# **2D Projective Geometry**

CS 600.361/600.461

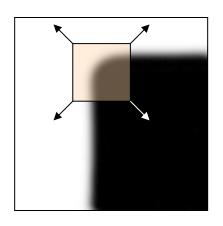
Instructor: Greg Hager

#### Outline

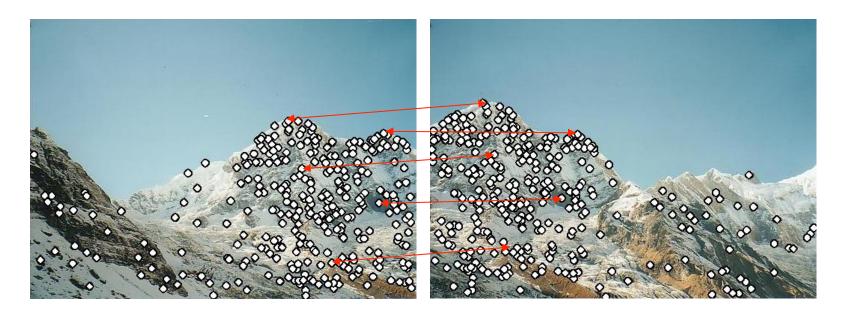
- Linear least squares
- 2D affine alignment
- Image warping
- Perspective alignment
- Direct linear algorithm (DLT)

## Reminders

### Reminder – Corner detection/matching



$$M = \sum \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$



### Reminder – Parametric (global) warping

#### Examples of parametric warps:



translation



rotation



aspect



affine



perspective

Source: Alyosha Efros

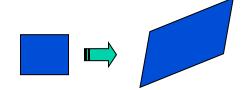
#### Reminder – 2D Affine Transformations

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

Parallel lines remain parallel

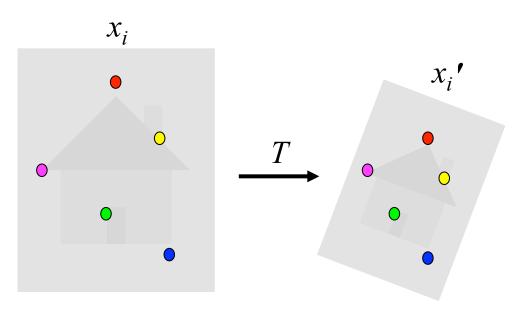


# Reminder – Alignment problem

We have previously considered how to **fit a model to image evidence** 

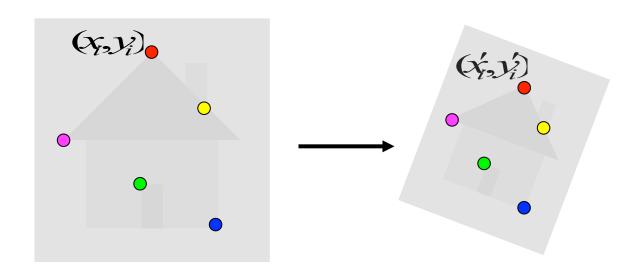
e.g., a line to edge points

In alignment, we will **fit the parameters of some transformation** according to a set of matching feature pairs ("correspondences").



### Reminder – Fitting an affine transformation

 Assuming we know the correspondences, how do we get the transformation?





### Reminder – Fitting an affine transformation

Least square minimization:

$$\begin{bmatrix} x_{i} & y_{i} & 0 & 0 & 1 & 0 \\ 0 & 0 & x_{i} & y_{i} & 0 & 1 \\ & & & & \end{bmatrix} \begin{bmatrix} m_{1} \\ m_{2} \\ m_{3} \\ m_{4} \\ t_{1} \\ t_{2} \end{bmatrix} = \begin{bmatrix} \ddots \\ x'_{i} \\ y'_{i} \\ \vdots \end{bmatrix}$$



### Reminder – Singular Value Decomposition

Given any  $m \times n$  real matrix **A**, algorithm to find matrices **U**, **V**, and **D** such that

$$A = U D V^T$$

**U** is  $m \times m$  and orthogonal

**D** is m×*n* and diagonal

**V** is  $n \times n$  and orthogonal

$$d_1 \ge d_2 \ge \cdots \ge d_p \ge 0$$
 for p=min(m,n)

$$\begin{pmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{V} & \begin{pmatrix} d_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & d_p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{V} & \mathbf{V} & \mathbf{V} \end{pmatrix}^{\mathrm{T}}$$

# Linear least squares

(Board)

#### LLS - Method 1

# Linear least-squares solution to an overdetermined full-rank set of linear equations

#### Objective

Find the least-squares solution to the  $m \times n$  set of equations Ax = b, where m > n and rank A = n.

