The Projection “Chain”

Points in the image

Conversion to Pixel Grid

Projection

Transform to camera coordinates

Points in the world
Projection Geometry: Standard Camera Coordinates

• By convention, we place the image in front of the optical center
 – typically we approximate by saying it lies one focal distance from the center
 – in reality this can’t be true for a finite size chip!

• Optical axis is z axis pointing outward

• X axis is parallel to the scanlines (rows) pointing to the right!

• By the right hand rule, the Y axis must point downward

• Note this corresponds with indexing an image from the upper left to the lower right, where the X coordinate is the column index and the Y coordinate is the row index.
Intrinsic Parameters

Intrinsic Parameters describe the conversion from unit focal length metric to pixel coordinates (and the reverse)

\[
x_{\text{mm}} = - (x_{\text{pix}} - o_x) s_x \quad \rightarrow \quad -1/s_x x_{\text{mm}} + o_x = x_{\text{pix}}
\]

\[
y_{\text{mm}} = - (y_{\text{pix}} - o_y) s_y \quad \rightarrow \quad -1/s_y y_{\text{mm}} + o_y = y_{\text{pix}}
\]

or

\[
\begin{pmatrix}
x \\
y \\
w
\end{pmatrix}_{\text{pix}} =
\begin{pmatrix}
-1/s_x & 0 & o_x \\
0 & -1/s_y & o_y \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
w
\end{pmatrix}_{\text{mm}} = K_{\text{int}} p
\]

It is common to combine scale and focal length together as they are both scaling factors; note projection is unitless in this case!
Putting it All Together

Now, using the idea of *homogeneous transforms*, we can write:

\[p' = \begin{pmatrix} R & T \\ 0 & 1 \end{pmatrix} p \]

R and T both require 3 parameters. These correspond to the 6 *extrinsic parameters* needed for camera calibration.

Then we can write

\[q = \Pi p' \] for some projection model \(\Pi \)

Finally, we can write

\[u = K q \] for intrinsic parameters \(K \)
Camera parameters

- Summary:
 - points expressed in external frame
 - points are converted to canonical camera coordinates
 - points are projected
 - points are converted to pixel units

\[
\begin{bmatrix}
U \\
V \\
W
\end{bmatrix} = \begin{bmatrix}
\text{Transformation representing intrinsic parameters} \\
\text{Transformation representing projection model} \\
\text{Transformation representing extrinsic parameters}
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
T
\end{bmatrix}
\]

- point in pixel coords.
- point in metric image coords.
- point in cam. coords.
- point in world coords.
Calibration using a 3D target

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, pp. 364-374, 1986
Camera Calibration

Calibration = the computation of the camera intrinsic and extrinsic parameters

• General strategy:
 – view calibration object
 – identify image points
 – obtain camera matrix by minimizing error
 – obtain intrinsic parameters from camera matrix

• Error minimization:
 – Linear least squares
 • easy problem numerically
 • solution can be rather bad
 – Minimize image distance
 • more difficult numerical problem
 • solution usually rather good, but can be hard to find
 – start with linear least squares
 – Numerical scaling is an issue

• Most modern systems employ the multi-plane method
 – avoids knowing absolute coordinates of calibration points
Calibration Procedure

• Calibration target: 2 planes at right angle with checkerboard patterns (Tsai grid)
 ▪ We know positions of pattern corners only with respect to a coordinate system of the target
 ▪ We position camera in front of target and find images of corners
 ▪ We obtain equations that describe imaging and contain internal parameters of camera
 • As a side benefit, we find position and orientation of camera with respect to target (camera \textit{pose})
Image Processing of Image of Target

- Canny edge detection
- Straight line fitting to detected linked edges
- Intersecting the lines to obtain the image corners
- Matching image corners and 3D target checkerboard corners
 - By counting if whole target is visible in image
- We get pairs (image point)--(world point)
 \[(x_i, y_i) \rightarrow (X_i, Y_i, Z_i)\]
From Camera Coordinates to World Coordinates
From Camera Coordinates to World Coordinates 2

