Epipolar Geometry

Computer Vision 600.461
Professor: Greg Hager
Lecturer: Daniel Abretske
Motivation

- Last lecture, we saw how to recover the structure of a scene given known poses and orientations of two cameras.
- It is possible to compute camera positions from images.
- Therefore, given two views of a scene it is (in general) possible to compute camera poses and scene structure.
A Quick Stereo Review

- Given two images we rectify the images so that scanlines are aligned horizontally.

- We then triangulate image geometry from matched points.

- However, matched points have 4 coordinate values and when working with rectified images we only make use of 3 of these values.

- What information is contained in the 4th value?
Given camera centers A and B and a point C in the left image we define the epipolar plane of C as the plane defined by these three points.
Epipolar Lines

- The epipolar line L (for a point in the left image) is the line of intersection between the epipolar plane and the right image plane.
- Corresponding points must lie along the epipolar lines.
- The point of intersection of all epipolar lines is called the epipole.
A Brief Aside

- Image rectification to make scan lines parallel is in fact the act of making all epipolar lines into scanlines.
- In terms of projective geometry this is also equivalent to making the epipoles into points at infinity (since parallel lines intersect at points at infinity).
- Further the right epipole is in fact the image of the camera center of the left image projected into the right image plane (similarly for the left epipole).
Epipolar Geometry

Assume we are given two images of a rigid scene. Then for a pair of matched image points \(x_1 \) (left image) and \(x_2 \) (right image)

\[
\lambda_2 x_2 = R \lambda_1 x_1 + T
\]

\(\lambda_i \in \mathbb{R}^1, R \in SO(3), T \in \mathbb{R}^3, x_i \in P^2 \)

We would like to write a constraint on image matches that we can solve for using only image points.
Algebraic Derivation of E.

\[sk(T)x_2 \cdot \lambda x_2 = sk(T)x_2 \cdot (R\lambda_1 x_1 + T) \]

\[0 = x_2^T sk(T) Rx_1 = x_2^T Ex_1 \]

The matrix E is called the Essential Matrix and is a quadratic constraint on matching image points that we will exploit to recover camera motion.
Properties of E

1. \(\det(E) = 0 \)

2. The left and right nullspaces of \(E \) are respectively the left and right epipoles.

3. An epipolar line can be expressed in terms of \(E \) as

\[
\begin{align*}
l_2 &= Ex_1 \\
l_1 &= E^T x_2
\end{align*}
\]
Properties of E

1. A matrix E is an essential matrix if and only if for $[U,D,V]=\text{svd}(E)$, U and V are both rotations and $D = \text{diag}([k,k,0])$.

2. E is also subject to an arbitrary scaling factor.
Estimating E

- R and T have a total of 6 unknowns, however since we can apply an arbitrary scaling of the scene this reduces to a total of 5 unknowns.
- This implies that the minimal number of points we should need to solve for the essential matrix E is 5.
- There are in fact algorithms to find E from 5, 6, 7 and 8 points but algorithms that use less than 8 points require nonlinear solvers and are much more complex.
Eight Point Algorithm

If we carry out all the calculations it turns out we can write $x_2^T E x_1 = 0$ as a vector product.

$$a = x_1 \otimes x_2$$

$$= [x_1, x_1y_2, x_1z_2, y_1x_2, y_1y_2, y_1z_2, z_1x_2, z_1y_2, z_1z_2]$$

$$= [x_1, x_1y_2, x_1, y_1x_2, y_1y_2, y_1, x_2, y_2, 1]$$

$$e = \text{vec}(E) = [e_1, e_4, e_7, e_2, e_5, e_8, e_3, e_6, e_9]$$

$$a \cdot e = 0$$
Eight Point Algorithm

- Since E is known up to scale we stack at least 8 ‘a’ vectors into a matrix ‘A’ and then apply a least squares solution for homogeneous systems.
- In practice, to find the solution we take $[U,D,V]=\text{svd}(A)$ and last column of V to be ‘e’, i.e., the essential matrix can be found from the nullspace of A.
- In the presence of noise it is necessary to take the svd of E and enforce the singularity of the matrix and the equality of the singular values.
Decomposition of E

- Given an E the next logical step is to find the R and T that give rise to the given geometry.
- It turns out that there will be 4 possible solutions as it is necessary to consider both E and -E in the face of noise.
Decomposition of E

The following formulas give the possible camera motions. It is possible to eliminate 3 of the 4 solutions by requiring that all point reconstructions have positive depth. Again $[U,D,V]=\text{svd}(E)$. For the details of the proof you can refer to Yi Ma et al. ‘An invitation to 3-D Vision’

\[
R = UR_Z^T(\pm \frac{\pi}{2})V^T
\]

\[
sk(T) = UR_Z(\pm \frac{\pi}{2})DU^T
\]

\[
R_Z(\pm \frac{\pi}{2}) = \begin{bmatrix}
0 & \pm 1 & 0 \\
\mp 1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
All of the above assumed that we were working with calibrated cameras. If the cameras are not calibrated we can still recover a geometric relation between images. This is known as the Fundamental Matrix, F.

$$F = K^{-T} EK^{-1}$$

The algorithms described to recover E from image points also apply to recovering F, however it is not possible to recover R and T from F due to the calibration ambiguity.
Homographies

- It’s important to point out that there are certain degenerate configurations of points for which epipolar reconstruction fails.
- The most important case is where all the points lie on a plane. In this case it is necessary to work with homographies instead of the essential matrix.
- There are other degenerate configurations but they are much rarer
Additional Topics

- It is possible to perform similar derivations relating 3 images and the resulting constraint is known as the Trifocal Tensor.

- The previous discussion also assumed scenes were rigid with only the camera moving, there are constraints for multiple rigid motions in a scene and work has been done for non-rigid scenes.
Conclusions

- It is possible to start with two images (both taken with the same camera even) and create a reconstruction of a scene using only image points by combining epipolar geometry and stereo reconstruction.

- It is in fact possible to combine these steps into a single reconstruction step which will be the topic of the next lecture.