Edges, Lines

CS 600.361/600.461

Instructor: Greg Hager

Adapted from slides by N. Padoy, T. Darrell, K. Grauman, Fei-Fei Li and others
Outline

- Edge detection
- Line detection
Edges
Edge detection

- **Goal**: map image from 2d array of pixels to a set of curves or line segments or contours.
- **Why?**

- **Main idea**: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007
What can cause an edge?

- Reflectance change: appearance, texture
- Change in surface orientation: shape
- Depth discontinuity: object boundary
- Cast shadows
Contrast and invariance
Recall: Images as functions

- Edges look like steep cliffs

Source: S. Seitz
Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Source: L. Lazebnik
Partial derivatives of an image

\[
\frac{\partial f(x, y)}{\partial x}
\]

-1 1

\[
\frac{\partial f(x, y)}{\partial y}
\]

-1 1 or 1 -1

Which one shows changes with respect to x? (showing flipped filters)
Assorted finite difference filters

Prewitt: \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \; \; ; \; \; M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \]

Sobel: \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \; \; ; \; \; M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]

Roberts: \[M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \; \; ; \; \; M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]

\[
\text{My} = \text{fspecial}(\text{"sobel"}); \\
\text{outim} = \text{imfilter(double(im), My)}; \\
\text{imagesc(outim)}; \\
\text{colormap gray};
\]
Image gradient

The gradient of an image:

\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

The gradient points in the direction of most rapid change in intensity.

\[\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right] \quad \nabla f = \left[0, \frac{\partial f}{\partial y} \right] \]

The gradient direction (orientation of edge normal) is given by:

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

The edge strength is given by the gradient magnitude:

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]
Effects of noise

Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

\[f(x) \]

\[\frac{d}{dx} f(x) \]

Where is the edge?
Solution: smooth first

\[f \]

\[h \]

\[h \ast f \]

\[\frac{\partial}{\partial x} (h \ast f) \]

Where is the edge? Look for peaks in \(\frac{\partial}{\partial x} (h \ast f) \)
Properties of convolution

\[(I * K)(x, y) = \sum_u \sum_v I(x - u, y - v) \times K(u, v)\]

• Linear & shift invariant
• Commutative: \(f * g = g * f\)
• Associative: \((f * g) * h = f * (g * h)\)
• Identity:

 unit impulse \(e = [...] , 0, 0, 1, 0, 0, ...\). \(f * e = f\)
• Differentiation:

\[
\frac{\partial}{\partial x} (f * g) = \frac{\partial f}{\partial x} * g
\]
Derivative of a Gaussian

\[f \]

\[\frac{\partial}{\partial x} h \]

\[\left(\frac{\partial}{\partial x} h \right) \ast f \]

Look for peaks in \(\left(\frac{\partial}{\partial x} h \right) \ast f \)
Derivative of Gaussian filters

\[x\text{-direction} \quad y\text{-direction} \]

Source: L. Lazebnik
Consider \[\frac{\partial^2}{\partial x^2} (h \ast f) \]

Where is the edge? Zero-crossings of bottom graph
2D edge detection filters

- \(h_\sigma(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}} \)
- \(\frac{\partial}{\partial x} h_\sigma(u, v) \)
- \(\nabla^2 h_\sigma(u, v) \)

\(\nabla^2 \) is the Laplacian operator:

\[
\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
\]
Notes on Kernels

• Smoothing
 – Values positive
 – Sum to 1 → constant regions same as input
 – Amount of smoothing proportional to mask size
 – Remove “high-frequency” components; “low-pass” filter

• Derivatives
 – Opposite signs used to get high response in regions of high contrast
 – Sum to 0 → no response in constant regions
 – High absolute value at points of high contrast

• Filters act as templates
 – Highest response for regions that “look the most like the filter”
 – Correlation can be seen as a dot product if image and mask are represented as two vectors
From gradients to edges

Primary edge detection steps:
1. Smoothing: suppress noise
2. Edge enhancement: filter for contrast
3. Edge localization

 Determine which local maxima from filter output are actually edges vs. noise → **thresholding, thinning**
Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.
Effect of σ on derivatives

The apparent structures differ depending on Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected
So, what scale to choose?

