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What is a Graph? 

(in computer science, it’s not a data plot) 

General structure for representing positions 
with an arbitrary connectivity structure 

• Collection of vertices (nodes) and edges (arcs) 

— Edge is a pair of vertices - it connects the 
two vertices, making them adjacent 

• A tree is a special type of graph! 
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Graphs 
" A graph is a pair (V, E), where 

n  V is a set of nodes, called vertices 
n  E is a collection of pairs of vertices, called edges 
n  Vertices and edges are positions and store elements 

" Example: 
n  A vertex represents an airport and stores the three-letter airport code 
n  An edge represents a flight route between two airports and stores the 

mileage of the route 
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Applications 
" Electronic circuits 

n  Printed circuit board 
n  Integrated circuit 

" Transportation networks 
n  Highway network 
n  Flight network 

" Computer networks 
n  Local area network 
n  Internet 
n  Web 

" Databases 
n  Entity-relationship diagram 
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What can we do with graphs? 

Find a path from one place to another 

Determine connectivity 

Find the shortest path from one place to 
another 

Find the “weakest link” (min cut) 
•  check amount of redundancy in case of failures 

Find the amount of flow that will go through 
them 
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Edge Types 
" Directed edge 

n  ordered pair of vertices (u,v) 
n  first vertex u is the origin 
n  second vertex v is the destination 
n  e.g., a flight 

" Undirected edge 
n  unordered pair of vertices (u,v) 
n  e.g., a flight route 

" Directed graph 
n  all the edges are directed 
n  e.g., route network 

" Undirected graph 
n  all the edges are undirected 
n  e.g., flight network 
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Terminology 
" End vertices (or endpoints) of 

an edge 
n  U and V are the endpoints of a 

" Edges incident on a vertex 
n  a, d, and b are incident on V 

" Adjacent vertices 
n  U and V are adjacent 

" Degree of a vertex 
n  X has degree 5  

" Parallel edges 
n  h and i are parallel edges 

" Self-loop 
n  j is a self-loop 

" Simple Graph 
n  No self-loops or parallel edges 
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P1 

Terminology (cont.) 
" Path 

n  sequence of alternating 
vertices and edges  

n  begins with a vertex 
n  ends with a vertex 
n  each edge is preceded and 

followed by its endpoints 
" Simple path 

n  path such that all its vertices 
and edges are distinct 

" Examples 
n  P1=(V,b,X,h,Z) is a simple path 
n  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple 

X U 

V 

W 

Z 

Y 

a 

c 

b 

e 

d 

f 

g 

h P2 



© 2004 Goodrich, Tamassia Graphs 9 

Terminology (cont.) 
" Cycle 

n  circular sequence of alternating 
vertices and edges  

n  each edge is preceded and 
followed by its endpoints 

" Simple cycle 
n  cycle such that all its vertices 

and edges are distinct 

" Examples 
n  C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle 
n  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) 

is a cycle that is not simple 
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Terminology (cont.) 
" Connected 

n  A path from every node to 
every other node 

n  Digraph is strongly connected if 
directed path 

n  Digraph is weakly connected if 
undirected path 

" Complete 
n  An edge between every node 

" Sparse: |E| = O(V) 

" Question: What is the min 
and max # of edges in a fully 
connected simple graph? 
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Digraphs 

" A digraph is a graph 
whose edges are all 
directed 
n  Short for “directed graph” 

" Applications 
n  one-way streets 
n  flights 
n  task scheduling 
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Digraph Properties 

" A graph G=(V,E) such that 
n  Each edge goes in one direction: 

w  Edge (a,b) goes from a to b, but not b to a. 

" If G is simple, m < n*(n-1). 
" If we keep in-edges and out-edges in separate 

adjacency lists, we can perform listing of in-
edges and out-edges in time proportional to 
their size. 
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Digraph Application 
" Scheduling: edge (a,b) means task a must be 

completed before b can be started 

The good life 

ics141 ics131 ics121 

ics53 ics52 ics51 

ics23 ics22 ics21 

ics161 

ics151 

ics171 



© 2004 Goodrich, Tamassia Graphs 14 

Properties 
Notation 

   n  number of vertices 
   m  number of edges 
deg(v)  degree of vertex v 

Property 1 
Σv deg(v) = 2m 
Proof: each edge is 

counted twice 
Property 2 

In an undirected graph 
with no self-loops and 
no multiple edges 

   m ≤ n (n - 1)/2 

Proof: each vertex has 
degree at most (n - 1) 

 

What is the bound for a 
directed graph? 

Example 
n  n = 4 
n  m = 6 
n  deg(v) = 3 
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Concrete graph 
representations 

" Edge List: simple but inefficient in time 
" Adjacency List: moderately simple and 

efficient 
" Adjacency Matrix: simple but inefficient in 

space 
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Adjacency List 

" Similar to Edge List 
" Each vertex also has container of 

references to incident edges 
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Adjacency List Structure 
" Incidence sequence 

for each vertex 
n  sequence of 

references to 
vertex objects of 
incident edges 

" Augmented edge 
objects 
n  references to 

edges which in 
turn provide 
references to 
adjacent nodes 
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Adjacency list (linked list) 
efficiency 
" vertices( ) :   O(n) 
" edges( ):    O(m) 
" endVertices(e):   O(1) 
" incidentEdges(v):  O(deg(v)) 
" areAdjacent(v, w):  O(min(deg(v), deg(w)) 
" removeEdge(e):  O(deg(u)+deg(v)) (can be O(1) with 

back links 
"           e = (u,v) 

" removeVertex(v): O(deg(v) + Σ deg(u) ) (can be 
O(deg(v)) with back links) 

"                  u ∈ adj(v) 
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Adjacency Matrix 