#### Algorithm

- (i) Find the SVD  $A = UDV^T$ .
- (ii) Set  $\mathbf{b}' = \mathbf{U}^{\mathsf{T}} \mathbf{b}$ .
- (iii) Find the vector  $\mathbf{y}$  defined by  $y_i = b_i'/d_i$ , where  $d_i$  is the *i*-th diagonal entry of  $\mathbf{D}$ .
- (iv) The solution is x = Vy.

#### LLS – Method 2

#### Linear least-squares solution to an overdetermined full-rank set of linear equations

#### Objective

Find x that minimizes  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ .

#### Algorithm

- (i) Solve the normal equations A<sup>T</sup>Ax = A<sup>T</sup>b.
  (ii) If A<sup>T</sup>A is invertible, then the solution is x = (A<sup>T</sup>A)<sup>-1</sup>A<sup>T</sup>b.

Matlab: check the functions svd, pinv, mldivide

Note: if A is not full rank, this is in general a different solution than the one from method 1

#### LLS – Method 3

# Linear least-squares solution to a homogeneous system of linear equations

#### Objective

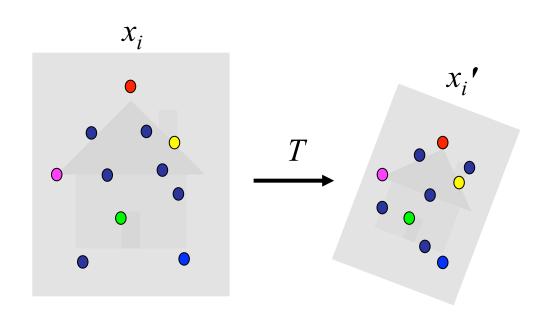
Given a matrix A with at least as many rows as columns, find x that minimizes  $\|Ax\|$  subject to  $\|x\| = 1$ .

#### Solution

x is the last column of V, where  $A = UDV^T$  is the SVD of A.

# RANSAC for affine alignment

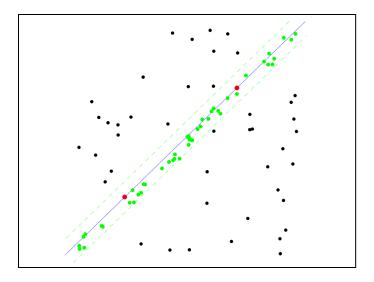
# How to deal with noisy correspondences?



### Reminder: RANSAC for line fitting

#### Repeat *N* times:

- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are d or more inliers, accept the line and refit using all inliers



### RANSAC for affine alignment

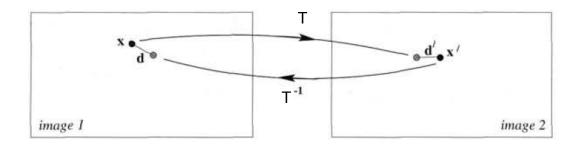
#### Repeat **N** times:

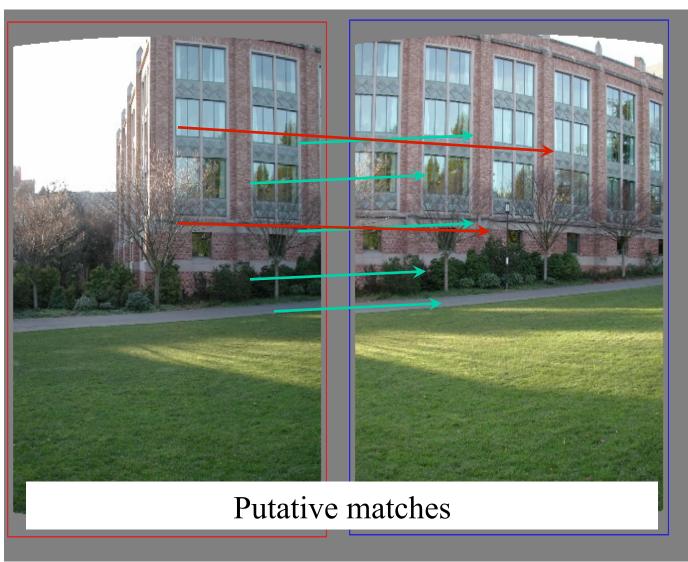
- Draw s point correspondences uniformly at random
- Fit **affine transformation T** to these **s** correspondences
- Find inliers to this transformation T among the remaining correspondences
- If there are **d** or more inliers, accept T and refit using all inliers

What is in **inlier** to a transformation T?

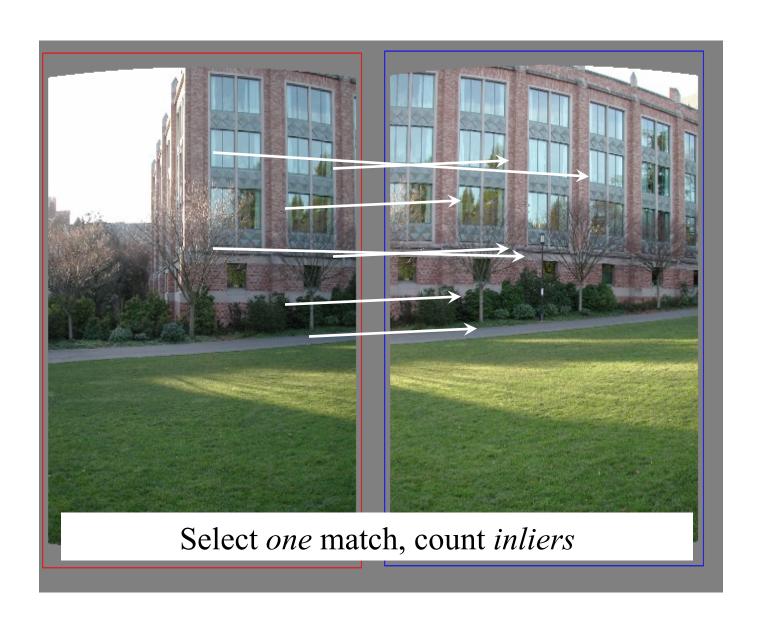
#### Inliers to a transformation T

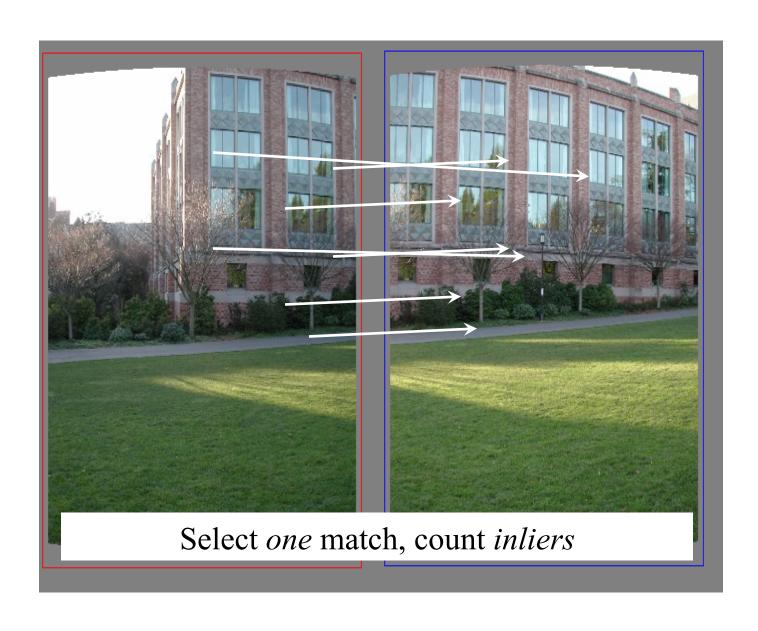
- Two of several possibilities
  - Using asymmetric transfer error
     (x,x') such that ||x'-Tx|| below a threshold t
  - Using symmetric transfer error
     (x,x') such that ||x'-Tx||+||x-inv(T)x'|| below t