It depends on what we’re looking for:

Too fine of a scale...can’t see the forest for the trees.
Too coarse of a scale...can’t tell the maple grain from the cherry.
Reminder: thresholding

- Choose a threshold value a
- Set any pixels less than a to zero
- Set any pixels greater than or equal to a to one

\[
I'(x, y) = \begin{cases}
1 & \text{if } I(x, y) \geq a \\
0 & \text{else}
\end{cases}
\]
Original image
Gradient magnitude image
Thresholding gradient with a lower threshold
Thresholding gradient with a higher threshold
Designing an edge detector

• Criteria for an “optimal” detector
 – Good detection
 – Good localization
 – Single response
Canny edge detector

- Filter image with derivative of Gaussian (DoG)
- Find magnitude and orientation of gradient
- **Non-maximum suppression:**
 - Thin multi-pixel wide “ridges” down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

- MATLAB: `edge(image, 'canny');`
- `>>help edge`
The Canny edge detector

original image (Lena)
norm of the gradient
thresholding
How to turn these thick regions of the gradient into curves?
Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

- requires checking interpolated pixels p and r
Problem: pixels along this edge didn’t survive the thresholding.

thinning
(non-maximum suppression)
Hysteresis thresholding

• Check that maximum value of gradient value is sufficiently large
 – drop-outs? use **hysteresis**
 • use a high threshold to start edge curves and a low threshold to continue them.
Hysteresis thresholding

- Original image
- High threshold (strong edges)
- Low threshold (weak edges)
- Hysteresis threshold

Source: L. Fei-Fei
Edge detection is just the beginning...

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

More on segmentation later in term...

Source: L. Lazebnik
Lines - Hough
Line fitting

- Why fit lines? Many objects characterized by presence of straight lines

- Wait, why aren’t we done just by running edge detection?
Difficulty of line fitting

- **Extra** edge points (clutter), multiple models:
 - which points go with which line, if any?

- Only some parts of each line detected, and some parts are **missing**:
 - how to find a line that bridges missing evidence?

- **Noise** in measured edge points, orientations:
 - how to detect true underlying parameters?
Voting

• It’s not feasible to check all combinations of features by fitting a model to each possible subset.

• **Voting** is a general technique where we let the features *vote for all models that are compatible with it.*

 – Cycle through features, cast votes for model parameters.
 – Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, *but* typically their votes should be inconsistent with the majority of “good” features.
Fitting lines: Hough transform

• Given points that belong to a line, what is the line?
• How many lines are there?
• Which points belong to which lines?

• **Hough Transform** is a voting technique that can be used to answer all of these questions.

 Main idea:
 1. Record vote for each possible line on which each edge point lies.
 2. Look for lines that get many votes.
Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that $y = mx + b$
Finding lines in an image: Hough space

Connection between image \((x,y)\) and Hough \((m,b)\) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points \((x,y)\), find all \((m,b)\) such that \(y = mx + b\)
- What does a point \((x_0, y_0)\) in the image space map to?
 - Answer: the solutions of \(b = -x_0 m + y_0\)
 - this is a line in Hough space
Finding lines in an image: Hough space

What are the line parameters for the line that contains both \((x_0, y_0)\) and \((x_1, y_1)\)?

- It is the intersection of the lines \(b = -x_0m + y_0\) and \(b = -x_1m + y_1\)
Hough algorithm

How can we use this to find the most likely parameters \((m,b)\) for the most prominent line in the image space?

- Let each edge point in image space vote for a set of possible parameters in Hough space.
- Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.
Polar representation for lines

Issues with usual \((m,b)\) parameter space: can take on infinite values, undefined for vertical lines.

\[
x \cos \theta - y \sin \theta = d
\]

\(d\) : perpendicular distance from line to origin

\(\theta\) : angle the perpendicular makes with the x-axis

Point in image space \(\rightarrow\) sinusoid segment in Hough space
Hough transform algorithm

Using the polar parameterization:

\[x \cos \theta - y \sin \theta = d \]

Basic Hough transform algorithm

1. Initialize \(H[d, \theta] = 0 \)
2. for each edge point \(I[x, y] \) in the image
 for \(\theta = [\theta_{\text{min}} \text{ to } \theta_{\text{max}}] \) // some quantization
 \[d = x \cos \theta - y \sin \theta \]
 \(H[d, \theta] += 1 \)
3. Find the value(s) of \((d, \theta)\) where \(H[d, \theta] \) is maximum
4. The detected line in the image is given by \(d = x \cos \theta - y \sin \theta \)

Time complexity (in terms of number of votes per pt)?

