Graphs

What is a Graph?

(in computer science, it's not a data plot)

General structure for representing positions with an arbitrary connectivity structure

- Collection of vertices (nodes) and edges (arcs)
-Edge is a pair of vertices - it connects the two vertices, making them adjacent
- A tree is a special type of graph!

Graphs

- A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where
- \boldsymbol{V} is a set of nodes, called vertices
- \boldsymbol{E} is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases

- Entity-relationship diagram

What can we do with graphs?

Find a path from one place to another

Determine connectivity

Find the shortest path from one place to another

Find the "weakest link" (min cut)

- check amount of redundancy in case of failures

Find the amount of flow that will go through them

Edag Types

- Directed edge
- ordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
- first vertex \boldsymbol{u} is the origin
- second vertex v is the destination

- e.g., a flight
- Undirected edge
- unordered pair of vertices (u, v)
- e.g., a flight route

- Directed graph
- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel edges
- h and i are parallel edges
- Self-loop

- j is a self-loop
- Simple Graph
- No self-loops or parallel edges

Terminology (cont.)

- Path
- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path
- $P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a
 path that is not simple

Terminology (cont.)

- Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
- $C_{1}=(V, b, X, g, Y, f, W, c, U, a, d)$ is a simple cycle
- $C_{2}=(U, C, W, e, X, g, Y, f, W, d, V, a, \&)$ is a cycle that is not simple

Terminology (cont.)

- Connected
- A path from every node to every other node
- Digraph is strongly connected if directed path
- Digraph is weakly connected if undirected path
- Complete
- An edge between every node
- Sparse: $|\mathrm{E}|=\mathrm{O}(\mathrm{V})$
- Question: What is the min and max \# of edges in a fully connected simple graph?

Digraphs

- A digraph is a graph whose edges are all directed
- Short for "directed graph"
- Applications
- one-way streets
- flights
- task scheduling

Digraph Properties

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ such that
- Each edge goes in one direction:

- If G is simple, $m \leq n *(n-1)$.
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of inedges and out-edges in time proportional to their size.

Digraph Application

- Scheduling: edge (a,b) means task a must be completed before b can be started

Properties

Property 1
$\Sigma_{v} \operatorname{deg}(v)=2 m$
Proof: each edge is counted twice
Property 2
In an undirected graph with no self-loops and no multiple edges

$$
m \leq n(n-1) / 2
$$

Proof: each vertex has degree at most ($\boldsymbol{n}-1$)

What is the bound for a directed graph?

Notation

\boldsymbol{n}	number of vertices
\boldsymbol{m}	number of edges
$\operatorname{deg}(\boldsymbol{v})$	degree of vertex \boldsymbol{v}

Example

- $n=4$
- $m=6$
- $\operatorname{deg}(\boldsymbol{v})=3$

Concrete graph representations

- Edge List: simple but inefficient in time
- Adjacency List: moderately simple and efficient
- Adjacency Matrix: simple but inefficient in space

Adjacency List

- Similar to Edge List

- Each vertex also has container of references to incident edges

Adjacency List Structure

- Incidence sequence for each vertex
- sequence of references to vertex objects of incident edges
- Augmented edge objects
- references to edges which in turn provide references to adjacent nodes

Adjacency list (linked list) efficiency

- vertices() :
$O(n)$
- edges():
$O(m)$
- endVertices(e):
$O(1)$
- incidentEdges(v):
- areAdjacent($v, w)$:
$O(\operatorname{deg}(v))$
$O(\min (\operatorname{deg}(v), \operatorname{deg}(w))$
- removeEdge(e): $O(\operatorname{deg}(u)+\operatorname{deg}(v))$ (can be $O(1)$ with back links

$$
e=(u, v)
$$

- removeVertex(v): $\mathcal{O}(\operatorname{deg}(v)+\Sigma \operatorname{deg}(u)$) (can be O(deg(v)) with back links)

$$
u \in \operatorname{adj}(v)
$$

Adjacency Matrix

- Extend edge list with $v \times v$ array

- each entry holds null reference or reference to edge connected vertex i to vertex j

