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Abstract

The ability to discriminate a reentry vehicle
(RV) from booster parts and other debris is critical
to theater ballistic missile defense (TBMD).  As it
travels along its trajectory, a threat missile
separates into a reentry vehicle (RV) and clutter.
The latter consists of several tanks, separation
debris and fragments of hot fuel.  Interception of
the RV requires discrimination of the RV from the
clutter. The required discrimination must be
performed no later than 30 seconds before
intercept. A time-delay neural network (TDNN) is
proposed for discrimination of the RV from other
missile parts debris.  The rate of change of the IR
signature over several seconds is used as a
discriminant. The performances of two different
approaches are compared: 1) A TDNN that
employs back-propagation weight updates is used
to calculate activation levels for output nodes. The
RV is selected via winner-take-all. This TDNN has
been previously described in Reference [1]. 2) A
TDNN that updates weights using a cross-entropy
error function with a softmax activation function is
used to estimate assignment probabilities. The RV
is subsequently selected via a probabilistic
assignment algorithm that imposes the constraint
that there can only be a single RV.   We found that
the TDNN employing back propagated softmax
learning performed better than the TDNN
employing back propagated least mean square
learning.

Introduction

During its trajectory, a threat missile splits into an
RV (with payload), the booster tank and the ACM.
Separation debris and bits of hot fuel are also
generated.  The RV contains the warhead; the RV
must be discriminated from other missile pieces
and debris before it can be intercepted and

prevented from hitting its target.  An infrared (IR)
sensor is used to guide the interceptor to the threat
during the terminal homing phase. The data to be
classified are features extracted from the irradiance
of the missile pieces or debris incident on an IR
sensor on board an interceptor.

The target must be chosen about 30 seconds before
intercept. Figure 1 shows an IR image four
seconds before intercept.

Figure 1 - IR Image 4 Seconds Before Intercept,
256 x 256 pixels, 3° Field of View

Thirty seconds before intercept, the threat complex
is about 100 km away from the IR sensor.  At this
range, even relatively large pieces are represented
as single pixels on the IR image.  Larger pieces
cover a larger portion of the pixel, so they appear
as brighter pixels.  Hot pieces return a larger
irradiance to the sensor, so they look brighter than
cooler pieces.  Thus, hot and small pieces of fuel
may be confused with cooler and larger missile
pieces at this range.  As a result, static IR images
are insufficient for discrimination. Temporal
characteristics serve as a potential discriminant
because different pieces cool at varying rates,
thereby causing their IR signatures to change at
different rates. We are using the rate of change of
the IR signature over several seconds as a
discriminant[1]. The performance of two different



approaches is compared.  1) A TDNN with a least
mean squares error function, a linear activation
function and a sigmoid transfer function is used to
calculate output values. The RV is selected via
winner-take-all. 2) A TDNN with a cross-entropy
error function and a softmax activation function is
used to estimate assignment probabilities. The RV
is subsequently selected via a probabilistic
assignment algorithm that imposes the constraint
that there can only be a single RV.

Method

Irradiance is the derivative of the radiative power
incident on the sensor with respect to area; it is
proportional to the square of inverse of the range
from the sensor to the target.  Thus, the irradiance
returned to the interceptor’s IR sensor increases as
the missile fragments get closer to the interceptor,
so irradiance is time-dependent.  If the irradiance
value returned to the sensor by a piece is used as a
feature, the discrimination routine will not be
robust to changes in range and time-to-go before
intercept.  Therefore, the fraction of the total
irradiance returned to the sensor that each missile
fragment represents is used as a feature.  The
second feature input to the TDNN is the rate of
change of the fraction of irradiance.  The warhead
will cool at a different rate than debris or empty
tanks.  The fraction of the irradiance represented
by the RV should change relative to that of debris
or empty tanks. The debris pieces have the
smallest rate of change of fraction of irradiance,
followed by RVs, followed by tanks.  The final
values for this feature are obtained by taking the
logarithm of the rate of change of irradiance.
Taking the logarithm exaggerates the difference
between debris and RVs.

