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Abstract—This paper presents PICO, a distributed protocol
that manages group membership and keying in mobile ad-
hoc networks (MANETs). PICO tolerates a limited number of
Byzantine nodes and an additional limited number of crashed
nodes. It allows clients to join or leave a dynamically changing
group and provides group members with a dynamically updated
group encryption key. Since MANETs are characterized by
relatively high message loss and frequent network partitions,
PICO is built around a new Byzantine fault-tolerant agreement
protocol designed to cope with these conditions. The agreement
protocol leverages weak (commutative) semantics to allow multi-
ple partitions to continue operating in parallel without sacrificing
correctness; it also copes well with unreilable communication
links because it uses cumulative messages instead of needing the
retransmission of prior lost messages.

I. INTRODUCTION

This paper addresses the problem of building a robust and
highly available group management system, providing services
for group membership management, cryptographic key gen-
eration, and secure key distribution. The group managment
system is designed to work in MANETS that might have high
packet loss, temporary network partitions, a limited number
of compromised processors and a limited number of crashed
processors.

Applications that use this service can join a group and
encrypt messages for one another using the group’s shared
encryption key, thus facilitating secure communication among
group members. This problem arose as part of our work on the
DARPA IAMANET (Intrinsically Assurable Mobile Ad-Hoc
Networks) program. In our system, ZODIAC [1], dynamically-
formed groups of nodes must be able to communicate securely
with one another. The system is intended to operate in a
MANET with short-lived links, high packet loss, and transient
network partitions. It must operate despite a limited number
of compromised participants.

The key properties of PICO are as follows. It uses threshold
cryptography to achieve intrusion tolerance. PICO uses the
threshold coin-tossing scheme of Cachin, Kursawe, and Shoup
[2], as adapted for the group membership problem by Dutertre
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et al. [3], to generate the group encryption key, and it uses a
threshold digital signature scheme to construct proofs that can
be used to verify the messages of PICO participants. Second,
it uses limited tamper-proof hardware to assemble shares of
the generated group key, hold the generated group key, and
use the current group key to encrypt and decrypt traffic. This
limited use of trusted hardware prevents a compromised client
from divulging the group key to outsiders. Third, it uses a new
Byzantine fault-tolerant agreement protocol to agree on the
current group membership. This agreement protocol avoids
the need for acknowledgements or queues of undelivered
messages in the face of partitions and message loss. PICO uses
cumulative threshold cryptographic proofs that allow efficient
reconciliation by requiring only the “last” message to be
delivered. These proofs also allow a member to know who is
in the group at the time it encrypts a message. Only those
processors in the group when a message is encrypted can
potentially decrypt that message because a change in group
membership is tied to a change in the shared group key.

II. RELATED WORK

Several secure group communication systems, such as En-
semble [4], [5] and Secure Spread [6], have been built in
the so-called “fortress model,” where the group members
are assumed to be correct and use cryptography to protect
their communication from external attackers. Ensemble uses
group key distribution protocols to distribute a shared group
key, while Secure Spread uses a contributory key agreement
protocol in which every group member contributes an equal
share of the group secret.

Group communication systems have also been developed in
the Byzantine fault model [7]. In the Byzantine model, faulty
processes can fail arbitrarily. The Rampart system [8] and the
SecureRing system [9] provide services for membership and
ordered message delivery, and they depend on failure detectors
to remove faulty processes from the membership. They rely
on synchrony for both safety and liveness, since inconsistency
can arise if a membership is installed that has one-third or
more faulty processes. Unlike Rampart and SecureRing, PICO
guarantees safety and liveness without relying on synchrony
assumptions.



We emphasize that PICO is not a “group communication
system” as the term applies to the systems above; it does
not provide the strong membership semantics or the reliable,
ordered message delivery of these systems. Rather, it allows
applications to join a logical group and encrypt messages for
one another using a dynamically generated symmetric group
encryption key. PICO provides security against both external
and insider attacks, as Rampart and SecureRing do. PICO
does not provide any functionality to support the sending,
retransmission, or ordering of application data messages.

At the core of PICO is a Byzantine fault-tolerant agreement
protocol. Over the last several years, much of the work in
Byzantine fault-tolerant agreement has focused on Byzantine
fault-tolerant state machine replication (SMR) protocols(e.g.,
[10]–[14]). In the state machine approach [15], [16], a group of
servers totally orders all updates that cause state transitions,
and then the servers apply the updates in the agreed upon
order. If the servers begin in the same initial state and the
updates are deterministic, the servers will remain consistent
with one another. SMR protocols provide strong consistency
semantics, but they allow at most one partition to continue
executing new updates at a time. In contrast, PICO’s agreement
protocol guarantees weaker, commutative semantics but allows
multiple partitions to operate in parallel, which is desirable in
MANETs.

PICO uses threshold cryptography [17] to implement its
security services. Using threshold cryptography to provide
security in peer-to-peer and MANET settings is not new
(see, for example, [18]–[22]). Narasimha et al. [21] discuss
the use of threshold cryptography for admission control in
malicious environments. In the work of Narasimha et al. the
current group members run a voting protocol (based on a
threshold digital signature scheme) to decide whether or not to
admit a potential group member. PICO also uses a threshold
digital signature scheme, but the voting is conducted among
group controller processes only. In addition to admission
control, PICO requires a coordination protocol for group key
generation.

The work most closely related to PICO is the Intrusion-
Tolerant Enclaves protocol of Dutertre et al. [3], [23]. We use
a similar protocol architecture as Intrusion-Tolerant Enclaves,
and we adopt the same threshold key generation scheme [2].
We highlight the differences between the two protocols in
Section V.