CM = CO + OM

\[x_S i + y_S j + z_S k = T_x i + T_y j + T_z k + X_S I + Y_S J + Z_S K \]

\[x_S = T_x + X_S I.i + Y_S J.i + Z_S K.i \]

\[
\begin{bmatrix}
 x_S \\
 y_S \\
 z_S \\
\end{bmatrix} =
\begin{bmatrix}
 T_x \\
 T_y \\
 T_z \\
\end{bmatrix} +
\begin{bmatrix}
 I.i & J.i & K.i \\
 I.j & J.j & K.j \\
 I.k & J.k & K.k \\
\end{bmatrix}
\begin{bmatrix}
 X_S \\
 Y_S \\
 Z_S \\
\end{bmatrix}
\]
From Camera Coordinates to World Coordinates 3

\[\text{CM} = \text{OM} - \text{OC} \]
\[x_s \mathbf{i} + y_s \mathbf{j} + z_s \mathbf{k} = (X_s - X_C) \mathbf{I} + (Y_s - Y_C) \mathbf{J} + (Z_s - Z_C) \mathbf{K} \]
\[x_s = (X_s - X_C) \mathbf{I} \cdot \mathbf{i} + (Y_s - Y_C) \mathbf{J} \cdot \mathbf{i} + (Z_s - Z_C) \mathbf{K} \cdot \mathbf{i} \]
\[x_{\text{cam}} = R(X - \tilde{C}) \quad (T = -R\tilde{C}) \]

\(\tilde{C} \) is vector OC expressed in world coordinate system
Homogeneous Coordinates 2

• Here we use \(- \mathbf{R \tilde{C}}\) instead of \(\mathbf{T}\)

\[
\begin{bmatrix}
 x_S \\
 y_S \\
 z_S \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \mathbf{R} & - \mathbf{R \tilde{C}} \\
 \mathbf{0}_3^T & 1
\end{bmatrix}
\begin{bmatrix}
 X_S \\
 Y_S \\
 Z_S \\
 1
\end{bmatrix}
\]
Linear Transformation from World Coordinates to Pixels

- Combine camera projection and coordinate transformation matrices into a single matrix \(P \)

\[
\begin{bmatrix}
 u' \\
 v' \\
 w'
\end{bmatrix} = K \begin{bmatrix}
 I_3 & 0_3
\end{bmatrix}
\begin{bmatrix}
 x_s \\
 y_s \\
 z_s \\
 1
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 u' \\
 v' \\
 w'
\end{bmatrix} = K \begin{bmatrix}
 I_3 & 0_3
\end{bmatrix} \begin{bmatrix}
 R & -R\tilde{C}
\end{bmatrix}
\begin{bmatrix}
 X_S \\
 Y_S \\
 Z_S \\
 1
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 u' \\
 v' \\
 w'
\end{bmatrix} = P
\begin{bmatrix}
 X_S \\
 Y_S \\
 Z_S \\
 1
\end{bmatrix}
\Rightarrow \mathbf{x} = PX
Properties of Matrix P

• Further simplification of P:

$$x = K[I_3 \mid 0_3] \begin{bmatrix} R & -R\tilde{C} \\ 0^T_3 & 1 \end{bmatrix} X$$

$$[I_3 \mid 0_3] \begin{bmatrix} R & -R\tilde{C} \\ 0^T_3 & 1 \end{bmatrix} = [R - R\tilde{C}] = R[I_3 \mid -\tilde{C}]$$

$$x = KR[I_3 \mid -\tilde{C}] X$$

$$P = KR[I_3 \mid -\tilde{C}]$$

• P has 11 degrees of freedom:
 • 5 from triangular calibration matrix K, 3 from R and 3 from \tilde{C}
 • P is a fairly general 3 x 4 matrix
 • left 3x3 submatrix KR is non-singular
Calibration

1. Estimate matrix P using scene points and their images
2. Estimate the interior parameters and the exterior parameters

$$P = KR[I_3 \mid -\tilde{C}]$$

- Left 3x3 submatrix of P is product of upper-triangular matrix and orthogonal matrix
Finding Camera Translation

- Find homogeneous coordinates of C in the scene
- C is the null vector of matrix P
 \[P \begin{bmatrix} C \end{bmatrix} = 0: \]
 \[
 P = K R \begin{bmatrix} I_3 & -\tilde{C} \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 & -X_c \\
 0 & 1 & 0 & -Y_c \\
 0 & 0 & 1 & -Z_c
 \end{bmatrix}
 \begin{bmatrix}
 X_c \\
 Y_c \\
 Z_c
 \end{bmatrix}
 = \begin{bmatrix} 0 \\
 0 \\
 0
 \end{bmatrix}
 \]
- Find null vector C of P using SVD
 - C is the unit singular vector of P corresponding to the smallest singular value (the last column of V, where $P = U D V^T$ is the SVD of P)
Finding Camera Orientation and Internal Parameters

• Left 3x3 submatrix \mathbf{M} of \mathbf{P} is of form $\mathbf{M} = \mathbf{K} \mathbf{R}$
 - \mathbf{K} is an upper triangular matrix
 - \mathbf{R} is an orthogonal matrix