Johns Hopkins Department of Computer Science

Adjacency Matrix efficiency

- vertices() :
- edges():
- endVertices(e):
$O(n)$
$O(m)$
$O(1)$
- incidentEdges(v): $\quad O(n)$
- areAdjacent($v, w): \quad O(1)$
- removeEdge(e): $\quad O(1)$
- removeVertex $(v): \quad O\left(n^{2}\right)$
- perhaps $O(n)$ with amortization
(C) 2004 Goodricfo, traffaf9R226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

Asymptotic Performance

\boldsymbol{n} vertices, \boldsymbol{m} edges no parallel edges no self-loops Bounds are "big-Oh"	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{n + m}$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
incidentEdges (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{o})	1	1	\boldsymbol{n}^{2}
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
removeVertex (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

$$
v_{1}, \ldots, v_{n}
$$

of the vertices such that for every edge $\left(v_{i}, v_{j}\right)$, we have $i<j$

- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
Theorem
A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

- Number vertices, so that (u, v) in E implies $u<v$

Agorithn for topologicai sorting

```
TopologicalSort(G)
    counter = 0; q is empty queue
    for all v in G
        if (indegree(v) == 0)
                        q.enqueue(v)
    while q is not empty do
        v = q.dequeue
        v.index = ++counter;
        for each w adjacent to v
            w.indegree-
            if (w.indegree == 0)
                        q.enqueue(w)
    if (counter != G.size())
    throw cycleFoundException
```

- Running time: ???

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Topological Sorting Example

© 2004 Goodrich, Tamassia
Graphs

Shortest Paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

Unweighted SP: BFS Algorithm

Algorithm $\operatorname{BFS}(G, s)$

for all $u \in$ G.vertices() setLabel(u, UNEXPLORED)
$L \leftarrow$ new empty queue
L.insertLast(s)
setLabel(s, VISITED)
setDist(s,0)
$i \leftarrow 1$
while \neg L.isEmpty()
$v=$ L.dequеие()
for all $w \in \operatorname{GoAdjacent}(v)$
if $\operatorname{getLabel}(w)=$ UNEXPLORED
setLabel(w, VISITED)
setDist(w, i)
setPath(w, v)
L.insertLast(w)
end
end
$i \leftarrow i+1$
end
© 2004 Goodrich, Tamassia

Dijkstra’ s Algorithm

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra' s algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex v a label $\boldsymbol{d}(v)$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex \boldsymbol{u} outside the cloud with the smallest distance label, $d(\boldsymbol{u})$
- We update the labels of the vertices adjacent to u

Dijkstra’ s Algorithm

- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert(k,e) returns a locator
- replaceKey(l,k) changes the key of an item
- We store two labels with each vertex:
- Distance (d(v) label)
- locator in priority queue

```
Algorithm DijkstraDistances( \(G, s\) )
    \(Q \leftarrow\) new heap-based priority queue
    for all \(v \in G . v e r t i c e s()\)
        if \(v=s\)
            setDistance(v, 0)
        else
            setDistance \((v, \infty)\)
        \(l \leftarrow\) Q.insert(getDistance \((v), v)\)
        setLocator ( \(v, l\) )
    while \(\neg\) Q.isEmpty ()
        \(u \leftarrow\) Q.removeMin()
        for all \(e \in\) G.incidentEdges( \(u\) )
            \(\{\) relax edge \(\boldsymbol{e}\) \}
            \(z \leftarrow\) G.opposite( \(\mathbf{u}, \mathrm{e}\) )
            \(r \leftarrow\) getDistance \((u)+\) weight \((e)\)
            if \(r<\) getDistance \((z)\)
                setDistance \((z, r)\)
        Q.replaceKey(getLocator (z),r)
```


Example

© 2004 Goodrich, Tamassia

Example (cont.)