III. SYSTEM MODEL AND ASSUMPTIONS

We assume a Byzantine fault model. Processes arecorrect,
crashed, or faulty; correct processes follow the protocol speci-
fication, crashed processes simply stop, while faulty processes
can deviate from the protocol specification arbitrarily. Pro-
cesses communicate by passing messages in an asynchronous
communication network. Messages can be delayed, lost, or
duplicated.

We assume that each process has tamper-proof hardware
that can hold a public/private key pair and can assemble and
verify key shares in the threshold key generation scheme.

The process, even if it is Byzantine, cannot read the private
key. When a controller sends a key share to a client, it
encrypts the key share with the public key of the client’s
hardware, establishing a secure channel between a correct
controller and the trusted hardware of the receiving client.
The client’s hardware decrypts the key share and verifies the
correctness proof. When the hardware combinesf + 1 valid
key shares, it generates the group encryption key. Clients can
use the hardware to encrypt application-level messages using
the group key, but they cannot read the group key, even if
they are Byzantine. The same physical machine can host both
a client process and a controller process.

The network may be divided into multiplepartitions. In
an infinite execution, we say that there is a partition,P ,
if (1) P contains a subset (not necessarily proper) of the
processes, (2) for any two correct processesa and b in P ,
if a sends an infinite number of messages tob thenb delivers
an infinite number of messages froma, and (3) there is
some time after which no process inP receives any message
from a process outside ofP . Although we define partitions
in terms of properties that hold forever (beginning at some
point in the execution), real executions may go through many
different partition configurations. In practice we are interested
in proving that the properties of PICO hold in those partitions
that last “long enough.”

PICO supports secure group communication by generating
and distributing a group encryption key. The group ser-
vices for a group,G, are implemented by a collection of
group controller processes. Each group has a fixed number
of group controllers,CG, uniquely identified from the set
RG = {1, 2, . . . , CG}. At most f of the group controllers
may be Byzantine. Each group can support an arbitrary but
finite number ofclients, which communicate with the group
controllers to join or leave the group. Clients are uniquely
identified from the setSG = {1, 2, . . .}. Any number of client
processes may be Byzantine.

As discussed in greater detail in Section IV, we make use
of two threshold cryptosystems. First, each group uses an
(f + 1, CG) threshold digital signature scheme. Each group
controller knows one share of the private key, which it can use
to generate partial signatures and proofs of correctness. We
assume threshold signatures are unforgeable without knowing
at least f + 1 secret shares. Second, each group uses an
(f + 1, CG) threshold key generation scheme. Each group
controller knows one secret share, which it can use to generate
key shares and proofs of correctness. We assume one cannot
construct the group encryption key without knowing at least
f +1 key shares. Also as discussed in greater detail in Section
IV, we make use of a public key infrastructure.

Coping with Faulty Clients: Like membership and key
management systems, PICO must make an assumption about
the behavior of client processes. With no assumptions, faulty
group members can engage in two behaviors to compromise
confidentiality: (1) broadcasting the group encryption keyto
non-group members, and (2) decrypting application messages
using the group key and then re-broadcasting them to non-
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group members. There are two possible approaches to dealing
with this problem. The approach taken by the Intrusion-
Tolerant Enclaves protocol [3] is to assume that all clientsare
correct, in which case no enforcement is necessary. We make
a different (weaker) assumption, constraining the behavior of
faulty clients, by requiring that they incorporate a limited
trusted computing base. To cope with the first problem, we
assume trusted hardware for key manipulation, storage, and
application. We believe this assumption is reasonable in certain
military environments and is likely to become more generally
applicable in the future (see [24] for a description of mech-
anisms in this direction). To cope with the second problem,
one can use the approach of the ZODIAC system [1] (which
we do not describe in this paper) that leverages host security,
virtual machines, and non-bypassable encryption implemented
in trusted hardware. PICO can be deployed using either set of
assumptions, although some aspects of the protocol (including
trusted hardware) are not needed if all clients are assumed to
be correct.

IV. CRYPTOGRAPHIC RESOURCEES

PICO makes use of two threshold cryptosystems: a thresh-
old digital signature scheme (used to enforce correct client
behavior and facilitate efficient reconciliation) and a threshold
key generation scheme (used to generate the shared group key
that group members use to encrypt application-level messages
for one other). We now describe both cryptosystems and their
associated security properties. We also describe the way in
which PICO makes use of a public key infrastructure for
simple message signing.

Threshold digital signatures: A (k, n) threshold digital
signature scheme allows a set ofk out of n processes to
generate a digital signature; any set of fewer thank processes
is unable to generate a valid signature. Whenk ≥ f +1, where
f is the maximum number of processes that may be malicious,
generating a threshold signature on a message implies that
at least one correct process participated in the protocol and
assented to the content of the message.

In a typical threshold signature scheme, a private key is
divided into n key shares, where each process knows one
key share. To sign a message,m, each process uses its key
share to generate apartial signature on m. Any process that
collectsk partial signatures can then combine them to form
a threshold signature onm. An important property provided
by some threshold signature schemes, especially in malicious
environments, is verifiable secret sharing [25]: each process
can use its key share to generate a proof of correctness, proving
that the partial signature was properly generated using a share
from the initial key split.

Our current implementation of PICO uses the Shoup RSA
threshold digital signature scheme [26]. The signatures gen-
erated using this scheme are standard RSA signatures [27],
which can be verified using the public key corresponding to
the divided private key. The scheme assumes a trusted dealer
to divide the private key and securely distribute the initial key

shares (after which the dealer is no longer needed), and it
provides verifiable secret sharing.

Threshold key generation: A (k, n) threshold key
generation scheme allows a set ofk out of n processes to
generate a group encryption key, while any set of fewer than
k processes is unable to do so. Similar to the case of threshold
digital signatures, settingk ≥ f +1 ensures that the group key
was generated using a share from at least one correct process.

