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Experiments on real-world social media datasets 
¥ Retweet (top): long sequences with  
¥ MemeTrack (bottom): short sequences with
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Neural Hawkes process:  
¥ Continuous-time LSTM 
¥ Hidden state  
¥ Cell memory  
¥    
¥ Extra gates to compute          and

Hawkes

An event stream from a neural Hawkes process 
Time     and type     depend on details of past history and on each other 

Events happen at random times  

At time    , there occurs an event of type  

Given past events, what might happen next, and when?  
¥ Generative model    
¥ Medical: patientÕs visits, tests and diagnoses  
¥ Online shopping: purchasing and feedback  
¥ Social media: posts, shares, comments  
¥ Other: quantiÞed self, news, dialogue, music, etc  

Traditional model is a Hawkes process [1] 
¥ Each event type has an intensity        
¥ Each event token occurs with probability          
¥ Past events temporarily excite future events 
¥        

Neural Hawkes process        vs. similar work        [2]  
¥ Prediction error for type (upper) and time (lower)

Train the model by maximizing log-likelihood 

¥ Total intensity 
¥ Integral estimation by Monte Carlo simulation 

Minimum Bayes Risk prediction 
¥ Density for     is  
¥ Time prediction  
¥ Type prediction  

Thinning algorithm for sampling sequences

Experiments on artiÞcial datasets 
¥ Models try to Þt data generated by each other 
¥ Oracle model performance Ñ

The Neural Hawkes Process
A Neurally Self-Modulating Multivariate Point Process 
Hongyuan Mei and Jason Eisner  
Center for Language and Speech Processing, Department of Computer Science , Johns Hopkins University

Overview Model Algorithms

Experiments (many more in paper)
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Missing data experiments 
À» Censor all events of some types 
À» neural Hawkes > Hawkes process 
À» Consistent over all combos
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[1] Hawkes, Alan G. Spectra of some self-exciting and mutually exciting point processes. 1971. [2] Du, Nan, et. al. Recurrent marked temporal point processes: Embedding event history to vector.  2016.
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Neural Hawkes is winner (4/5, 5/5, and 5/5) on type prediction  
No clear winner on time prediction  