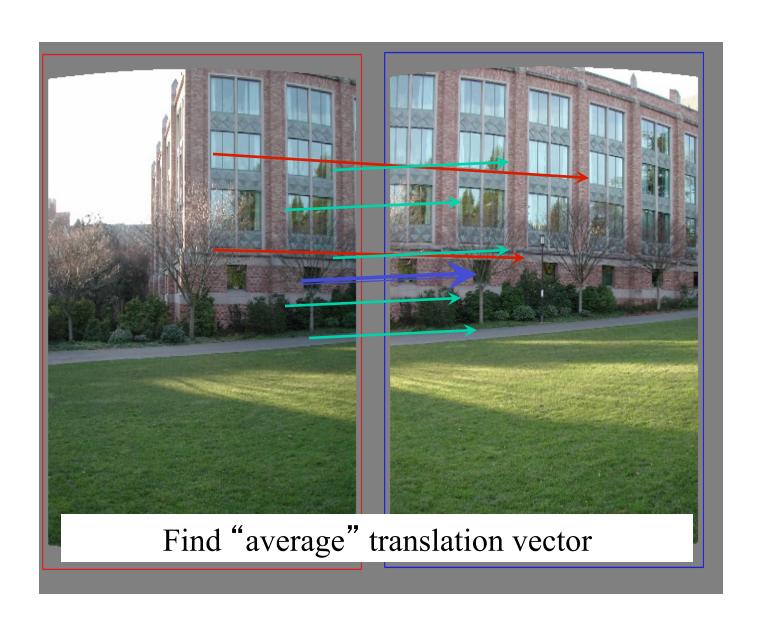




Source: Rick Szeliski

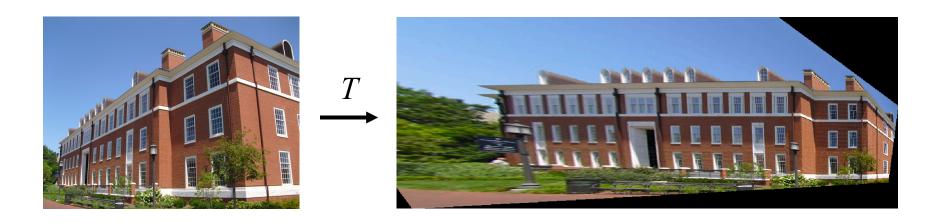






#### Note

#### Is this an affine transformation?

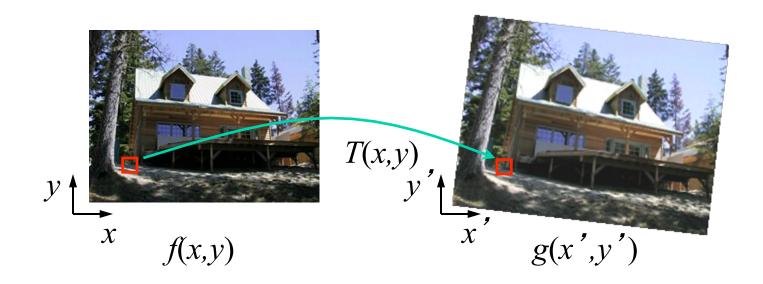


#### We are not fully done yet...

- How do we correctly warp (or unwarp) an image, per pixel, knowing T?
- What about the case of 2D perspective transformations?