PICO uses the Diffie-Hellman based threshold coin-tossing
scheme of Cachin, Kursawe, and Shoup [2] for key generation;
the coin-tossing scheme was adapted for the group member-
ship problem by Dutertre et al. [3]. A trusted dealer generates
n shares of an initial secret (as in [28]) and securely distributes
one share to each process (after which the dealer is no longer
needed). To generate a group key, each process computes a
key share as a function of its secret share and some common
state. In PICO, this common state is based on the current group
membership. Any process that combinesk key shares can
combine them to form the group key. As in [26], the scheme
provides verifiable secret sharing, allowing each process to
generate a proof that its key share was created using a valid
secret share.

Public Key Infrastructure: Each process has a pub-
lic/private key pair signed by a trusted certification authority.
We employ digital signatures, and we make use of a cryp-
tographic hash function for computing message digests. We
denote a messagem signed by processi as〈m〉σi

. We assume
that all adversaries, including faulty controllers and clients, are
computationally bounded such that they cannot subvert these
cryptographic mechanisms.

V. SYSTEM ARCHITECTURE AND DESIGN

In this section we describe the PICO architecture and its
security properties. We then discuss the design of one of the
core algorithmic components of PICO, thegroup controller
coordination protocol.

A PICO group consists of a collection of clients that
share an encryption key, which the clients use to protect
their application-level data. This key is dynamically con-
structed by PICO and is dynamically changed when the group
membership changes. A pre-defined set of group controllers
is responsible for providing security services to the clients,
including handling join and leave requests according to group
policy and distributing shares of the group key to the group
members. Each group member is presented with aview of the
membership, which is a list of the processes currently in the
group. Any change in group membership will be acompanied
by a key change.

The PICO architecture is inspired by the architecture of the
Intrusion-Tolerant Enclaves protocol [3]. It has the following
security goals:

PROPERTY 5.1: VALID AUTHENTICATION – Only an
authorized client can join the group.
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4. Key share generation
and dissemination

1. Client submits request 
to group controllers

2. Request validation

Entity Taking Action

5. Combining of key shares, 
group key generation

Joining or leaving client

Each group controller that 
receives the client request

All group controllers

Each group controller that
accepts the operation

Trusted hardware of each 
group member

Protocol Step

3. Group Controller 
Coordination Protocol

Fig. 1: Outline of the PICO protocol.

PROPERTY 5.2: SECURE-KEYING – If group member i is
given f + 1 shares for group encryption key k for view v,
only the members of v will ever generate k.

Figure 1 presents an outline of the PICO protocol. When a
client wants to join or leave the group, it sends a request to
the group controllers. If a group controller determines that
the request is authorized (i.e., if itapproves the request),
it proposes that the request be agreed upon by sending a
message in the group controller coordination protocol. A
controller accepts the requested operation when it becomes
agreed upon as a result of the coordination protocol. Once a
controller accepts an operation, it updates its view of the group
membership and sends a message, containing a share of the
group key, to each group member. The message is encrypted
with the public key of the trusted hardware of the receiving
group member. Each group member combines a threshold
number of key shares (in its trusted hardware) to construct
the group key.

A critical property of the threshold key generation protocol
is that, in order for key shares to be combinable, they must be
computed based on some common state. In PICO, the common
state on which the controllers compute their key shares is
the set of operations (join and leave requests) that have been
accepted. Thus, the group controller coordination protocol
must facilitate agreement, among the group controllers, onthe
set of accepted operations.

Several factors make Intrusion-Tolerant Enclaves unsuitable
for use in the PICO environment. First, the coordination proto-
col is not partitionable. Although it leverages weak semantics
to avoid synchrony assumptions, it still requires collecting
messages from all correct servers (N−f ) in order to guarantee
that a new join or leave request can be accepted. Second, we
identified a flaw in the coordination protocol where, simply
due to network asynchrony, there are scenarios in which an
authorized client will never be admitted into the group. Due
to space limitations, we describe this flaw in the extended
version of this paper [29]. Finally, the coordination protocol
assumes reliable communication links between correct servers;
all protocol-level messages must eventually be delivered in
order to ensure that all valid operations are eventually agreed
upon.

In both Intrusion-Tolerant Enclaves and PICO, key shares

are only guaranteed to be combinable when the membership
stabilizes. If join and leave requests are continuously submitted
too quickly, then there is the potential for livelock if the
controllers are unable to converge on the set of accepted
operations. This is the price of forgoing the total orderingof
SMR. Note, however, that a steady stream of joins and leaves
would cause the encryption key to change very rapidly even if
SMR were used for coordination. Therefore, in practice these
systems must be augmented with mechanisms to rate limit the
joins and leaves from both correct and faulty processes.

To capture this requirement in PICO, we define a partition
P as stable with respect to timet if no client in P submits
a new join or leave request aftert. In practice, we want to
provide liveness during sufficiently long stable periods. PICO
guarantees the following liveness property:

PROPERTY 5.3: PICO-LIVENESS – Let P be a partition
with at least f +1 correct group controllers, where P is stable
at time t. Let M be the set of correct clients in P whose last
submitted operation is a join. Then there exists a time t′ > t

after which the members of M share an encryption key.

VI. THE PICO PROTOCOL

In this section we describe the PICO protocol in detail. In
Section VI-A, we introduce the terminology used in our pro-
tocol description, and we present several key data structures.
In Section VI-B, we present the three basic components of
PICO: theclient protocol, used to join or leave the group; the
group controller coordination protocol, used to agree upon join
and leave requests; and therekey protocol, used to generate a
new group key when the membership changes. Section VI-C
addresses the problem of how a client can determine which
encryption key is the most recent, which is made difficult by
the fact that operations are not totally ordered and communi-
cation is asynchronous. Section VI-D presents techniques for
efficient state reconciliation and garbage collection. Finally,
Section VI-E discusses how the PICO architecture can support
process ejections.