Source: Steve Seitz
Original image

Canny edges

Vote space and top peaks

Kristen Grauman
Showing longest segments found

Kristen Grauman
Impact of noise on Hough

Image space edge coordinates

Votes

What difficulty does this present for an implementation?
Impact of noise on Hough

Here, everything appears to be “noise”, or random edge points, but we still see peaks in the vote space.
Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point I[x,y] in the image
 \[\theta = \text{gradient at } (x,y) \]
 \[d = x \cos \theta - y \sin \theta \]
 \[H[d, \theta] += 1 \]
3. same
4. same

(Reduces degrees of freedom)
Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point $I[x,y]$ in the image
 compute unique (d, θ) based on image gradient at (x,y)
 \[H[d, \theta] += 1 \]
3. same
4. same

(Reduces degrees of freedom)

Extension 2

– give more votes for stronger edges (use magnitude of gradient)

Extension 3

– change the sampling of (d, θ) to give more/less resolution

Extension 4

– The same procedure can be used with circles, squares, or any other shape...

Source: Steve Seitz
Hough transform for circles

- Circle: center \((a,b)\) and radius \(r\)

\[
(x_i - a)^2 + (y_i - b)^2 = r^2
\]

- For a fixed radius \(r\), unknown gradient direction

![Image of Hough transform for circles](image-url)
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)

\[
(x_i - a)^2 + (y_i - b)^2 = r^2
\]

- For a fixed radius \(r\), unknown gradient direction

Kristen Grauman

Intersection: most votes for center occur here.
Hough Extensions for Other Constraints

- In principle, any constraint of the form \(f(x, d) = 0 \) can be checked
 - Grid the parameter \((x)\) space
 - For each observed \(d\) and grid element \(x_i\) if \(|f(x_i, d) < t|\) add a vote
 - Continue with the rest of the algorithm as before

http://www.youtube.com/watch?v=NXWjmPuwVnI
Hough: summary

• **Pros:**
 • All points are processed independently, so can cope with occlusion
 • Some robustness to noise: noise points unlikely to contribute consistently to any single bin
 • Can detect multiple instances of a model in a single pass

• **Cons:**
 • Complexity of search time increases exponentially with the number of model parameters
 • Non-target shapes can produce spurious peaks in parameter space
 • Quantization: hard to pick a good grid size
Lines - RANSAC
Reminder: least squares line fitting

- we know how to fit a line to 2 or more points

Classical least squares

\[d_i = y_i - (ax_i + b) \]
\[e = \sum_i d_i^2 = \sum_i (y_i - (ax_i + b))^2 \]

Total least squares

\[d_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix} \cdot \vec{n} - a \]
\[e = \sum_i d_i^2 = \sum_i \left[\begin{pmatrix} x_i \\ y_i \end{pmatrix} \cdot \vec{n} - a \right]^2 \]
Outliers

- **Outliers** can hurt the quality of our parameter estimates, e.g. an edge point that is noise, or doesn’t belong to the line we are fitting.
Outliers affect least squares fit
Outliers affect least squares fit
RANSAC

• RANdom Sample Consensus

• **Approach:** we want to avoid the impact of outliers, so let’s look for “inliers”, and use those only.