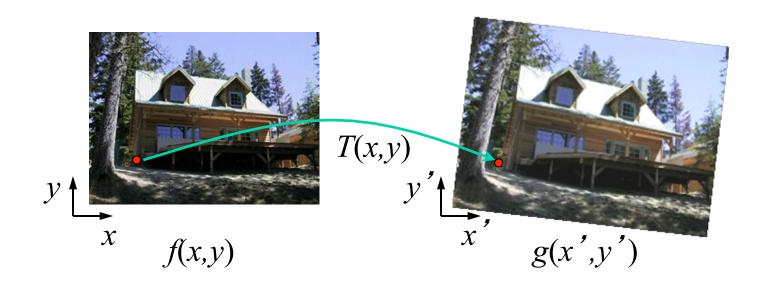
# Image warping

### Image warping



Given a coordinate transform and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

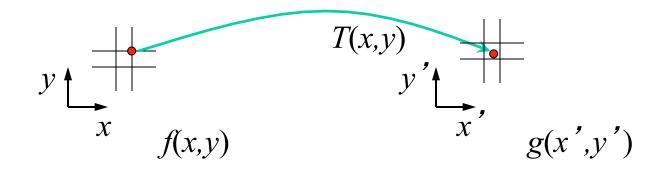
### Forward warping



Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

### Forward warping



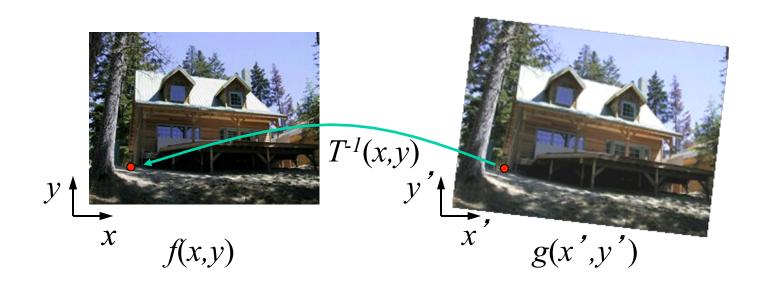
Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

Known as "splatting"

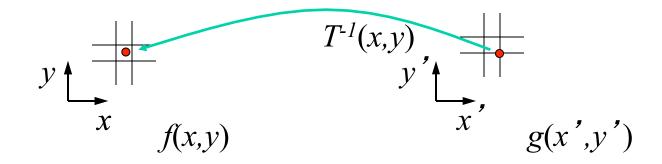
### Inverse warping



Get each pixel g(x',y') from its corresponding location  $(x,y) = T^{-1}(x',y')$  in the first image

Q: what if pixel comes from "between" two pixels?

### Inverse warping



Get each pixel g(x',y') from its corresponding location  $(x,y) = T^{-1}(x',y')$  in the first image

Q: what if pixel comes from "between" two pixels?

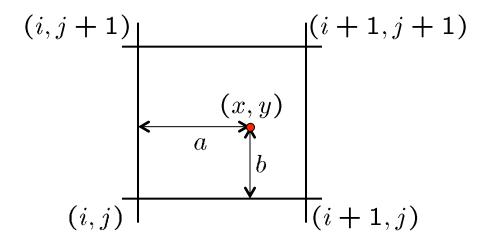
A: Interpolate color value from neighbors

nearest neighbor, bilinear...

>> help interp2

#### Bilinear interpolation

#### Sampling at f(x,y):



$$f(x,y) = (1-a)(1-b) f[i,j] + a(1-b) f[i+1,j] + ab f[i+1,j+1] + (1-a)b f[i,j+1]$$

# 2D projective geometry

### Projective geometry

- 2D projective geometry
  - Points on a plane (projective plane  $\mathcal{P}^2$ ) are represented in homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Objective: study projective transformations and their invariants
- Definition: a **projective transformation h** is an invertible mapping from  $\mathcal{P}^2$  to  $\mathcal{P}^2$  that preserves collinearity between points (x1, x2, x3 on same line => h(x1), h(x2),h(x3) on same line)
- projective transformation = homography = collineation

### Homography

#### **Theorem**

A mapping  $h: \mathcal{P}^2 \to \mathcal{P}^2$  if a projective transformation if and on if there exists an invertible 3x3 matrix H such that for any point  $\mathbf{x}$  represented in homogeneous coordinates,  $h(\mathbf{x})=H\mathbf{x}$ 

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{x'=h(x)} \quad \mathbf{H} \quad \mathbf{x}$$

