shoofpwhich will approve it and send aroposALfor (i, j).

[2]. We generated a 1024-bit safe prime and performed oach correct controller thus eventually receives at Igastl
erations in its prime order subgroup. We measured the cesfid PROPOSAIS from distinct controllers and will therefore
of generating a key share in this setting to be 11.3 ms. Tldscept the operation.

cost is independent of the number of tolerated faults. Tt co

VIl. PERFORMANCE CONSIDERATIONS

Proof of Liveness Properties



Lemma 8.1: Let P be a partition with at least f + 1 one currently being used by any correct group member. Any
correct group controllers, where P is stable at time t. Then group member inM that previously had a group key with
all correct group controllers in P eventually agree on the set  a view v < v¢inq Will adopt the group key corresponding
of accepted operations. to vinai- Any group member already using a key with a

view numberv = vsinq Must already be using this group

Proof of Lemma 8.1:SinceP is stable, no new join or leave key, since otherwise there exists some operation that hias no
requests are submitted. BgCCP-LIVENESS, any pending been converged upon. Since the convergence view;ig,,
operation from a correct client will eventually be acceptedo correct controller sends REKEY message corresponding
by some correct controller i?, and byGCCP-AGREEMENT, to a higher view number, so all membersdf will continue
all correct controllers will eventually accept these opieres. using the established group key.

If any pending operation from a faulty client is accepted by a ) )
correct controller, all correct controllers i will accept it. B+ Proof of Security Properties

For each client, let i. be the highest operation identifier Proof Strategy: We first proveGCCP-VALIDITY (Property
for which a correct process i has a proof, and let; be 6.1), the validity property of the group controller cooraliton
the highest operation identifier for which a faulty process iprotocol. We then use this to provaLID -AUTHENTICATION
P has a proof. Ifi. > i, then letr be a correct process in(Property 5.1), which states that only authorized clients a
P that has proof thati, i.) was accepted. Any other correctable to join the group. Finally, we proveECUREKEYING
controller, s, will eventually accept this operation because (Property 5.2), the security of the keying process.
continues to retransmit the proof. Proof of GCCP-Validity: A correct controller accepts

If iy > 4., then for each operatiop, with i. < j < iy, an operation(i, j) after (1) collectingf + 1 PROPOSAL
a faulty process can either choose to make the proof miessages, (2) collecting a singleOp proof for operatiory),

(i, j) known to a correct process (in which case it wilbr (3) collecting an arrayOp proaf with p[i] > j. In the

be accepted by all correct controllers) or it never makes tfiest case, since at mogt controllers are faulty, at least one
proof known. Thus, there exists some maximum sgidhat correct controller sent aRoPOsALand therefore approved the
a faulty process makes known, which implies that the corregperation. In the second case, a singleOp proof is consttuct
controllers eventually agree on the set of operations fachvh by collecting f + 1 PROPOSALMessages, each with a partial
only faulty processes had proof of acceptance. Therefbee, signature on the hash dfi, j). Again, since at mostf
correct controllers eventually agree on the set of accepteghtrollers are faulty, at least one correct controller nhave
operations for each client. sent aPROPOSALMessage that contributed to the construction

Proof of Rekey-Forward-Progress: By Lemma 8.1, all of the singleOp proof.
correct group controllers in partitio® eventually agree on In the third case, the arrayOp proof was constructed by
the set of accepted operations. When each correct comtrottellecting f + 1 REKEY messages. In each message, itie
in P accepts the last operation, it generatese&aEY message entry of the lastOpsAccepted field containgd> j. Thus, at
with a key share based on the same membership as each dtast one correct controller had lastOpsAccepiedf 5. In
correct controller inP. Let vy, be the view number implied order for (i, j') to have been accepted, clientmust have
by the lastOpsAccepted field,, of theseREKEY messages. submitted aREQUEST containing proof thai(i, j' — 1) was
We must show thaby;,.; will be at least as high as theaccepted, which implies that at least one correct controlle
view numberp, of the key currently being used by any of théhad lastOpsAccepted[ = ;' — 1. Using a simple induction,
correct group members. We can prove this by showing that aach operation fron, 1) through(i, ;') was accepted by at
correct group member has proof of an operatianj) where least one correct controller, includirig 7). Consider the first
j > L[i]. The proof is by contradiction. If any correct grougcorrect controller to accefdt, j). This controller must have
member had this proof, then it would eventually be receivatbne so through either Case 1 or Case 2, since no arrayOp
in a RECONC message by a correct controller, which woulgroof, p, with p[i{] > j, can yet exist. By Case 1 and Case
cause the controller to increase its view number and gemeratabove, some correct controller must have sePR@aPOSAL
a REKEY message with a higher view number, which violatemessage fo(i, j).
the assumption thaty;,,,,; iS the convergence point established Proof of Valid-Authentication: By GCCPVALIDITY, a
by Lemma 8.1. client can only join the group if its operation was approved

Proof of PICO-Liveness: By Lemma 8.1, all group by some correct controller. A correct controller consuhsup
controllers in a partition? eventually converge on the set ofpolicy in deciding whether to approve a client join request.
accepted operations and generaexEY message based onThus, only an authorized client can join the group.
the same membership. Since there are at I¢astl correct Proof of Secure-Keying: We show that only members
controllers inP, and since correct controllers periodically reef a given view,v, can generate the group kdy Group
transmit their lasREKEY message, all correct group membermemberi uses its trusted hardware to encrypt messages with
will eventually collect f + 1 combinableREKEY messages k. When+i adoptedk, it obtained an arrayOp proop, from
based on the stable membership. By Property 6.4, the viasich the current group view can be deduced. To obfgin
number of this keyuy ina, Will be at least as high as thea process must combing + 1 key shares all based on the
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same lastOpsAccepted data, which is the same data as o]
A correct controller only sends REKEY message containing

a key share to the members of EachREKEY is encrypted
with the public key of the trusted hardware of the receivingi]
group member. Thus, a faulty client not#rwill never be sent

the necessary + 1 REKEY messages. Faulty clients cannot
decrypt the key shares GfEKEY messages sent to correct
clients. Further, since they cannot learn the decryption k&2l
of their own trusted hardware, even faulty group members
cannot divulge their own key shares to processes nat. in [13]
The security of the keying process thus follows from the fact
that only processes in are able to generafe and no process

is able to learnk. [14]

IX. CONCLUSION

This paper presented PICO, a distributed protocol that;
manages group membership and keying in mobile ad-hoc
networks. PICO uses a weakly consistent Byzantine fault®!
tolerant agreement protocol to provide a partitionableiser
and it leverages threshold cryptographic proofs to toteratl7]
message loss and avoid requiring reliable communication
links. We highlighted several pragmatic issues associattd [1g)
integrating PICO as a component in a secure system, which
must be addressed in practical deployments. (19]
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