• **Intuition:** if an outlier is chosen to compute the current fit, then the resulting line won’t have much support from rest of the points.
RANSAC: General form

- **RANSAC loop:**
 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
 2. Compute transformation from seed group
 3. Find *inliers* to this transformation
 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers
RANSAC for line fitting example
RANSAC for line fitting example

Least-squares fit
RANSAC for line fitting example

1. Randomly select minimal subset of points

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop
RANSAC for line fitting example

Uncontaminated sample

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop

Source: R. Raguram

Lana Lazebnik
Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:
 \(n \) — the smallest number of points required
 \(k \) — the number of iterations required
 \(t \) — the threshold used to identify a point that fits well
 \(d \) — the number of nearby points required
to assert a model fits well
Until \(k \) iterations have occurred
 Draw a sample of \(n \) points from the data
 uniformly and at random
 Fit to that set of \(n \) points
 For each data point outside the sample
 Test the distance from the point to the line
 against \(t \); if the distance from the point to the line
 is less than \(t \), the point is close
 end
 If there are \(d \) or more points close to the line
 then there is a good fit. Refit the line using all
 these points.
 end
Use the best fit from this collection, using the
 fitting error as a criterion
RANSAC: how many samples?

• How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.

• Prob. that a single sample of n points is correct: w^n

• Prob. that all k samples fail is: $(1 - w^n)^k$

⇒ Choose k high enough to keep this below desired failure rate.
RANSAC: computed k for $p=0.99$

<table>
<thead>
<tr>
<th>Sample size n</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>
After RANSAC

• RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers

• Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization)

• But this may change inliers, so alternate fitting with re-classification as inlier/outlier
RANSAC pros and cons

- **Pros**
 - Simple and general
 - Applicable to many different problems
 - Often works well in practice

- **Cons**
 - Lots of parameters to tune
 - Doesn’t work well for low inlier ratios (too many iterations, or can fail completely)
Conclusion

• So Far
 – Edges
 • Gradient operators
 • Canny edge detector
 – Lines
 • Hough transform
 • RANSAC

• What is next?
 – Corners
 – SIFT features
Corners
Image matching

by Diva Sian

by swashford
Harder case

by Diva Sian

by scgbt
Harder still?

NASA Mars Rover images
Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches
Figure by Noah Snavely
Local features and alignment

- We need to match (align) images
- How would you do it by eye?
Local features and alignment

- Detect feature points in both images

[Darya Frolova and Denis Simakov]
Local features and alignment

- Detect feature points in both images
- Find corresponding pairs

[Darya Frolova and Denis Simakov]
Local features and alignment

• Detect feature points in both images
• Find corresponding pairs
• Use these pairs to align images
Local features and alignment

• Problem 1:
 – Detect the same point \textit{independently} in both images

\begin{center}
\begin{tabular}{cc}
\includegraphics[width=0.3\textwidth]{image1} & \includegraphics[width=0.3\textwidth]{image2}
\end{tabular}
\end{center}

no chance to match!

We need a repeatable detector

[Darya Frolova and Denis Simakov]
Local features and alignment

- Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor

[Darya Frolova and Denis Simakov]
Geometric transformations
Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial
And other nuisances...

- Noise
- Blur
- Compression artifacts
- ...

Invariant local features

Subset of local feature types designed to be invariant to common geometric and photometric transformations.

Basic steps:
1) Detect distinctive interest points
2) Extract invariant descriptors

Figure: David Lowe
Figure 4.3: Image pairs with extracted patches below. Notice how some patches can be localized or matched with higher accuracy than others.
Corners contain more info than lines.

- A point on a line is hard to match; corners are “easy”
Main questions

• Where will the interest points come from?
 – What are salient features that we’ll detect in multiple views?
• How to describe a local region?
• How to establish correspondences, i.e., compute matches?

Today: Harris corner detector with SSD matching
Tomorrow: scale invariant detectors and descriptors, SIFT
Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and **distinctive**

Source: Lana Lazebnik
Corners as distinctive interest points

- We should easily recognize the point by looking through a small window.
- Shifting a window in any direction should give a large change in intensity.