Note: equation is up to a scale factor

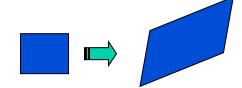
#### Reminder – 2D Affine Transformations

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

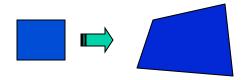
Parallel lines remain parallel



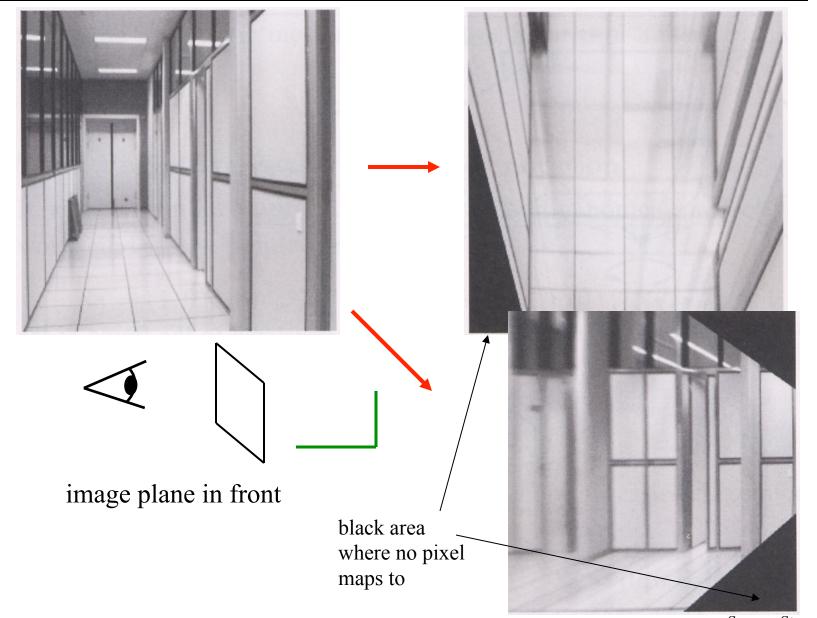
### 2D Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

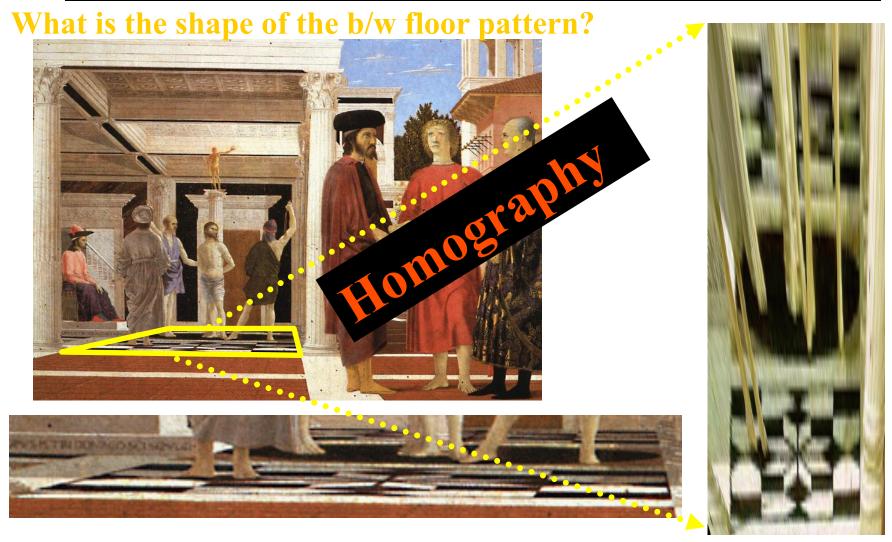
Parallel lines do not necessarily remain parallel



# Image warping with homographies



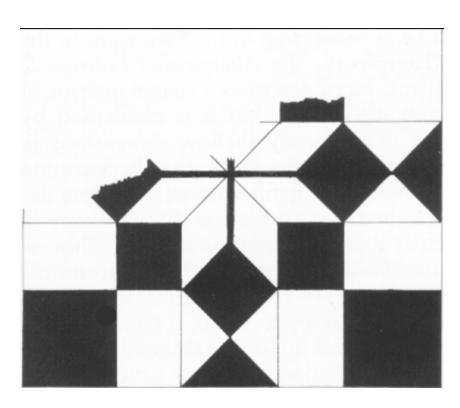
Source: Steve Seitz



The floor (enlarged)

**Automatically** rectified floor





From Martin Kemp The Science of Art (manual reconstruction)

Slide from Antonio Criminis



What is the (complicated) shape of the floor pattern?