A time-delay neural network (TDNN) is similar to
a back-propagation neural network, except that the
TDNN keeps track of data in the time domain[2].
During each iteration, data for the current time step
and the previous six time steps are used for
classification.  Figure 2 shows a schematic of a
TDNN.  After a set of inputs is introduced and fed
forward through the neural network, the input is
sent to a time-delay node (t-∆t) for use during the
next iteration.  After subsequent iterations,
information in the time-delay nodes is sent to
subsequent time-delay nodes, for example, from (t-
∆t) to (t-2∆t).  Each input time-delay layer is fully
connected to the hidden layer.  Each hidden time-
delay layer is fully connected to the output layer.

Figure 2 - Schematic of TDNN

Mean Squared Error Training

Error functions for neural networks arise from the
principle of maximum likelihood.  The likelihood
may be written as
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where x is the input data and t is the desired
output.  Minimizing the negative logarithm of the
likelihood is equivalent to maximizing the
likelihood.  Therefore, a basic form of the error
function is as follows.
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The second term in this equation does not depend
on the neural network parameters, so can be
dropped from the error function minimized by the
neural network.  Thus we minimize the following.
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If the errors are assumed to be normally
distributed, then
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where y is the output from the neural network and
σ is the standard deviation of the data.  Thus, the
error function is as follows.
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The second and third terms and the standard
deviation do not depend on neural network
parameters, so the error function to be minimized
can be expressed as follows.

∑ −= 2)(2/1 tyE (6)

Thus minimizing the squared error is optimal for
Gaussian distributed errors.  This leads to a
convenient form for the weight update function for
the output nodes.

)(

/

tyg

yEg

−′=
∂∂′=δ

(7)

where g is a transfer function.  The simplicity of
the sum of the squares error function makes it very
popular for back propagation neural networks.

Normalized Exponential (Softmax)
Error Function

Consider the case where data have a 1 of N coding
scheme with one output node for each class.  For
each set of inputs one of the output nodes should
have value of one and the others should have a
value of zero.  The value of the conditional
probability for this type of data can be expressed
as
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where yk is class k’s output node activation and tk

is that node’s target output (one or zero).  Taking
the negative logarithm as before, the error function
is
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If the output activation levels of the network are to
be interpreted as probabilities, they must lie in the
range (0,1) and they must sum to one.  To
accomplish this, the logistic sigmoid activation
function is used:
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where ak is the activation level for output node k.
Again,  the weight update function is
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The error function, E, and the activation function
both contain a summation over all the output
nodes.  Thus, all output nodes need to be
considered in order to evaluate the weight update
function.
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The expression for the partial derivative of ky ′

with respect to ak is [3],
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Next,
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Substituting equation (13) and equation (14) into
equation (12) results in

∑

∑

′≠
′′′

=′
′′′

−−+−−=

∂∂−=

kk
kkkkkkkk

N

k
kkkkk

yyytyyyt

ayyt

))(/())(/(

/)/(

2

1

δ

(15)

Since tk’ = 0 when k ≠ k’ and tk = 1,
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Thus, using the logistic sigmoid activation
function also results in a simple form of the weight
update function.



Training and Testing

The data include simulated and measured data.
The simulated data consist of 350 cases for which
the missile pieces have varying tumble rate, spin
rate, coning angle, trajectory, et cetera.  Three
different types of scenarios are created.  200 of the
simulated scenarios contain one RV, one booster
tank, one ACM, and one piece of debris.  100 of
the simulated scenarios contain one RV, either one
booster or one ACM, and two pieces of debris.
The remaining 50 simulated scenarios contain one
RV and three pieces of debris.  Thus, the classifier
should be robust to the number of each type of
piece in the scenario.  Each scenario consists of 25
time steps in 0.1 second increments starting 60 to
30 seconds before intercept.

The measured data are more limited and consist of
eight flights of a missile that expelled hot fuel.
This data consist of IR signatures of the RV, a
tank, and hot fuel debris.  Figure 3 shows the
simulated data and flight data for all time steps.
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Figure 3 - Missile Piece Features Large dots are
RV features, smaller dots are ACM, Booster, or
debris.