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Source: A. Efros
Harris Detector formulation

Change of intensity for the shift \([u,v]\):

\[
E(u,v) = \sum_{x,y} w(x,y) [I(x+u, y+v) - I(x, y)]^2
\]

Window function

Shifted intensity

Intensity

Window function \(w(x,y) = \)

1 in window, 0 outside

Gaussian

Source: R. Szeliski
Harris Detector formulation

This measure of change can be approximated by:

\[E(u, v) \approx [u \ v] \ M \ [u \ v] \]

where \(M \) is a 2\(\times \)2 matrix computed from image derivatives:

\[M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

Gradient with respect to \(x \), times gradient with respect to \(y \)

Sum over image region – area we are checking for corner

\[M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y] \]
Harris Detector formulation

where \(M \) is a \(2 \times 2 \) matrix computed from image derivatives:

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix}
I_x^2 & I_x I_y \\
I_x I_y & I_y^2
\end{bmatrix}
\]

Sum over image region – area we are checking for corner

\[
M = \begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix} = \sum \begin{bmatrix}
I_x \\
I_y
\end{bmatrix} [I_x \ I_y]
\]

Gradient with respect to \(x \), times gradient with respect to \(y \)
What does this matrix reveal?

First, consider an axis-aligned corner:
What does this matrix reveal?

First, consider an axis-aligned corner:

\[M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]

This means dominant gradient directions align with \(x \) or \(y \) axis.

If either \(\lambda \) is close to 0, then this is **not** a corner, so look for locations where both are large.

What if we have a corner that is not aligned with the image axes?
General Case

Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R.

Slide adapted from Darya Frolova, Denis Simakov.
Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

- **"Corner"**
 - λ_1 and λ_2 are large,
 - $\lambda_1 \sim \lambda_2$;
 - E increases in all directions

- **"Edge"**
 - $\lambda_2 \gg \lambda_1$
 - $\lambda_1 \gg \lambda_2$

- **"Flat" region**
 - λ_1 and λ_2 are small;
 - E is almost constant in all directions

λ_1 and λ_2 are eigenvalues.
Corner response function

\[R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha(\lambda_1 + \lambda_2)^2 \]

\(\alpha\): constant (0.04 to 0.06)
Harris Corner Detector

• Algorithm steps:
 – Compute M matrix within all image windows to get their R scores
 – Find points with large corner response
 \((R > \text{threshold})\)
 – Take the points of local maxima of \(R\)
Harris Detector: Workflow

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.
Compute corner response R
Find points with large corner response: $R > \text{threshold}$
Take only the points of local maxima of R
Harris Detector: Properties

- Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Properties

- Not invariant to image scale

All points will be classified as edges

Corner!
Feature descriptors

We know how to detect **and describe** good points

Next question: **How to match them?**
Feature matching

Given a feature in I_1, how to find the best match in I_2?

1. Define distance function that compares two descriptors
2. Test all the features in I_2, find the one with min distance

1. Many possible distances:
 1. SSD
 2. NCC
 3. SAD
 4. Earthmovers
Feature distance

How to define the difference between two features f_1, f_2?

- Simple approach is $SSD(f_1, f_2)$
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches
Matching High Texture Regions

- Basic SSD

\[SSD(d) = \sum_{q \in R_1} (I_1(q) - I_2(q + d))^2 / n \]

- Zero mean SSD

\[\bar{I}_1 = \sum_{q \in R_1} I_1(q) / n \quad \tilde{I}_1(q) = I_1(q) - \bar{I}_1 \]

- Normalized SSD

\[\bar{\sigma}_1^2 = \sum_{q \in R_1} \tilde{I}_1^2 / n \]

\[SSD(d) = \sum_{q \in R_1} \left(\frac{\tilde{I}_1(q)}{\bar{\sigma}_1} - \frac{\tilde{I}_2(q + d)}{\bar{\sigma}_2(d)} \right)^2 / n \]

- Normalized SSD = Normalized Cross-Correlation = Dot Product

\[ZNCC(d) = \sum_{q \in R_1} \frac{\tilde{I}_1(q) \tilde{I}_2(q + d)}{\bar{\sigma}_1 \bar{\sigma}_2(d)} \]
Matching High Texture Regions

• SAD
 \[SAD(d) = \sum_{q \in R_1} |I_1(q) - I_2(q + d)|/n \]

• Zero mean SAD

• Other methods
 – Ordinal methods
 – Shuffle distance
 – Mutual Information
 – Other robust matching functions (Huber functions)

• Other pre-processing:
 – Note all of the above can also be done on filtered images
 – Note all of the above can be extended to multi-dimensional feature spaces
Feature distance

How to define the difference between two features f_1, f_2?