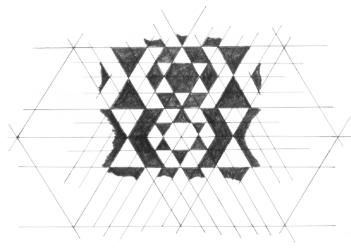


**Automatically rectified floor** 

St. Lucy Altarpiece, D. Veneziano

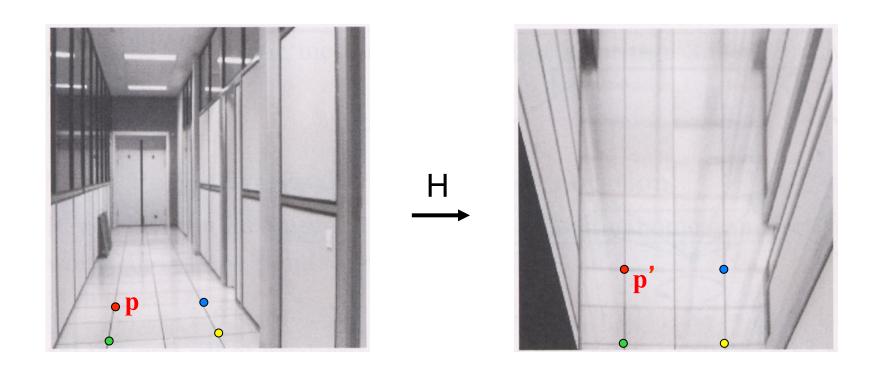


**Automatic** rectification



From Martin Kemp, The Science of Art (manual reconstruction)

# Image rectification



How do we compute H?

### Solving for homographies

$$\mathbf{p'} = \mathbf{H}\mathbf{p}$$

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Up to scale. So, there are 8 degrees of freedom (DoF).
- Set up a system of linear equations:

$$Ah = 0$$

where vector of unknowns  $h = [h1,h2,h3,h4,h5,h6,h7,h8,h9]^T$ 

- Need at least 8 eqs, but the more the better...
- Solve using least-squares

### Summary: DLT algorithm

#### **Objective**

Given  $n \ge 4$  2D to 2D point correspondences  $\{x_i \leftrightarrow x_i'\}$ , determine the 2D homography matrix H such that  $x_i' = Hx_i$ 

#### **Algorithm**

- (i) For each correspondence  $x_i \leftrightarrow x_i$  compute  $A_i$ . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices  $A_i$  into a single 2nx9 matrix A
- (iii) Obtain SVD of A. Solution for h is last column of V
- (iv) Determine H from h

$$X_{i} = \begin{bmatrix} x_{i} & y_{i} & w_{i} \end{bmatrix}^{T}$$

$$\begin{bmatrix} 0 & 0 & 0 & -w_{i}'x_{i} & -w_{i}'y_{i} & -w_{i}'w_{i} & y_{i}'x_{i} & y_{i}'y_{i} & y_{i}'w_{i} \\ w_{i}'x_{i} & w_{i}'y_{i} & w_{i}'w_{i} & 0 & 0 & 0 & -x_{i}'x_{i} & -x_{i}'y_{i} & -x_{i}'w_{i} \\ -y_{i}'x_{i} & -y_{i}'y_{i} & -y_{i}'w_{i} & x_{i}'x_{i} & x_{i}'y_{i} & x_{i}'w_{i} & 0 & 0 \end{bmatrix}$$

#### Conclusion

- Today
  - Affine alignment
  - RANSAC in presence of outliers
  - Image warping
  - Homography
- Next time
  - More on homography estimation
  - Mosaicing
  - More projective geometry