A. Terminology and Data Structures

As mentioned above, the group controllers must agree on
the set of operations (join and leave requests) that have
been accepted. Operations are uniquely identified by(clien-
tID, operationID) pairs. PICO enforces that clients submit
operations with increasing, contiguous operation identifiers,
beginning with 1, which must correspond to a join request. As
explained below, this prevents faulty clients from prematurely
exhausting the space of operation identifiers, and it allowsfor
the use of cumulative threshold-signed proofs for efficientstate
reconciliation. All valid join operations have odd identifiers,
and all valid leaves have even identifiers.

Each controller maintains the state of accepted operationsin
an array,lastOpsAccepted[], where lastOpsAccepted[i] con-
tains the operation identifier of the last operation that the
controller has accepted for clienti. By agreeing on lastOp-
sAccepted[], the controllers implicitly agree on the current
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Request Proposal Rekey

Client 1

Controller 1

Controller 2

Controller 3

Client 2

Fig. 2: Basic operation of the PICO protocol, withf = 1. Client 1 is
requesting a new operation; Client 2 is already in the group.When a controller
collectsf + 1 valid PROPOSALmessages, it accepts the requested operation
and sends aREKEY message to the requesting client and all current group
members. TheREKEY sent to Client 1 only contains a key share if this is
a join request. TheREKEY sent to existing group members (i.e., Client 2)
contains an updated key share to reflect the new group membership.

membership of the group: Clienti is currently in the group
if lastOpsAccepted[i] corresponds to a join operation. In
addition, the controllers implicitly agree on the total number
of operations that have been accepted for all clients, which
(following [3]) we call the view number. As described in
Section VI-C, clients use the view number to determine which
group encryption key is the most up to date.

B. Basic Protocol Operation

Figure 2 depicts the basic protocol operation of PICO. When
a client wants to join or leave the group, it broadcasts a
REQUEST message to the group controllers. As we describe
below, although the client broadcasts theREQUEST, PICO
provides liveness as long as the message is received by at least
f + 1 correct controllers in the partition to which the client
belongs. The group controllers then exchangePROPOSAL

messages to agree to accept the requested operation. Upon
accepting the operation, the group controllers send aREKEY

message to the client and all current group members. We now
examine each phase of the protocol in more detail.

Client Protocol: When client i wants to join or leave
the group, it broadcasts a〈REQUEST, opID, proof〉σi

message
to the controllers. TheopID field is the operation identifier
chosen by the client for this operation. If this request has
an operation identifier of 1, then theproof field is empty.
Otherwise,proof is a threshold-signed proof that operation
(i, opID − 1) was legitimately accepted by at least one
controller. Thus, to request an operation with identifierj, the
client must present proof that operationj − 1 was accepted.

After submitting the request, the client waits forf +1 valid
REKEY messages from the group controllers, indicating that
they have accepted the operation. The responses contain partial
signatures that can be combined to generate proof that the
operation was accepted. In addition, if the operation was a join
request, the responses contain key shares that can be combined
to form the group encryption key. The client retransmits its
request if it does not receive the necessary replies within a
timeout period.

Group Controller Coordination Protocol: Upon receiv-
ing REQUEST messager from client i, controllerc performs
the following validation steps. In each step, if the validation
fails, the request is discarded.

1) Verify the signature onr using clienti’s public key, and
consult the group policy to determine if the operation is

authorized.
2) If r should contain a proof, confirm that one is present.
3) If r contains a proof, verify it using the group’s

public key, and confirm that it proves that operation
(i, opID − 1) was accepted.

4) If c has already accepted an operation (i, j), j > opID,
discard the request, because(i, j) must have already
been accepted.

If all of the above checks succeed, then controllerc broad-
casts a〈PROPOSAL, clientID, opID, partialSig〉σc

message
to the rest of the controllers. TheclientID and opID fields
uniquely identify the requested operation. ThepartialSig field
is a partial signature computed over the hash of the (clien-
tID, opID) pair, along with a proof that the partial signature
was computed correctly.

A controller considers aPROPOSALmessage as valid if it
is properly signed and contains a partial signature with a valid
correctness proof. Upon collectingf + 1 valid PROPOSAL

messages for operation (i, j) from distinct controllers, a
controller accepts the operation and takes several steps. First,
it combines the partial signatures to construct a threshold-
signed proof that (i, j) was legitimately accepted. Since this
proof is on a single operation, we refer to it as asingleOp
proof. As described in Section VI-D, the singleOp proof
can be passed to other controllers to convince them that the
operation was legitimately accepted. Second, the controller
sets lastOpsAccepted[i] to j and updates the view number.
Finally, the controller performs the requested operation by
either adding clienti to, or removing clienti from, the
membership list.

The group controller coordination protocol (GCCP) meets
the following two correctness properties:

PROPERTY 6.1: GCCP-VALIDITY – If some correct
controller accepts operation (i, j), then some (potentially
different) correct controller approved the operation.

PROPERTY 6.2: GCCP-AGREEMENT – If some correct
controller in partition P accepts operation (i, j), then all
correct controllers in P eventually accept the operation.

Observe that the group controller coordination protocol
requires a controller to collect onlyf +1 matchingPROPOSAL

messages in order to accept an operation, instead of the typical
(N − f) messages required by Byzantine fault-tolerant state
machine replication protocols and Intrusion-Tolerant Enclaves.
The implication of this difference is that PICO guarantees that
any partition with at leastf +1 correct controllers can accept
new join and leave operations, provided there is sufficient
connectivity among the controllers and clients. More formally:

PROPERTY 6.3: GCCP-LIVENESS – Let P be a partition
with at least f + 1 correct group controllers. Then if a
correct client in P submits an operation (i, j), some correct
controller in P accepts the operation.