- Better approach: ratio distance $= \frac{\text{SSD}(f_1, f_2)}{\text{SSD}(f_1, f_2')}$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives small values for ambiguous matches
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

\[
x_1 = [x_1^{(1)}, \ldots, x_d^{(1)}] \\
x_2 = [x_1^{(2)}, \ldots, x_d^{(2)}]
\]
Issue: Geometric transformations
Invariance

We’d like to find the same features regardless of the transformation

- This is called transformational *invariance*
- Most feature methods are designed to be invariant to
 - Translation, 2D rotation, scale
- They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (2D rotation, scale, shear)
 - Limited illumination/contrast changes
How to achieve invariance

Need both of the following:

1. Make sure your detector is invariant
 - Harris is invariant to translation and rotation
 - Scale is trickier
 • common approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS)
 • More sophisticated methods find “the best scale” to represent each feature (e.g., SIFT)

2. Design an invariant feature descriptor
 - A descriptor captures the information in a region around the detected feature point
 - The simplest descriptor: a square window of pixels
 - Let’s look at some better approaches...
Rotation invariance

Find dominant orientation of the image patch

- This is given by x_+, the eigenvector of H corresponding to λ_+ (the larger eigenvalue)
- Rotate the patch according to this angle

Figure by Matthew Brown
Multiscale Oriented PatcheS descriptor

Take a 40x40 square window around detected feature

- Scale to 1/5 size (using prefiltering)
- Rotate to horizontal
- Sample 8x8 square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window (both window I and aI+b will match)
Scale invariant interest points

How can we independently select interest points in each image, such that the detections are repeatable across different scales?
Automatic scale selection

Intuition:
• Find scale that gives local maxima of some function f in both position and scale.

$\begin{array}{c}
\text{Image 1} \\
\text{Region size: } s_1
\end{array}$

$\begin{array}{c}
\text{Image 2} \\
\text{Region size: } s_2
\end{array}$
Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]
Blob detection in 2D: scale selection

- Laplacian-of-Gaussian = “blob” detector

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]
Blob detection in 2D

- We define the *characteristic scale* as the scale that produces peak of Laplacian response.
Image Scaling

This image is too big to fit on the screen. How can we generate a half-sized version?
Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called image sub-sampling

Source: S. Seitz
Image sub-sampling

1/2
1/4 (2x zoom)
1/8 (4x zoom)

Why does this look so crufty?

Source: S. Seitz
Image sub-sampling

Source: F. Durand
Aliasing

• Occurs when your sampling rate is not high enough to capture the amount of detail in your image
• Can give you the wrong signal/image—an alias

• To do sampling right, need to understand the structure of your signal/image
• Enter Monsieur Fourier...

• To avoid aliasing:
 – sampling rate $\geq 2 \times \text{max frequency in the image}$
 • said another way: \geq two samples per cycle
 – This minimum sampling rate is called the **Nyquist rate**

Source: L. Zhang
Gaussian pre-filtering

- Solution: filter the image, \textit{then} subsample

Source: S. Seitz
Subsampling with Gaussian pre-filtering

- Solution: filter the image, *then* subsample

Source: S. Seitz
Compare with...

Source: S. Seitz
Gaussian pre-filtering

- Solution: filter the image, then subsample
Gaussian pyramid

\[\{ \]

\[F_0 \]

\[F_0 \ast H \]

\[F_1 \]

\[F_1 \ast H \]

\[F_2 \]

\[\vdots \]

\[\text{blur} \]

\[\text{subsample} \]

\[\text{blur} \]

\[\text{subsample} \]

\[\text{...} \]
Gaussian pyramids [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*

Gaussian Pyramids have all sorts of applications in computer vision

Source: S. Seitz
Gaussian pyramids [Burt and Adelson, 1983]

- How much space does a Gaussian pyramid take compared to the original image?

Source: S. Seitz
Gaussian pyramid example

All the extra levels add very little overhead for memory or computation!