• Any non-singular square matrix \mathbf{M} can be decomposed into the product of an upper-triangular matrix \mathbf{K} and an orthogonal matrix \mathbf{R} using the RQ factorization
 - Similar to QR factorization but order of 2 matrices is reversed
RQ Factorization of \mathbf{M}

\[
\mathbf{R}_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix}, \quad \mathbf{R}_y = \begin{bmatrix} c' & 0 & s' \\ 0 & 1 & 0 \\ -s' & 0 & c' \end{bmatrix}, \quad \mathbf{R}_z = \begin{bmatrix} c'' & -s'' & 0 \\ s'' & c'' & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

- Compute $c = -\frac{m_{33}}{(m_{32}^2 + m_{33}^2)^{1/2}}$, $s = \frac{m_{32}}{(m_{32}^2 + m_{33}^2)^{1/2}}$

- Multiply \mathbf{M} by \mathbf{R}_x. The resulting term at (3,2) is zero because of the values selected for c and s

- Multiply the resulting matrix by \mathbf{R}_y, after selecting c' and s' so that the resulting term at position (3,1) is set to zero

- Multiply the resulting matrix by \mathbf{R}_z, after selecting c'' and s'' so that the resulting term at position (2,1) is set to zero

$\mathbf{M} \mathbf{R}_x \mathbf{R}_y \mathbf{R}_z = \mathbf{K} \Rightarrow \mathbf{M} = \mathbf{K} \mathbf{R}_z^T \mathbf{R}_y^T \mathbf{R}_x^T = \mathbf{K} \mathbf{R}$
Computing Matrix P

- Use corresponding image and scene points
 - 3D points X_i in world coordinate system
 - Images x_i of X_i in image
- Write $x_i = P X_i$ for all i
- Similar problem to finding projectivity matrix H (i.e. homography)
Computation of P

- $x_i = P X_i$ involves homogeneous coordinates, thus x_i and $P X_i$ just have to be proportional: $x_i \times P X_i = 0$

- Let p_1^T, p_2^T, p_3^T be the 3 row vectors of P

\[
P X_i = \begin{bmatrix}
p_1^T X_i \\
p_2^T X_i \\
p_3^T X_i
\end{bmatrix}
\]

\[
x_i \times P X_i = \begin{bmatrix}
v'_i p_3^T X_i - w'_i p_2^T X_i \\
w'_i p_1^T X_i - u'_i p_3^T X_i \\
u'_i p_2^T X_i - v'_i p_1^T X_i
\end{bmatrix}
\]

\[
\Rightarrow \begin{bmatrix}
0_4^T \\
w'_i X_i^T \\
- v'_i X_i^T
\end{bmatrix}
\begin{bmatrix}
- w'_i X_i^T \\
v'_i X_i^T \\
- u'_i X_i^T
\end{bmatrix}
\begin{bmatrix}
p_1 \\
p_2 \\
p_3
\end{bmatrix}
= 0
\]

$\begin{bmatrix}
p_1 \\
p_2 \\
p_3
\end{bmatrix}$ is a 12×1 vector
Computation of \(P \)

- Third row can be obtained from sum of \(u'_i \) times first row - \(v'_i \) times second row

\[
\begin{bmatrix}
0^T_4 & -w'_i X_i^T & v'_i X_i^T \\
w'_i X_i^T & 0^T_4 & -u'_i X_i^T \\
-v'_i X_i^T & u'_i X_i^T & 0^T_4
\end{bmatrix}
\begin{bmatrix}
p_1 \\
p_2 \\
p_3
\end{bmatrix} = 0
\]

- So we get 2 independent equations in 11 unknowns (ignoring scale)

- With 6 point correspondences, we get enough equations to compute matrix \(P \)

\[
A \ p = 0
\]
Solving $A \mathbf{p} = 0$

- Linear system $A \mathbf{p} = 0$
- When possible, have at least 5 times as many equations as unknowns (28 points)
- Minimize $\| A \mathbf{p} \|$ with the constraint $\| \mathbf{p} \| = 1$
 - \mathbf{p} is the unit singular vector of A corresponding to the smallest singular value (the last column of V, where $A = U \Sigma V^T$ is the SVD of A)
- Called Direct Linear Transformation (DLT)
Improving P Solution with Nonlinear Minimization

- Find p using DLT
- Use as initialization for nonlinear minimization of $\sum d(x_i, PX_i)^2$
 - Use Levenberg-Marquardt iterative minimization
Multi-planar calibration

Z. Zhang. A flexible new technique for camera calibration.
Alternative: multi-plane calibration

Advantage

• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!
 – Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 – Matlab version by Jean-Yves Bouget:
 http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 – Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/
Parameters

• (same model as before - just different notations)

Projection equation:

\[s\tilde{m} = A[R \ t]\tilde{M} \]