5



If N > 3f+1, then multiple partitions, operating in parallel,
can guarantee the liveness of join and leave requests. The
controllers eventually agree on the set of accepted operations.
This is a weaker agreement problem than consensus, because
controllers never need to make an irrevocable decision; they
give their best guess of what the current set is and only need
to converge eventually. This allows PICO to circumvent the
FLP impossibility result [30] and guarantee safety and liveness
without relying on synchrony.

Rekey Protocol: After accepting an operation, controllerc

generates a〈REKEY, partialSig, lastOpsAccepted, keyShare〉σc

message. ThepartialSig field is a partial signature computed
over the hash ofc’s lastOpsAccepted[] data structure. There
are two cases to consider. If the operation being accepted is
a join, thenkeyShare is a key share computed over the hash
of lastOpsAccepted[], and theREKEY message is sent to all
current group members, including the client that just joined.
If the operation being accepted is a leave, then controller
c generates two distinctREKEY messages. The first is sent
only to the leaving group member and doesnot contain a key
share; this message serves only to allow the leaving member
to obtain proof that the leave operation was accepted. The
secondREKEY message contains a new key share and is sent
to all remaining group members. To overcome message loss,
a controller periodically retransmits theREKEY messages for
its last accepted operation.

A client validates aREKEY message by verifying the
signature, along with the proof of correctness of the partial
signature and the key share (if one is present). When a client
collectsf+1 valid REKEYs for the samelastOpsAccepted data,
from distinct controllers, it first combines the partial signatures
to form a threshold-signed proof reflecting the acceptance of
the operation. Since this proof is generated on the array of last
accepted operations, we refer to it as anarrayOp proof. We
denote theith entry of proofp asp[i]. If the REKEY messages
contain key shares, the client combines them to compute the
group encryption key. We refer to the sum of the entries in
the arrayOp proof on which the key shares were computed as
the view number of the key.

C. Choosing an Encryption Key

In this section we address the following practical problem:
Given that client requests are not totally ordered, and that
clients collect key shares asynchronously, how does a client
know which group encryption key is the most up-to-date?
Our solution is to leverage the threshold cryptographic proofs
already used by the protocol so that a client can choose the
correct key by using the one with the highest view number.

Recall that aREQUEST message sent by clienti for oper-
ation j contains an arrayOp proof,p, wherep[i] = j − 1.
More generally,p[k] contains the last accepted operation for
client k at the time theREKEY messages containing the partial
signatures combined to formp were generated. Thus, proof
p can be viewed as asnapshot of the state off + 1 group
controllers, at least one of which is correct. Therefore, a
controller receiving aREQUESTmessage containingp knows

that, if p[m] = n, then the operation(m, n) was legitimately
accepted in the controller coordination protocol. Further, since
we force clients to use contiguous sequence numbers, all
operations(m, n′), n′ < n, have been legitimately accepted
(i.e., the proof iscumulative).

The preceding discussion implies that group controllers can
use the proofs contained inREQUESTmessages to perform rec-
onciliation on the set of accepted operations. Upon receiving
a 〈REQUEST, opID, p〉σi

message from clienti, a controller
performs the following two steps (in addition to those de-
scribed in Section VI-B). First, for each clientk, the controller
sets lastOpsAccepted[k] to max(lastOpsAccepted[k], p[k]).
We say that the controllerapplies the arrayOp proof to its data
structures. Second, if any entry in lastOpsAccepted[] changed,
the controller updates the view number and membership list,
and it computes a newREKEY message. We also impose the
rule that a client only processes aREKEY message if the view
number implied by the lastOpsAccepted field is higher than
the view number of the last group key it adopted.

Each group member periodically broadcasts the arrayOp
proof corrresponding to its current group key in a
reconciliation message,〈RECONC, proof〉σi

. When a
controller receives aRECONC message, it applies the proof
to its data structures and generates a newREKEY message
if it learned of new accepted operations. Thus, when client
c moves from one partition to another, it carries with it
the snapshot (i.e., the proof) corresponding to key it is
currently using. Eventually, the clients in the new partition
will either adopt a key with the same view number as the one
c was using (in which case they will install the exact same
membership asc) or a greater view number (in which case
they all converge on a new membership). We formalize this
property as:

PROPERTY 6.4: REKEY-FORWARD-PROGRESS: Let P be
a partition with at least f + 1 correct group controllers. If a
correct client in P ever successfully generated a group key
with view number v, then there exists a time after which each
correct group controller in P only sends REKEY messages
corresponding to a view number v′ ≥ v.

To help elucidate the intuition behind the mechanism de-
scribed above, we conclude this section with an example.
Figure 3 depicts a system with four clients, where the network
is split into two partitions,A andB. Suppose all controllers
in A agree on the set of accepted operations (with a lastOp-
sAccepted array of[5, 4, 1, 0]), all controllers inB agree on
a different set of accepted operations ([0, 1, 1, 1]), and no
new join or leave requests are submitted. Clients 1 and 2
are currently in partitionA. Client 1 is using a group key
corresponding to the array[5, 4, 1, 0] (with a view number
of 10). Client 2 is not currently a member of the group,
and last had a group key corresponding to[5, 3, 1, 0] (with
a view number of 9). It has an arrayOp proof corresponding
to [5, 4, 1, 0], which it collected after completing the operation
(2, 4) (i.e., after it left the group). Clients 3 and 4 are in
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Controller 1

[5, 4, 1, 0]

Controller 2

[5, 4, 1, 0]

Controller 3

[5, 4, 1, 0]

Controller 4

[0, 1, 1, 1]

Controller 5

[0, 1, 1, 1]

Controller 6

[0, 1, 1, 1]

Client 2

K = [5, 3, 1, 0]