Analysis of Dijkstra's Algorithm

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\sum_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

Shortest Paths Tree

- Using the template method pattern, we can extend Dijkstra's algorithm to return a tree of shortest paths from the start vertex to all other vertices
- We store with each vertex a third label:
- parent edge in the shortest path tree
- In the edge relaxation step, we update the parent label

```
Algorithm DijkstraShortestPathsTree(G,s)
for all v\inG.vertices()
    setParent(v, \varnothing)
    for all }e\inG.incidentEdges(u
        {relax edge e }
    z}\leftarrowG.opposite(u,e
    r}\leftarrow\mathrm{ getDistance(u) + weight(e)
    if r<getDistance(z)
        setDistance(z,r)
        setParent(z,e)
        Q.replaceKey(getLocator(z),r)
```


Why Dijkstra's Algorithm Works

- Dijkstra' s algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn' t find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D, F) was relaxed at that time!
- Thus, so long as $d(F) \geq d(D)$, ${ }^{\prime}$ s distance cannot be wrong. That is, there is no wrong vertex.

DAG-based Algorithm

- Works even with negative-weight edges
- Uses topological order
- Doesn't use any fancy data structures
- Is much faster than Dijkstra' s algorithm
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

```
Algorithm DagDistances(G,s)
    for all v\inG.vertices()
        if }v=
            setDistance(v, 0)
        else
            setDistance(v, \infty)
    Perform a topological sort of the vertices
    for }u\leftarrow1\mathrm{ to }n\mathrm{ do {in topological order}
    for each }e\inG.outEdges(u
            {relax edge e }
            z}\leftarrow\mathrm{ G.opposite(u,e)
            r}\leftarrow\operatorname{getDistance(u)+weight(e)
            if r<getDistance(z)
            setDistance(z,r)
```


DAG Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

(C) 2004 Goodrich, Tamassia

Graphs

Why It Doesn' t Work for Negative-Weight Edges

- Dijkstra' s algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

C' s true distance is 1 , but it is already in the cloud with $\mathrm{d}(\mathrm{C})=5$!

Bellman-Ford Algorithm

* Works even with negativeweight edges
- Must assume directed edges (for otherwise we would have negativeweight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O(nm).

```
Algorithm BellmanFord( \(G, s\) )
    for all \(v \in\) G.vertices()
        if \(v=s\)
            setDistance( \(v, 0)\)
        else
            setDistance \((\nu, \infty)\)
    for \(i \leftarrow 1\) to \(n-1\) do
        for each \(e \in\) G.edges()
            \{ relax edge \(\boldsymbol{e}\) \}
            \(u \leftarrow \operatorname{G.origin}(e)\)
            \(z \leftarrow\) G.opposite(u,e)
            \(r \leftarrow \operatorname{getDistance}(u)+\) weight \((e)\)
            if \(r<\operatorname{get}\) Distance \((z)\)
            setDistance \((\boldsymbol{z}, r)\)
```


Bellman-Ford Example

 Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values
© 2004 Goodrich, Tamassia
Graphs
80

Subgraphs

- A subgraph S of a graph G is a graph such that
- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
- T is connected
- T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree

Graph

- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree

Minimum Spanning Trees

Spanning subgraph

- Subgraph of a graph G containing all the vertices of G
Spanning tree
- Spanning subgraph that is itself a (free) tree
Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight
- Applications
- Communications networks
- Transportation networks

Prim-Jarnik's Algorithm

- Similar to Dijkstra' s algorithm (for a connected graph)
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v a label $d(v)=$ the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
- We add to the cloud the vertex u outside the cloud with the smallest distance label
- We update the labels of the vertices adjacent to u

Prim-Jarnik's Algorithm (cont.)

- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert (k, e) returns a locator
- replaceKey(l,k) changes the key of an item
- We store three labels with each vertex:
- Distance
- Parent edge in MST
- Locator in priority queue

```
Algorithm PrimJarnikMST(G)
```

Algorithm PrimJarnikMST(G)
Q}\leftarrow\mathrm{ new heap-based priority queue
Q}\leftarrow\mathrm{ new heap-based priority queue
s}\leftarrowa\mathrm{ vertex of G
s}\leftarrowa\mathrm{ vertex of G
for all v\inG.vertices()
for all v\inG.vertices()
if v=s
if v=s
setDistance(v, 0)
setDistance(v, 0)
else
else
setDistance(v, \infty)
setDistance(v, \infty)
setParent(v, \varnothing)
setParent(v, \varnothing)
l\leftarrowQ.insert(getDistance(v), v)
l\leftarrowQ.insert(getDistance(v), v)
while \negQ.isEmpty()
while \negQ.isEmpty()
u\leftarrowQ.removeMin()
u\leftarrowQ.removeMin()
for all e\inG.incidentEdges(u)
for all e\inG.incidentEdges(u)
z}\leftarrowG.opposite(u,e
z}\leftarrowG.opposite(u,e
r}\leftarrow\mathrm{ weight(e)
r}\leftarrow\mathrm{ weight(e)
if r<getDistance(z)
if r<getDistance(z)
setDistance(z,r)
setDistance(z,r)
setParent(z,e)
setParent(z,e)
Q.replaceKey(z,r)

```
                Q.replaceKey(z,r)
```


Example

© 2004 Goodrich, Tamassia
Graphs

Example (contd.)

Analysis

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance, parent and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex \boldsymbol{w} in the priority queue is modified at most $\operatorname{deg}(\boldsymbol{w})$ times, where each key change takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- Prim-Jarnik' s algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\boldsymbol{\Sigma}_{\boldsymbol{v}} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time is $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

A 2 ${ }^{\text {nd }}$ Idea: Cycle Property

Cycle Property:

- Let \boldsymbol{T} be a minimum spanning tree of a weighted graph \boldsymbol{G}
- Let \boldsymbol{e} be an edge of \boldsymbol{G} that is not in \boldsymbol{T} and \boldsymbol{C} let be the cycle formed by \boldsymbol{e} with T
- For every edge f of C, weight $(f) \leq$ weight (e)
Proof:
- By contradiction
- If weight $(f)>$ weight (e) we can get a spanning tree of smaller weight by replacing e with f

Partition Property

Partition Property:

- Consider a partition of the vertices of G into subsets \boldsymbol{U} and V
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of G containing edge \boldsymbol{e}
Proof:
- Let T be an MST of G

- If T does not contain e, consider the cycle \boldsymbol{C} formed by \boldsymbol{e} with \boldsymbol{T} and let \boldsymbol{f} be an edge of C across the partition
- By the cycle property,

$$
\text { weight }(f) \leq \text { weight }(e)
$$

- Thus, weight $(f)=$ weight (e)
- We obtain another MST by replacing f with e

Kruskal' s Algorithm

- A priority queue stores the edges outside the cloud
- Key: weight
- Element: edge
- At the end of the algorithm
- We are left with one cloud that encompasses the MST
- A tree T which is our MST

Algorithm KruskalMST(G)

for each vertex \boldsymbol{V} in \boldsymbol{G} do
define a Cloud(v) of $\leftarrow\{\boldsymbol{v}\}$
let \boldsymbol{Q} be a priority queue.
Insert all edges into \boldsymbol{Q} using their
weights as the key
$T \leftarrow \varnothing$
while \boldsymbol{T} has fewer than \boldsymbol{n}-1 edges do edge $\boldsymbol{e}=$ T.removeMin()
Let $\boldsymbol{u}, \boldsymbol{v}$ be the endpoints of e
if Cloud $(v) \neq \operatorname{Cloud}(u)$ then
Add edge \boldsymbol{e} to \boldsymbol{T}
Merge Cloud(v) and Cloud(u) return T

Graphs

Data Structure for Kruskal Algorithm

- The algorithm maintains a forest of trees
- An edge is accepted it if connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations:
-find(u): return the set storing u
-union(u, v): replace the sets storing u and v with their union