The TDNN is trained using the eight flight cases
and 250 of the simulated scenarios.  100 of the
simulated scenarios contain one RV, one booster
tank, one ACM, and one piece of debris.  100 of
the simulated scenarios contain one RV, either one
booster or one ACM, and two pieces of debris.
The other 50 simulated scenarios contain one RV
and three pieces of debris.

Since it is most important that the TDNN properly
identify the RV, the training set is set up so that

the RV is the most prevalent item.  The training set
for each scenario contains the data for the RV, and
the data for one other piece; the training set
contains 258 RV realizations, 137 debris
realizations, 63 booster realizations, and 58 ACM
realizations.  The TDNN is tested using leave-one-
out cross validation. For the TDNN trained using a
least mean squares error function, the RV is
selected via winner-take-all.  The outputs from the
TDNN trained using the softmax activation
function represent probabilities, which are input to
an assignment algorithm.  The assignment
algorithm determines which of the two
observations is more likely to be the RV.  Since
for each scenario the only data included in the
training set are that for the RV and one other
piece, the constraints for the assignment algorithm
are simple: one observation is an RV, the other is
not.

The TDNN employing the softmax activation
function is then tested on the 100 simulated cases
that are not included in the training set.  All of
these cases include one RV, one ACM, one
booster, and one piece of hot fuel debris.  Data for
all four pieces are input to the TDNN.  The
probabilities for the four pieces output from the
TDNN are then used by an assignment algorithm
to assign observations to the RV, the booster, and
the ACM.  The constraints for the assignment
algorithm are that there is one RV, one ACM, and
one booster.

Results

Figure 4 shows the results of leave-one-out cross-
validation on the 258 cases as a function of time
step.  The TDNN that uses a softmax error
function produced better results than the TDNN
that uses the least mean squares error function.
Only 7% of the ACMs are incorrectly classified as
RVs for the TDNN trained using a softmax error
function, while about 40% of the ACMs are
incorrectly classified as RVs for the TDNN trained
using least mean squares.  For both TDNNs, leass
than 5% of boosters or debris are misclassified as
RVs.
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Figure 4 – Results of Leave-one-out Cross-
Validation for 258 cases.  Probability that a
given piece type will be classified as an RV
when there are two pieces to choose from.
Thick lines use softmax error function, thin
lines use least mean squares.

Figure 5 shows the results of testing on 100 cases
for which all four observations for each scenario
are included in the test set.  The fraction of the
cases for which a particular piece is chosen as the
RV is plotted as a function of time step.  At the
last time step, 85% of the RVs are classified as an
RV.  15% of the ACMs are incorrectly classified
as RVs.  None of the boosters or debris were
classified as RVs.
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Conclusions

An attempt has been made to build an IR signature
classifier for Theater Ballistic Missile Defense that
is robust to range, number and types of objects,

and dynamic parameters of objects.  IR signature
classifiers currently proposed require a priori
knowledge of these parameters[5].

A TDNN classifier based on softmax training is
used to estimate assignment probabilities.  The
TDNN and assignment algorithm combination
incorrectly classifies about 7% of ACMs as RVs
for test sets with two observations per case, and
incorrectly classifies about 15% of RVs for test
sets with four observations per case.  The TDNN
classifier did not incorrectly classify boosters or
hot fuel debris.  Currently implemented classifiers
incorrectly classify about 10% of ACMs as RVs
[5].  These classifiers, however, require a priori
knowledge of the range and time to go before
intercept.

The TDNN trained using a least mean squares
error function incorrectly classified about 40% of
ACMs as RVs for test sets with two observations
per case.  This indicates that the time histories of
the features are not Gaussian distributed and a
softmax error function is more appropriate than an
error function based on least mean squares.  Also,
the 1 of N scheme of softmax procedure is
appropriate for the problem of choosing one RV
from among the missile pieces and debris.
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Figure 5 - Results of Testing on 100 Cases with 4
Observations Each.  Probability that a given
piece type will be classified as an RV when there
are four pieces to choose from.
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