P = [5, 4, 1, 0]

Client 3

K = [0, 1, 1, 1]

Client 4

K = [0, 1, 1, 1]

Partition A Partition B

Client 1

K = [5, 4, 1, 0]

Fig. 3: A PICO system with 6 group controllers and four clients. Controllers
1, 2, and 3 have lastOpsAccepted= [5, 4, 1, 0], and Controllers 4, 5, and
6 have lastOpsAccepted= [0, 1, 1, 1]. Client 1 is a member of the group
and is using the key corresponding to the array[5, 4, 1, 0]. Client 2 is not a
member of the group and last had a key corresponding to[5, 3, 1, 0]; it has
an arrayOp proof for[5, 4, 1, 0]. Clients 3 and 4 are currently members of
the group and share the key corresponding to[0, 1, 1, 1].

partition B and are using a group key corresponding to the
array [0, 1, 1, 1] (with a view number of 3).

Now suppose client 2 moves to partitionB. We would like
the client to be able to share a group key with clients 3 and 4.
Since client 2 was last using a group key with view number 9
in partitionA, it must have an arrayOp proof,p, corresponding
to a key with a view number of at least 9. In this case,p

consists of the array[5, 4, 1, 0] and a corresponding threshold
signature. When client 2 requests to join in partitionB, its
REQUESTmessage containsp. After applyingp, the controllers
in partitionB will update their view number to 11, since they
compute the maximum of each slot in the array. Thus, when
client 2’s new join request is accepted, it will compute a group
key based on the array[5, 5, 1, 1], which has a view number
of 12. In addition, clients 3 and 4 receive the corresponding
REKEY messages (since they are members of the group) and
will adopt the same group key.

D. Reconciliation and Garbage Collection

The constraints imposed by the MANET environment dic-
tate that PICO should meet two important properties. First,
it should not rely on reliable communication links. Given
that message loss can be high and partitions long-lived,
reliable links would consume bandwidth with acknowledge-
ments and would require unbounded message queues. Second,
PICO must provide efficient reconciliation when two partitions
merge. Again, since partitions can be long-lived, PICO should
specifically avoid passing all of the operations that were
accepted in one partition to the other partition when the
network heals.

We now describe how we use the threshold-signed proofs
already in PICO to build a simple and efficient reconciliation
and garbage collection mechanism. Each group controller
maintains a data structure called aReconciliation Vector, or
RV . The RV is simply an array of proofs, whereRV [i]
contains the proof reflecting the latest accepted operationfor
client i. For convenience, we denote the operation identifier
of this operation asRV [i].opID. Note that a proof might
be a singleOp proof (constructed during the group controller
coordination protocol) or an arrayOp proof (constructed bya
client during the rekey protocol and passed to the controller
in either aREQUESTor a RECONC message).

Each controller,c, periodically broadcasts the contents of its

RV , wrapping each proof,p, in a 〈RECONC, p〉σc
message.

Upon receiving aRECONC message, a controller appliesp,
updatingRV and lastOpsAccepted[] ifp reflects more knowl-
edge than what it currently has in its data structures. More
formally, if p is a singleOp proof for operation (i, j), then
if j > lastOpsAccepted[i], the controller replacesRV [i] with
p and sets lastOpsAccepted[i] to j. If p is an arrayOp proof,
then for each slotk in p, if p[k] > lastOpsAccepted[k], then
the controller setsRV [k] to p and lastOpsAccepted[k] to p[k].

Since proofs are cumulative, PICO requires only thelast
reconciliation message to be received for each client in order
to reconcile all of that client’s accepted operations. This
facilitates efficient reconciliation when two partitions merge;
rather than requiring state proportional to the number of op-
erations that were accepted in each partition to be transferred,
each controller must transfer at most one message per client
(multiple slots may have the same proof, which can be sent
only once). This also makes the coordination protocol tolerant
of message loss: once any correct controller in a partition,P ,
collectsf + 1 PROPOSALmessages for an operation,(i, j),
all subsequentPROPOSAL messages for(i, j) need not be
delivered in order for all controllers inP to accept it.

Observe that PICO avoids the need for unbounded message
queues. Each controller must retransmit at most one proof
per client, and oldPROPOSAL messages do not need to be
reliably delivered. Thus, garbage collection in PICO is implicit
and is done simply by updating theRV and discarding
PROPOSALmessages for operations (i, j) if RV [i].opID > j.
In contrast, protocols requiring reliable links operatingin a
partitionable environment would require an explicit garbage
collection mechanism to determine which messages had been
delivered to all processes and could be deleted.

E. Support for Process Ejection

PICO can be extended to support the ejection (irreversible
revocation) of both controller and client processes.

We first consider the ejection of faulty clients. We assume
that some trusted entity generates and signs an ejection mes-
sage, which contains the process identifier of the client being
ejected. This entity can be made fault-tolerant via threshold
cryptographic techniques. Ejection messages impact whether
or not (1) a controller sendsREKEY messages to a client, and
(2) a controller processes aREQUESTmessage from a client.
A correct controller never sends aREKEY message to a client
it knows to be ejected, and it ignores subsequentREQUEST

messages from clients it knows to be ejected.
Note, however, that correct controllers continue to accept

join and leave operations for ejected clients when knowledge
of these operations comes from any other source (i.e., in
proofs received from other processes). In this way, the ejection
does not impact the properties guaranteed by the rest of the
protocol. The join/leave status agreed upon for an ejected
client does not matter because clients are treated as group
members only if (1) their last operation is a join and (2) they
have not been ejected.
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Group controllers within a partition must also converge
on the set of ejected processes (in addition to the set of
accepted operations). To facilitate this convergence, ejection
messages can be periodically transmitted by extending the
Reconciliation Vector to include the ejection status of each
process.