Source: Irani & Basri
One Useful Feature of GPs

• We can approximate the Laplacian by taking the differences of Gaussians at different scales (sigmas)

• Note the Laplacian pyramid already has that

• So, taking differences of adjacent levels (sampled to the same size) gives us the Laplacian of Gaussian “for free”
Scale Invariant Feature Transform (SIFT)

Lecture 4

Advanced Features

Sebastian Thrun, Stanford
Rick Szeliski, Microsoft
Hendrik Dahlkamp, Stanford

[with slides by D Lowe, M. Pollefeys]
Invariant Local Features

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters.

SIFT Features
SIFT On-A-Slide

1. **Enforce invariance to scale**: Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates

2. **Localizable corner**: For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.

3. **Eliminate edges**: Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.

4. **Enforce invariance to orientation**: Compute orientation, to achieve scale invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.

5. **Compute feature signature**: Compute a "gradient histogram" of the local image region in a 4x4 pixel region. Do this for 4x4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).

6. **Enforce invariance to illumination change and camera saturation**: Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.
SIFT On-A-Slide

1. **Enforce invariance to scale:** Compute Gaussian difference max, for many different scales; non-maximum suppression, find local maxima: keypoint candidates

2. **Localizable corner:** For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.

3. **Eliminate edges:** Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.

4. **Enforce invariance to orientation:** Compute orientation, to achieve scale invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.

5. **Compute feature signature:** Compute a "gradient histogram" of the local image region in a 4x4 pixel region. Do this for 4x4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).

6. **Enforce invariance to illumination change and camera saturation:** Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.
Find Invariant Corners

1. **Enforce invariance to scale:** Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates
Finding “Keypoints” (Corners)

Idea: Find Corners, but scale invariance

Approach:
• Run linear filter (diff of Gaussians)
• At different resolutions of image pyramid
Difference of Gaussians

Minus

Equals
Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema
SIFT On-A-Slide

1. **Enforce invariance to scale**: Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates.

2. **Localizable corner**: For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.

3. **Eliminate edges**: Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.

4. **Enforce invariance to orientation**: Compute orientation, to achieve scale invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.

5. **Compute feature signature**: Compute a "gradient histogram" of the local image region in a 4x4 pixel region. Do this for 4x4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).

6. **Enforce invariance to illumination change and camera saturation**: Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.
Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures
SIFT On-A-Slide

1. **Enforce invariance to scale:** Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates

2. **Localizable corner:** For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.

3. **Eliminate edges:** Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.

4. **Enforce invariance to orientation:** Compute orientation, to achieve scale invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.

5. **Compute feature signature:** Compute a "gradient histogram" of the local image region in a 4x4 pixel region. Do this for 4x4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).

6. **Enforce invariance to illumination change and camera saturation:** Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.
Select canonical orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates \((x, y, \text{scale}, \text{orientation})\)
SIFT On-A-Slide

1. **Enforce invariance to scale:** Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates

2. **Localizable corner:** For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.

3. **Eliminate edges:** Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.

4. **Enforce invariance to orientation:** Compute orientation, to achieve scale invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.

5. **Compute feature signature:** Compute a "gradient histogram" of the local image region in a 4x4 pixel region. Do this for 4x4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).

6. **Enforce invariance to illumination change and camera saturation:** Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.
SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions
Match Scaling

Figure 10: The dashed line shows the percent of keypoints correctly matched to a database as a function of database size (using a logarithmic scale). The solid line shows the percent of keypoints assigned the correct location and orientation.
Overview of feature detectors

<table>
<thead>
<tr>
<th>Feature Detector</th>
<th>Corner</th>
<th>Blob</th>
<th>Region</th>
<th>Rotation invariant</th>
<th>Scale invariant</th>
<th>Affine invariant</th>
<th>Repeatability</th>
<th>Localization accuracy</th>
<th>Robustness</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hessian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SUSAN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Harris-Laplace</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hessian-Laplace</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DoG</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>♦</td>
<td>♦</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>SURF</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Harris-Affine</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>♦</td>
<td>♦</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Hessian-Affine</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>♦</td>
<td>♦</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Salient Regions</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Edge-based</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MSER</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Intensity-based</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Superpixels</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

