The Neural Hawkes Process
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L1(t) & — Aa(?) \ ) Train the model by maximizing log-likelihood
N \ —————————— = = arlogt(t) — o (D)t

Events happen at randomtimes 0<t; <t,...

At time t;, there occurs an event of type ki ! {1,2,...,K}
Given past events, what might happen next, and when?
Generative model P((k;,t;) | (k1,t1),-.., (kit 1,ti1 1))
Medical: patientOs visits, tests and diagnoses

Online shopping: purchasing and feedback

Social media: posts, shares, comments

Other: quantiPed self, news, dialogue, music, etc
Traditional model Is a Hawkes process [1]

¥ Each event type has an intensity ! (t)
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¥ Total intensity! (t) = S, ! 4(t)

¥ Integral estimation by Monte Carlo simulation
Minimum Bayes Risk prediction

¥ Density for tj is pi(t) = ! (t)exp(— [,_, . !(s)ds)

¥ Time prediction € = [, tp,(t)dt

¥ Type prediction R; =argmax; [~,  p;(t)! x(t)/! (t)clt

Thinning algorithm for sampling sequences
| |
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An event stream from a neural Hawkes process
Time {; and type ki depend on details of past history and on each other

|%| Neural Hawkes process: ! ¢(t) = fi(w| h(t))
' ¥ Continuous-time LSTM
¥ Hidden state h(t) = o; ! (2! (2c(t)) " 1)

¥ Cellmemory c(t) = @+1 + !4 (1)
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¥ Each event token occurs with probability ! (t)dt ¥ Vit+1(t) = (Ci+1 — Ci+1)exp(—0i+1(t —¢ti)) \

¥ Past events temporarily excite future events C2(Y) |f| > ¥ Extra gates to compute @ +1 and !,

¥ 1 (t) = +- , " — t—1 ~1 > 1
(1) = hitpst  KnK exp( ik ( n)) cell c(t)! hidden h(f)! intensity ! (¢)! event?! updated c(t+ dt) = |

Experiments (many more in paper)

Experiments on artibcial datasets
¥ Models try to bt data generated by each other

Experiments on real-world social media datasets
¥ Retweet (top): long sequences with K =3

Neural Hawkes process vS. similar work 2]
¥ Prediction error for type (upper) and time (lower)

¥ Oracle model performance N e ¥ MemeTrack (bottom): short sequences with K = 5000 o ® o o
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""" Neural Hawkes is winner (4/5, 5/5, and 5/5) on type prediction

= = Ay Consistent over all combos
neural Hawkes

-1.6

nnnnnnnnn

[1] Hawkes, Alan G. Spectra of some self-exciting and mutually exciting point processes. 1971. [2] Du, Nan, et. al. Recurrent marked temporal point processes:. Embedding event history to vector.

No clear winner on time prediction

2016.