PICO supports the ejection of group controllers in the same
way. A correct process will ignore messages sent by an ejected
controller. However, if too many group controllers are ejected,
then PICO will no longer guarantee liveness. That is, PICO
only guarantees liveness in partitions with at leastf+1 correct
(i.e., not faulty and not ejected) controllers.

VII. PERFORMANCE CONSIDERATIONS

The PICO protocol is being implemented as part of
DARPA’s Intrinsically Assurable Mobile Ad-Hoc Networks
program. Although integration with our full system, ZODIAC,
is not yet complete, in this section we briefly comment on
some of the implementation and performance considerations
of PICO. We first evaluate the cryptographic overhead of our
implementation. We then describe a simple optimization that
can be used to reduce the computational load.

Our implementation is written in C and uses the OpenSSL
library [31]. We measured the latency of the different typesof
cryptographic operations when running on a 3.2 GHz, 64-bit
Intel Xeon computer. Each computer can generate a 1024-bit
standard RSA signature in 1.3 ms and verify a signature in
0.07 ms.

Threshold RSA Signatures: As described in Section VI,
a group controller combinesf + 1 partial signatures when
it accepts an operation, and a client combinesf + 1 partial
signatures when its operation completes. We used the OpenTC
implementation of Shoup’s threshold RSA signature scheme
[26]. The cost of generating a partial signature, along with
its proof of correctness, was measured to be 3.9 ms. This
cost remains fixed as the number of tolerated faults increases,
because the number of exponentiations required to compute
the partial signature remains the same.

On the other hand, the cost of combiningf+1 partial signa-
tures grows asf increases. We optimized for the common-case
operation by attempting to combine partial signatures without
first verifying their correctness proofs. If the resulting thresh-
old signature verifies, then the shares were correct. However,
if the signature does not verify, then we check each proof
and can detect which shares were invalid. Since all messages
are digitally signed, the invalid share can be broadcast as
a proof that the corresponding controller is compromised,
and the controller can subsequently be blacklisted. Using this
technique, we measured the latency for combining to be 1.3 ms
whenf = 1, 2.1 ms whenf = 3, and3.4 ms whenf = 5.

Threshold Key Generation: We implemented the thresh-
old key generation scheme of Cachin, Kursawe, and Shoup
[2]. We generated a 1024-bit safe prime and performed op-
erations in its prime order subgroup. We measured the cost
of generating a key share in this setting to be 11.3 ms. This
cost is independent of the number of tolerated faults. The cost

of combining the key shares into the group key increases as
f increases. We measured the latency for combining to be
23.7 ms whenf = 1, 50 ms whenf = 3, and 91 ms when
f = 5.

Aggregating Membership Changes: In many settings,
join and leave operations are not likely to require real-time
latencies. Therefore, we believe the latencies presented above
are likely to be acceptable for many applications. Nevertheless,
if membership changes are frequent, the cost of generating and
combining partial signatures and key shares can become high.
To help reduce this cost, a controller can aggregate several
membership change operations before generating aREKEY

message, which contains its partial signature and key share.
This amortizes the cryptographic cost over several operations,
reducing the average load per operation.

VIII. PROOF OF CORRECTNESS

A. Proof of Liveness Properties

Proof Strategy: We first proveGCCP-AGREEMENT (Prop-
erty 6.2) andGCCP-LIVENESS (Property 6.3) of the group
controller coordination protocol. Using these properties, we
prove Lemma 8.1, which states that all correct controllers
in a stable partition eventually converge on the set of ac-
cepted operations (i.e., their lastOpsAccepted[] data structures
become identical). Once the correct controllers converge,
we proveREKEY-FORWARD-PROGRESS(Property 6.4), which
shows that correct controllers will eventually generateREKEY

messages for a view number that will be adopted by the correct
group members. The liveness of the overall PICO protocol,
PICO-LIVENESS (Property 5.3), follows directly from these
two properties.

Proof of GCCP-Agreement: When a correct controller,
c, in partition P accepts operation(i, j), it obtains a proof,
p, that (i, j) was legitimately accepted. We must show that
all correct controllers inP eventually accept(i, j). If c never
accepts a later operation fori, then it continues to periodically
retransmitp, which will eventually be received by all correct
controllers inP . If c does accept a later operation fori, it will
replaceRV [i] with a new proof,p′, for some operation(i, j′).
In turn, c may replacep′ with a later proof,p′′, and so on.
Eventually, a correct controller will receive one of these proofs
(call it p∗, for operationj∗), at which point it will implicitly
accept all operations(i, j′′) with j′′ ≤ j∗, including (i, j),
because proofs are cumulative.

Proof of GCCP-Liveness: We must show that if clienti
submits request(i, j) in a partition,P , with at leastf + 1
group controllers, then(i, j) will eventually be accepted.
Client i periodically retransmits the request until it receives
proof that (i, j) was accepted. The request is eventually
received by at leastf + 1 correct group controllers, each
of which will approve it and send aPROPOSAL for (i, j).
Each correct controller thus eventually receives at leastf + 1
valid PROPOSALs from distinct controllers and will therefore
accept the operation.
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Lemma 8.1: Let P be a partition with at least f + 1
correct group controllers, where P is stable at time t. Then
all correct group controllers in P eventually agree on the set
of accepted operations.

Proof of Lemma 8.1:SinceP is stable, no new join or leave
requests are submitted. ByGCCP-LIVENESS, any pending
operation from a correct client will eventually be accepted
by some correct controller inP , and byGCCP-AGREEMENT,
all correct controllers will eventually accept these operations.
If any pending operation from a faulty client is accepted by a
correct controller, all correct controllers inP will accept it.

