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Abstract 

Table 1. Cleavage rule
Digesting Reagent C
Armillaria B
AspN B
Thermolysin B
Clostripain A
LysC A
Pancreatic Elastase A
Digesting Reagent C
CNBr_Cys {
Chymotrypsin A

if
Trypsin A
V8 Ammonium Acetate A
V8 Phosphate Buffer A
Hydroxylamine A
Mild Acid Hydrolysis A

 
We present a stochastic model of proteolytic digestion of 
a proteome, assuming the distribution of parent protein 
lengths in the proteome, the relative abundances of the 20 
amino acids in the proteome, and the digestion “rules” of 
the enzyme used in the digestion. We derived a closed 
form expression for the fragment mass distribution for a 
large class of enzymes including the widely used Trypsin. 
The expression uses the distribution of lengths in a 
mixture of proteins taken from a proteome, as well as the 
relative abundances of the 20 amino acids in the 
proteome. The agreement between theory and the in silico 
digest is excellent. 
 
1. Introduction 

We present a rigorous stochastic model of proteolytic 
digestion of a proteome, assuming (1) the distribution of 
parent protein lengths in the proteome, (2) the relative 
abundances of the 20 amino acids in the proteome and (3) 
the digestion “rules” of the enzyme used in the digestion. 
The model can be used for hypothesis testing in protein 
identification software. Current protein identification 
software (e.g. MOWSE [1], MassSearch [2], and Mascot 
[3]), is based on histograms of digested proteomes, or on 
models derived from unrealistic assumptions (e.g. a 
uniform distribution of proteolytic fragments). The 
proposed model accounts analytically for the mixture of 
proteins that constitutes a microorganism’s proteome.  

It is useful to organize digestion models into a 
taxonomy according to (1) the class of digestion rules 
obeyed by the enzyme and (2) the order of the Markov 
model used to model the amino acid sequence. We denote 
by C(m) the class of enzymes whose digestion rules 
depend on m adjacent residues. Table 1 shows a selection 
of enzymes and their corresponding cleavage rules. In this 
paper, we assume that the cleavage rules are 
deterministic. We classify amino acid sequence models 
according to the order of the Markov chain used to model 
the sequence. For example, M(0) denotes the simplest 
sequence models assuming that the adjacent amino acid 
residues are independent; M(1) denotes the next most 
complex models assuming that the next residue depends 
on the previous amino acid residue; and so forth.  
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2. Models and decomposition 
2.1. Sequence and fragment models 

Throughout the paper, we assume that the protein 
sequence is i.i.d.. That is, we only consider class M(0) 
models. We use  to denote an infinite 
random protein sequence, where the X

1 2 3S X X X= …
i's are random 

variables taking value from a finite alphabet A (the set of 
20 amino acids). We use , to denote ,ap a∈A

{ }P nX a= , and , , to denote pC ⊂C A { }P X n ∈C .  
We consider C(1) and CP(2) enzyme classes. For C(1) 

enzymes, cleavage occurs at sites adjacent to amino acids 
in the set C.  For CP(2) enzymes, cleavage occurs after 
any amino acid in  C if the following amino acid is not 
Proline. To facilitate our discussion, we will use {Fn} to 
denote a generic random fragment sequence resulting 
from the application of a cleavage rule to a random 
protein sequence S. Here, we provide an informal 
discussion on why {Fn} is i.i.d. except for the first 
fragment F1 (please refer to [5] for a rigorous proof).  

Amino acids in M(0) proteins are i.i.d. and thus our 
distributions do not depend on which end of the protein 
we choose as the N-terminus. Therefore, without loss of 
generality, we can assume that for class C(1) enzymes, 
cleavage sites always occur after an amino acid in C . For 
models in {C(1), M(0)}, it is clear that the cleavage event 
{ }∈CnX  is a regenerative point for the protein sequence 
S. Hence the process between cleavage (that is, the 
fragments {Fn}) is i.i.d.. For models in {C(2), M(0)}, a 
similar conclusion can be drawn by considering an 
equivalent augmented model for the protein sequence [5]. 
In the context of this augmented model, an i.i.d. fragment 
process {Fn} can be defined from the regenerative cycles. 

Given that {Fn} is i.i.d., we will use F to denote a 
generic random fragment in the sequel.  

2.2. Decomposition of mass distribution 
For hypothesis testing, it is useful to analytically 

compute the expected number of fragments with mass m, 
denoted by H(m), given any specific mass m of interest. 
Based on the i.i.d. property of fragments, we can establish 
a decomposition that enable us to treat the fragment 
length distribution and mass probability density 
separately in the derivation of H (m). This is 
accomplished by applying Wald’s first lemma and its 
extensions [4]. Here we state the decomposition without 
proof (see [5] for a proof): 
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where n(N) is the number of proteins of length N in the 
database of interest; LN,K is the expected number of 
fragments of length k from a protein sequence of length 
N; M(F) is the mass of F; and L(F) is the length of F. This 
decomposition described by (1) significantly simplifies 
the computation of H(m). 

3. Fragment mass distributions 
For models in both {C(1), M(0)} and {CP(2), M(0)} 

we obtain the closed form expression for the fragment 
mass distribution H(m) by deriving expressions for LN,K 
and ( ){ }P | ( )= =M F m L F k . 

3.1. Digestion model {C(1), M(0)} 
For models in {C(1), M(0)}, 
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G Gwhere the vectors { , }v s  are 20-dimensional vectors 
representing the amino acid composition of a peptide and 
its c-terminus, respectively, and  is defined by ˆ rp
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The term , ,( ,v s v sm m )ρ σ− G G G G

}v s

 denotes either the 
isotopic mass distribution for a peptide with 
composition { ,G G , or a phenomenological peak 
width. 
3.2. Digestion model {CP(2), M(0)} 

For models in {CP(2), M(0)}, 

( ) 1
,

P

11 1 ' 1 '
1

k
N kL N k p p

p
α −  

= + − − + −  −   
C C ' ,p C   (4) 

where 
( )P1 1p pα − −C� , 

P

P

(1 )(1 )' ,
1 (1 )

p pp p
p p

 − −
 − − 

C
C C

C

�  

with { }P P np X P= = . Note that when  is small, (4) 
can be approximated quite accurately by 

Pp
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which is identical to the length distribution for C(1) 
enzymes given in (2) but with scaled cleavage probability 

. The mass probability density can be derived for 
{C
p′C

P(2), M(0)} as well. Due to the space limitation, please 
refer to [5] for the closed form expression. 

4. Numerical results 
A comparison of analytic and in-silico results is shown 

in Figure 1 and 2. We use an E. coli proteome taken from 

the 

destroy sequential correlations. The analytic calculation is 
faster than the corresponding in silico digestion.  

Except for unexplained excess dispersion at ~450 Da, 
the residuals between the in-silco and analytic results are 
consistent with Poisson statistics. It is clear from this 
figure that the mass distribution can vary by several 
orders of magnitude over just few Daltons. This result 
leads us to believe that heuristically derived mass 
distributions are likely to result in biased p-values in 
hypothesis tests. This is especially true for small peptides. 
It becomes a minor effect in heavier peptides. It is 
typically recommended that protein identification be 
performed using peptides heavier than ~500 Da due to 
lack of selectivity of the lighter peptides. Our results 
suggest that, a more careful treatment of the mass 
distribution below ~500Da, could make this mass range 
more informative.  
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