An Example: “Bag of Words” Scene Recognition

- Edward Hopper Images
 - Different sizes, IDs, cropping
 - Record features for each image
 - When presented with an image, choose stored record with most matches
An Example: Object Detection w/SIFT

• Registration: Given similarity metric S, geometric transformation T with parameters μ and image I_1 and I_2 find μ^* s.t.

$$S(I_1, T(I_2, \mu^*)) = \max_\mu S(I_1, T(I_2, \mu))$$

• Object detection: solve for both identity and registration of objects in an image

• Hough Transform (D. Lowe)
 – Grid registration space and image identities
 – Vote directly from feature matches

• RANSAC
 – Use pairs of matches and compute location and orientation
D. Lowe Feature Matching

• Uses a Hough transform
 – parameters are position, orientation and scale for each training view
 – features are matched to closest Euclidean distance neighbor in database; each database feature indexed to object and view as well as location, orientation and scale
 – features are linked to adjacent model views; these links are also followed and accumulated
 – implemented using a hash table
Verification and Training

- Views are matched under affine transformations:
 - \(u' = s R u + d \) → leads to a linear system \(Ax = b \)
 - (geometric) match error \(e = \sqrt{2 || A x^* - b ||/(r-4)} \) where \(r \) is the # of matched features
 - in learning stage, use \(e \) to decide if a view should be clustered or create a new cluster; threshold \(T = 0.05 \times \max(r,c) \) where \(r,c \) is size of training image

- Training simply requires many images of objects, not necessarily organized in any way; three cases:
 - training image doesn’t match an existing object model; new object model is formed with this image
 - training image matches an existing model view, but \(e > T \);
 - new model view created and linked to three closes model views; overlapping features are linked.
 - training image matches an existing model view and \(e < T \);
 - aggregate any new features into the existing model view
Final Probability Model

- There can still be many false positives and negatives
- Compute \(P(m \mid f) \) where \(f \) are the \(k \) matched features and \(m \) is a model view

- Probability of false match for a single feature is
 - \(p = d \cdot l \cdot r \cdot s \)
 - \(d \) = fraction of database features in this model view
 - \(l = 0.2^2 = 0.04 \) (location ranges of 20% of model size)
 - \(r = 30/360 = 0.085 \)
 - \(s = 0.5 \)
 - \(P(f \mid : m) = \text{binomial using } p, n (\# \text{ of features}) \text{ and } k (\# \text{ of matches}) \)

- \(P(m \mid f) = \frac{P(f \mid m) \cdot P(m)}{P(f \mid m) \cdot P(m) + P(f \mid : m) \cdot P(: m)} \)
- Assume \(P(: m) = 1 \) and \(P(f \mid m) = 1 \)
- Thus \(P(m \mid f) = \frac{P(m)}{P(m) + P(f \mid : m)} \)
- Assume \(P(m) \) is roughly constant and = 0.01
- Accept a model if \(P(m \mid f) > 0.95 \)
- Requires 3-10 features depending on object and level of clutter
PDF of Matching

Figure 11: The probability that a match is correct can be determined by taking the ratio of distance from the closest neighbor to the distance of the second closest. Using a database of 40,000 keypoints, the solid line shows the PDF of this ratio for correct matches, while the dotted line is for matches that were incorrect.
Results

- Figure 12: The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown on the right overlaid on a reduced contrast version of the image. A parallelogram is drawn around each recognized object showing the boundaries of the original training image under the affine transformation solved for during recognition. Smaller squares indicate the keypoints that were used for recognition.
Figure 13: This example shows location recognition within a complex scene. The training images for locations are shown at the upper left and the 640x315 pixel test image taken from a different viewpoint is on the upper right. The recognized regions are shown on the lower image, with keypoints shown as squares and an outer parallelogram showing the boundaries of the training images under the affine transform used for recognition.
Image Feature Detection Summary

• Canny detector is probably the most widely used algorithm for performing edge detection

• Feature matching metrics

• Corner detectors can be formulated also in terms of image gradient structures

• SIFT combines detection and matching in a robust fashion

• Hough transform and RANSAC are methods of incorporating geometric constraints into the matching process