For each clienti, let ic be the highest operation identifier
for which a correct process inP has a proof, and letif be
the highest operation identifier for which a faulty process in
P has a proof. Ific ≥ if , then letr be a correct process in
P that has proof that(i, ic) was accepted. Any other correct
controller,s, will eventually accept this operation becauser

continues to retransmit the proof.
If if > ic, then for each operationj, with ic < j ≤ if ,

a faulty process can either choose to make the proof of
(i, j) known to a correct process (in which case it will
be accepted by all correct controllers) or it never makes the
proof known. Thus, there exists some maximum suchj that
a faulty process makes known, which implies that the correct
controllers eventually agree on the set of operations for which
only faulty processes had proof of acceptance. Therefore, the
correct controllers eventually agree on the set of accepted
operations for each client.

Proof of Rekey-Forward-Progress: By Lemma 8.1, all
correct group controllers in partitionP eventually agree on
the set of accepted operations. When each correct controller
in P accepts the last operation, it generates aREKEY message
with a key share based on the same membership as each other
correct controller inP . Let vfinal be the view number implied
by the lastOpsAccepted field,L, of theseREKEY messages.
We must show thatvfinal will be at least as high as the
view number,v, of the key currently being used by any of the
correct group members. We can prove this by showing that no
correct group member has proof of an operation(i, j) where
j > L[i]. The proof is by contradiction. If any correct group
member had this proof, then it would eventually be received
in a RECONC message by a correct controller, which would
cause the controller to increase its view number and generate
a REKEY message with a higher view number, which violates
the assumption thatvfinal is the convergence point established
by Lemma 8.1.

Proof of PICO-Liveness: By Lemma 8.1, all group
controllers in a partitionP eventually converge on the set of
accepted operations and generate aREKEY message based on
the same membership. Since there are at leastf + 1 correct
controllers inP , and since correct controllers periodically re-
transmit their lastREKEY message, all correct group members
will eventually collectf + 1 combinableREKEY messages
based on the stable membership. By Property 6.4, the view
number of this key,vfinal, will be at least as high as the

one currently being used by any correct group member. Any
group member inM that previously had a group key with
a view v < vfinal will adopt the group key corresponding
to vfinal. Any group member already using a key with a
view numberv = vfinal must already be using this group
key, since otherwise there exists some operation that has not
been converged upon. Since the convergence view isvfinal,
no correct controller sends aREKEY message corresponding
to a higher view number, so all members ofM will continue
using the established group key.

B. Proof of Security Properties

Proof Strategy: We first proveGCCP-VALIDITY (Property
6.1), the validity property of the group controller coordination
protocol. We then use this to proveVALID -AUTHENTICATION

(Property 5.1), which states that only authorized clients are
able to join the group. Finally, we proveSECURE-KEYING

(Property 5.2), the security of the keying process.
Proof of GCCP-Validity: A correct controller accepts

an operation(i, j) after (1) collectingf + 1 PROPOSAL

messages, (2) collecting a singleOp proof for operation(i, j),
or (3) collecting an arrayOp proofp with p[i] ≥ j. In the
first case, since at mostf controllers are faulty, at least one
correct controller sent aPROPOSALand therefore approved the
operation. In the second case, a singleOp proof is constructed
by collectingf + 1 PROPOSALmessages, each with a partial
signature on the hash of(i, j). Again, since at mostf
controllers are faulty, at least one correct controller must have
sent aPROPOSALmessage that contributed to the construction
of the singleOp proof.

In the third case, the arrayOp proof was constructed by
collecting f + 1 REKEY messages. In each message, theith

entry of the lastOpsAccepted field containedj′ ≥ j. Thus, at
least one correct controller had lastOpsAccepted[i] = j′. In
order for (i, j′) to have been accepted, clienti must have
submitted aREQUEST containing proof that(i, j′ − 1) was
accepted, which implies that at least one correct controller
had lastOpsAccepted[i] = j′ − 1. Using a simple induction,
each operation from(i, 1) through(i, j′) was accepted by at
least one correct controller, including(i, j). Consider the first
correct controller to accept(i, j). This controller must have
done so through either Case 1 or Case 2, since no arrayOp
proof, p, with p[i] ≥ j, can yet exist. By Case 1 and Case
2 above, some correct controller must have sent aPROPOSAL

message for(i, j).
Proof of Valid-Authentication: By GCCP-VALIDITY , a

client can only join the group if its operation was approved
by some correct controller. A correct controller consults group
policy in deciding whether to approve a client join request.
Thus, only an authorized client can join the group.

Proof of Secure-Keying: We show that only members
of a given view, v, can generate the group keyk. Group
memberi uses its trusted hardware to encrypt messages with
k. When i adoptedk, it obtained an arrayOp proof,p, from
which the current group view can be deduced. To obtaink,
a process must combinef + 1 key shares all based on the
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same lastOpsAccepted data, which is the same data as inp.
A correct controller only sends aREKEY message containing
a key share to the members ofv. EachREKEY is encrypted
with the public key of the trusted hardware of the receiving
group member. Thus, a faulty client not inv will never be sent
the necessaryf + 1 REKEY messages. Faulty clients cannot
decrypt the key shares ofREKEY messages sent to correct
clients. Further, since they cannot learn the decryption key
of their own trusted hardware, even faulty group members
cannot divulge their own key shares to processes not inv.
The security of the keying process thus follows from the fact
that only processes inv are able to generatek, and no process
is able to learnk.

IX. CONCLUSION

This paper presented PICO, a distributed protocol that
manages group membership and keying in mobile ad-hoc
networks. PICO uses a weakly consistent Byzantine fault-
tolerant agreement protocol to provide a partitionable service,
and it leverages threshold cryptographic proofs to tolerate
message loss and avoid requiring reliable communication
links. We highlighted several pragmatic issues associatedwith
integrating PICO as a component in a secure system, which
must be addressed in practical deployments.
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