Representation of a Partition

- Each set is stored in a sequence

- Each element has a reference back to the set
- operation find(u) takes $O(1)$ time, and returns the set of which u is a member.
- in operation union(u,v), we move the elements of the smaller set to the sequence of the larger set and update their references
- the time for operation union (u, v) is $\min \left(n_{u}, n_{v}\right)$, where n_{u} and n_{v} are the sizes of the sets storing u and v
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times

Partition-Based Implementation

- A partition-based version of Kruskal's Algorithm performs cloud merges as unions and tests as finds.

```
Algorithm Kruskal( \(\boldsymbol{G}\) ):
    Input: A weighted graph \(\boldsymbol{G}\).
    Output: An MST \(\boldsymbol{T}\) for \(\boldsymbol{G}\).
Let \(\boldsymbol{T}\) be an initially-empty tree
while \(Q\) is not empty do
    \((\boldsymbol{u}, \boldsymbol{v}) \leftarrow\) Q.removeMinElement()
    if \(\boldsymbol{P}\).find \((\boldsymbol{u})!=\boldsymbol{P}\).find \((\boldsymbol{v})\) then
    Add \((\boldsymbol{u}, \boldsymbol{v})\) to \(\boldsymbol{T}\)
    P.union \((\boldsymbol{u}, \boldsymbol{v})\)
return \(T\)
```

Let \boldsymbol{P} be a partition of the vertices of \boldsymbol{G}, where each vertex forms a separate set.
Let \boldsymbol{Q} be a priority queue storing the edges of \boldsymbol{G}, sorted by their weights

Running time: $\mathrm{O}(\mathrm{m} \log \mathrm{n})$
or O(m log*n) with path compression

Example

(c) 2004 Goodrich, Tamassia

Example

© 2004 Goodrich, Tamassia

Depth-First Search

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- DFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- DFS can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

DFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm \(\operatorname{DFS}(G)\)
    Input graph \(\boldsymbol{G}\)
    Output labeling of the edges of \(\boldsymbol{G}\)
        as discovery edges and
        back edges
    for all \(u \in\) G.vertices()
    setLabel(u, UNEXPLORED)
    for all \(e \in\) G.edges()
    setLabel(e, UNEXPLORED)
    for all \(v \in\) G.vertices()
    if \(\operatorname{getLabel}(\nu)=\) UNEXPLORED
        DFS(G, \(v)\)
```

```
Algorithm \(\operatorname{DFS}(G, v)\)
    Input graph \(\boldsymbol{G}\) and a start vertex \(\boldsymbol{v}\) of \(\boldsymbol{G}\)
    Output labeling of the edges of \(\boldsymbol{G}\)
        in the connected component of \(\boldsymbol{v}\)
        as discovery edges and back edges
    setLabel(v, VISITED)
    for all \(e \in\) G.incidentEdges( \(\nu\) )
        if \(\operatorname{getLabel}(e)=\) UNEXPLORED
            \(w \leftarrow\) opposite( \(v, e\) )
            if \(\operatorname{getLabel}(w)=\) UNEXPLORED
                setLabel(e, DISCOVERY)
                DFS(G, w)
            else
                setLabel(e, BACK)
```


Example

(A) unexplored vertex
 (A) visited vertex
 - unexplored edge
 \longrightarrow discovery edge
 - - - back edge

© 2004 Goodrich, Tamassia
Graphs

Example (cont.)

Graphs

Properties of DFS

Property 1

$\operatorname{DFS}(\boldsymbol{G}, v)$ visits all the vertices and edges in the connected component of v
Property 2
The discovery edges labeled by $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ form a spanning tree of the connected
 component of v

DFS Analysis

- Each edge or vertex initialized: $O(n+m)$
- Each edge or vertex marked once $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Each edge visited twice (once for each vertex): O(m)
- Each vertex v visited ind(v) times: O(m)
- Assumes opposite is constant time
- Method incidentEdges is called once for each vertex
- DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\boldsymbol{\Sigma}_{\boldsymbol{v}} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{u})$ with \boldsymbol{u} as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS( \(G, v, z\) )
    setLabel(v, VISITED)
    S.push(v)
    if \(v=z\)
        return S.elements()
    for all \(e \in\) G.incidentEdges( \(\nu\) )
        if \(\operatorname{getLabel}(e)=\) UNEXPLORED
            \(w \leftarrow\) opposite \((\nu, e)\)
            if \(\operatorname{getLabel}(w)=\) UNEXPLORED
                setLabel(e, DISCOVERY)
                S.push(e)
                \(\mathrm{x}=\operatorname{path} \mathbf{D F S}(G, w, z)\)
                if (not \(x=\) null)
                    return \(\boldsymbol{x}\)
                S.pop(e)
            else
                setLabel(e, BACK)
    S.pop(v)
    return null
```


Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, \boldsymbol{w}) is encountered, we return the cycle as the portion of the stack from the top to vertex \boldsymbol{w}

```
Algorithm cycleDFS \((G, v, z)\)
    setLabel(v, VISITED)
    S.push(v)
    for all \(e \in\) G.incidentEdges( \(v\) )
        if \(\operatorname{getLabel}(e)=\) UNEXPLORED
            \(w \leftarrow\) opposite \((v, e)\)
            S.push(e)
            if \(\operatorname{getLabel}(w)=\) UNEXPLORED
                setLabel(e, DISCOVERY)
                \(x=\operatorname{pathDFS}(G, w, z)\)
                if ( \(x=\) null )
                            S.pop(e)
                        else
                            return x ;
            else
            \(T \leftarrow\) new empty stack
            repeat
            \(o \leftarrow S . p o p()\)
                        T.push(o)
            until \(\boldsymbol{o}=\boldsymbol{w}\)
            return T.elements()
    S.pop(v)
    return null
```


Finding Articulation Points

- An articulation point is a vertex such that removing the vertex would disconnect the graph
-How can we find such points?

DFS for articulation pts

- Key idea-if I do a DFS, v cannot be an articulation point if it has a child that has a back edge to an ancestor (i.e. there is a cycle)
- Do a DFS to keep track of:
- Order of visitation
- lowest \# back edge in descendents
* Finally, check if some child' s "low" is at least as large as v's "num"
- Special case for root; if it has 2 (or more) children, it is automatically an articulation pt

Algorithm

- findArt(v)
- v.visited = true
- v.low=v.num = counter++ // low=num at start
- foreach w adjacent to $\mathrm{v},(\mathrm{v}, \mathrm{w})$ not visited
- if (!w.visited)
- mark $e=(v, w)$ visited
- findArt(w)
- if (w.low >= v.num) // no cycle back to anc. in decendants
- output v as articulation pt
- v.low=min(v.low,w.low); // record if cycle dec. to anc.
- else
- v.low = min(v.low, w.num) // back edge

Directed DFS

- We can specialize DFS and to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
- discovery edges
- back edges
- forward edges
- cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s

Reachability

- DFS tree rooted at v: vertices reachable from v via directed paths

© 2004 Goodrich, Tamassia
Graphs

Strong Connectivity

- Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex v in G.
- Perform a DFS from vin G.
- If there' s a w not visited, print "no".
- Let G' be G with edges reversed.
- Perform a DFS from v in G'.
- If there' s a w not visited, print "no".

- Else, print "yes".
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

Topological Sorting Algorithm using DFS

- Simulate the algorithm by using depth-first search

Algorithm topologicalDFS(G) Input dag G
Output topological ordering of \boldsymbol{G} $n \leftarrow G$.numVertices()
for all $u \in$ G.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in$ G.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED topologicalDFS(G, v)

- $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time.

Algorithm topologicalDFS(G, v)
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output labeling of the vertices of \boldsymbol{G}
in the connected component of v
setLabel(v, VISITED)
for all $e \in G$.incidentEdges(v)
if $\operatorname{getLabel}(e)=$ UNEXPLORED $w \leftarrow$ opposite($(, e)$
if $\operatorname{getLabel}(w)=$ UNEXPLORED setLabel(e, DISCOVERY) topologicalDFS(G,w) else
$\{e$ is a forward or cross edge\}
Label \boldsymbol{v} with topological number \boldsymbol{n}
$n \leftarrow n-1$

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time using DFS, but is more complicated (similar to biconnectivity).