Intrinsic parameters:

\[A = \begin{bmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \]
Planar homography

- Assume world coordinate system is such that Z=0 on the calibration pattern

- Projected pattern point:

\[s\tilde{m} = A[R \ t]\tilde{M} \]

\[\begin{bmatrix} u \\ v \end{bmatrix} = A \begin{bmatrix} r_1 & r_2 & r_3 & t \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \end{bmatrix} \]

\[= A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} . \]

Pattern and its image are related by homography:

\[s\tilde{m} = H\tilde{M} \quad \text{with} \quad H = A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \]
Homography H

• Compute H for each image using known correspondences
Constraints on internal parameters

• Noting

\[H = [h_1 \ h_2 \ h_3] \]

• And using the equation

\[[h_1 \ h_2 \ h_3] = \lambda A [r_1 \ r_2 \ t] \]

• One derives two equations on internal parameters only:

\[h_1^T A^{-T} A^{-1} h_2 = 0 \]
\[h_1^T A^{-T} A^{-1} h_1 = h_2^T A^{-T} A^{-1} h_2 \]
Computing Intrinsics

• Rotation Matrix is orthogonal....

\[r_i^T r_j = 0 \]
\[r_i^T r_i = r_j^T r_j \]

• Write the homography in terms of its columns...

\[h_1 = sA r_1 \]
\[h_2 = sA r_2 \]
\[h_3 = sA t \]
Computing Intrinsics

• Derive the two constraints:

\[h_1 = sA r_1 \]
\[\frac{1}{s} A^{-1} h_1 = r_1 \]
\[\frac{1}{s} A^{-1} h_2 = r_2 \]

\[r_1^T r_2 = 0 \]
\[h_1^T A^{-T} A^{-1} h_2 = 0 \]

\[r_1^T r_1 = r_2^T r_2 \]
\[h_1^T A^{-T} A^{-1} h_1 = h_2^T A^{-T} A^{-1} h_2 \]
Closed-Form Solution

Let $B = A^{-T}A^{-1} = \begin{bmatrix}
\frac{1}{\alpha^2} & -\frac{\gamma}{\alpha^2 \beta} & \frac{v_0 \gamma - u_0 \beta}{\alpha^2 \beta} \\
-\frac{\gamma}{\alpha^2 \beta} & \frac{\gamma^2}{\alpha^2 \beta^2} + \frac{1}{\beta^2} & \frac{\gamma (v_0 \gamma - u_0 \beta)}{\alpha^2 \beta^2} - \frac{v_0}{\beta^2} \\
\frac{v_0 \gamma - u_0 \beta}{\alpha^2 \beta} & \frac{\gamma (v_0 \gamma - u_0 \beta)}{\alpha^2 \beta^2} - \frac{v_0}{\beta^2} & \frac{(v_0 \gamma - u_0 \beta)^2}{\alpha^2 \beta^2} + \frac{v_0^2}{\beta^2} + 1
\end{bmatrix}$

- Notice B is symmetric, 6 parameters can be written as a vector b.
- From the two constraints, we have $h_1^T B h_2 = v_{12} b$

\[
\begin{bmatrix}
v_{ij}^T \\
(v_{11} - v_{22})^T
\end{bmatrix} b = 0;
\]

- Stack up n of these for n images and build a $2n \times 6$ system.
- Solve with SVD.
- Intrinsic parameters “fall-out” of the result easily using algebra
Solve for extrinsic parameters

• Using equation (A is known)

\[
\begin{bmatrix}
 h_1 & h_2 & h_3
\end{bmatrix} = \lambda A
\begin{bmatrix}
 r_1 & r_2 & t
\end{bmatrix}
\]

• One obtains

\[
\lambda = 1/\|A^{-1}h_1\| = 1/\|A^{-1}h_2\|
\]

• Issue: due to noise \(r_1\) and \(r_2\) may not be orthogonal

\[
\begin{align*}
 r_1 &= \lambda A^{-1}h_1 \\
 r_2 &= \lambda A^{-1}h_2 \\
 r_3 &= r_1 \times r_2 \\
 t &= \lambda A^{-1}h_3
\end{align*}
\]

(-> board)
Non-linear Refinement

• Closed-form solution minimized algebraic distance.

• Since full-perspective is a non-linear model

 – Can in

 \[
 \sum_{i=1}^{n} \sum_{j=1}^{m} \left\| m_{ij} - \hat{m}(A, R_k, T_k, M_j) \right\|^2
 \]

 – Use maximum likelihood inference for our estimated parameters.
Notes

• Improvement (like for previous method)
 – use non-linear optimization to refine the results
 – compute radial distortion

• Degenerate configurations?
 – Pure translation
 – Parallel planes