$\{\mathbf{a}, \mathbf{c}, \mathbf{g}\}$ $\{\mathbf{f}, \mathbf{d}, \mathbf{e}, \mathbf{b}\}$

Network Flow Problems

- What is the max flow from a source to a sink
- Dual problem is min cut (lowest cost to disconnect source from sink graph)
- Basic idea is to find paths from source to sink, compute flow, and keep track of residual graph

A possible algorithm sketch:
$F G=R G=G$
Set weights in FG to zero
while $P=\operatorname{NonZeroPath(RG,~s,~t)~}$
FG = Addpath(FG, P, flow(P))
RG $=\mathrm{G}-\mathrm{FG}$
end

Flow Path Finding

- We can specialize the DFS algorithm to find a nonzero flow path between two given vertices u and z using the template method pattern

Network Flow Problems

- What is the max flow from a source to a sink
- Dual problem is min cut (lowest cost to disconnect source from sink)
- Basic idea is to find paths from source to sink, compute flow, and keep track of residual graph

A possible algorithm sketch:
$F G=R G=G$
Set weights in FG to zero
while P = NonZeroPath(RG, s, t)
FG = Addpath(FG, P, flow(P))
RG $=\mathrm{G}-\mathrm{FG}$
end

Where is the problem here?

Network Flow Problems

- What is the max flow from a source to a sink
- Dual problem is min cut (lowest cost to disconnect source and sink)
- Basic idea is to find paths from source to sink, compute flow, and keep track of residual graph

A possible algorithm sketch:
$F G=R G=G$
Set weights in FG to zero
while $P=\operatorname{NonZeroPath(RG,~s,~t)~}$
FG = Addpath(FG, P, flow(P))
$R G=G-F G$
Augment(RG, P, G)
end

Good algorithms are

$$
\mathrm{O}\left(|\mathrm{E}||\mathrm{V}|+|\mathrm{V}|^{2+e}\right)
$$

A Few Words on Complexity

- Computational Problems are curiously brittle
- Euler Tour - visit all edges once = polynomial time
- Hamiltonian Cycle visit all vertices once = very hard (exponential)

Complexity Theory

- Complexity theory studies the difficulty of computation problems
- The key is a complexity heirarchy of problems

$\mathrm{P}=\mathrm{NP}$ is THE open question

- Consider only decision problems
- P - polynomial time
- NP -
nondeterministic polynomial time
- NP complete hardest problems in NP

The recipe

- Establishing NP: Cook 1971 - any NP problem can be reduced to SAT
- Proving NP-complete
- Show is in NP by exhibiting an algorithm
- Show complete by reducing some known problem to it

Cook's theorem

The recipe

- Establishing NP: Cook 1971 - any NP problem can be reduced to SAT
- Proving NP-complete
- Show is in NP by exhibiting an algorithm
- Show complete by polynomial reduction of some known problem to it

Reduction

The recipe

- Establishing NP: Cook 1971 - any NP problem can be reduced to SAT
- Proving NP-complete
- Show is in NP by exhibiting an algorithm
- Show complete by reducing some known problem to it
http://en.wikipedia.org/wiki/List_of_NP-complete_problems
© 2004 Goodrich, Tamassia

Even Worse

- The Halting Problem
- Will a given program halt on a given input?
- halt(prog)=> yes/no
- Loop(P)
- If (halt(P(P))) inf loop
- Else halt
- What is Loop(Loop)?
- If loop(loop) halts, then loop(loop)=inf loop
- If loop(loop) is inf loop, then loop(loop) halts

Summary

- Graphs - directed/undirected weighted
- Data structures
- Traversals (BFS, DFS)
- what you can compute with them
- Shortest path
- Minimum Spanning Trees