" Extend edge list with v x v array 
n  each entry holds null reference or reference 

to edge connected vertex i to vertex j 

v u w 

v ∅ a ∅ 

u a ∅ b 

w ∅ b ∅ 
u 

v 

w 
a b 
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Adjacency Matrix efficiency 
" vertices( ) :   O(n) 
" edges( ):    O(m) 
" endVertices(e):   O(1) 
" incidentEdges(v):  O(n) 
" areAdjacent(v, w):  O(1) 
" removeEdge(e):  O(1) 
" removeVertex(v):  O(n2) 

n  perhaps O(n) with amortization 
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Asymptotic Performance 
"  n vertices, m edges 
"  no parallel edges 
"  no self-loops 
"  Bounds are “big-Oh” 

Edge 
List 

Adjacency 
List 

Adjacency 
Matrix 

Space n + m n + m n2 

incidentEdges(v) m deg(v) n 
areAdjacent (v, w) m min(deg(v), deg(w)) 1 
insertVertex(o) 1 1 n2 

insertEdge(v, w, o) 1 1 1 
removeVertex(v) m deg(v) n2 
removeEdge(e) 1 1 1 
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DAGs and Topological Ordering 
" A directed acyclic graph (DAG) is a 

digraph that has no directed cycles 
" A topological ordering of a digraph is a 

numbering  
 v1 , …, vn  

 of the vertices such that for every edge 
(vi , vj), we have i < j 

" Example: in a task scheduling digraph, 
a topological ordering a task sequence 
that satisfies the precedence 
constraints 

Theorem 
 A digraph admits a topological ordering 
if and only if it is a DAG 
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write c.s. program	


play	


Topological Sorting 
" Number vertices, so that (u,v) in E implies u < v 

wake up	


eat	


nap	


study computer sci.	


more c.s.	


work out	

 	


sleep	

dream about graphs	


A typical student day	
1	


2	
 3	


4	
 5	


6	


7	


8	


9	


10	

11	


make cookies 
for professors	
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" Running time: ??? 

Algorithm for Topological Sorting 
TopologicalSort(G) 
       counter = 0; q is empty queue 
       for all v in G 

 if (indegree(v) == 0) 
  q.enqueue(v) 

      while q is not empty do 
 v = q.dequeue 
 v.index = ++counter; 
 for each w adjacent to v 
  w.indegree— 
  if (w.indegree == 0) 
   q.enqueue(w) 
  

     if (counter != G.size()) 
 throw cycleFoundException 
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Topological Sorting Example  



© 2004 Goodrich, Tamassia Graphs 54 

Topological Sorting Example  

9 
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Shortest Paths 
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Weighted Graphs 
" In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge 
" Edge weights may represent, distances, costs, etc. 
" Example: 

n  In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports 
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Shortest Paths 
" Given a weighted graph and two vertices u and v, we want to 

find a path of minimum total weight between u and v. 
n  Length of a path is the sum of the weights of its edges. 

" Example: 
n  Shortest path between Providence and Honolulu 

" Applications 
n  Internet packet routing  
n  Flight reservations 
n  Driving directions 
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Shortest Path Properties 
Property 1: 

 A subpath of a shortest path is itself a shortest path 
Property 2: 

 There is a tree of shortest paths from a start vertex to all the other vertices 
Example: 

 Tree of shortest paths from Providence 
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Unweighted SP: BFS Algorithm 
Algorithm BFS(G, s) 

 for all  u ∈ G.vertices()  setLabel(u, UNEXPLORED) 
 L ← new empty queue 
L.insertLast(s) 
setLabel(s, VISITED) 
setDist(s,0) 
i ← 1  
while  ¬L.isEmpty() 

   v = L.dequeue() 
  for all  w ∈ G.Adjacent(v)  
    if  getLabel(w) = UNEXPLORED 
     setLabel(w, VISITED) 
     setDist(w, i) 
     setPath(w, v) 
     L.insertLast(w) 
    end 
  end 
  i ← i +1 

end 
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Dijkstra’s Algorithm 
" The distance of a vertex v 

from a vertex s is the 
length of a shortest path 
between s and v 

" Dijkstra’s algorithm 
computes the distances of 
all the vertices from a given 
start vertex s 

" Assumptions: 
n  the graph is connected 
n  the edges are undirected 
n  the edge weights are 

nonnegative 

" We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices 

" We store with each vertex v a label 
d(v) representing the distance of v 
from s in the subgraph consisting of 
the cloud and its adjacent vertices 

" At each step 
n  We add to the cloud the vertex u 

outside the cloud with the smallest 
distance label, d(u) 

n  We update the labels of the vertices 
adjacent to u  
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Dijkstra’s Algorithm 
" A priority queue stores 

the vertices outside the 
cloud 
n  Key: distance 
n  Element: vertex 

" Locator-based methods 
n  insert(k,e) returns a 

locator  
n  replaceKey(l,k) changes 

the key of an item 
" We store two labels 

with each vertex: 
n  Distance (d(v) label) 
n  locator in priority 

queue 

Algorithm DijkstraDistances(G, s) 
 Q ← new heap-based priority queue 
 for all  v ∈ G.vertices() 
  if  v = s 
   setDistance(v, 0) 
  else  
   setDistance(v, ∞) 
  l ← Q.insert(getDistance(v), v) 

 setLocator(v,l) 
while  ¬Q.isEmpty() 

 u ← Q.removeMin()  
 for all  e ∈ G.incidentEdges(u) 
  { relax edge e } 
  z ← G.opposite(u,e) 
  r ← getDistance(u) + weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 

    Q.replaceKey(getLocator(z),r) 
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Example 
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Example (cont.) 
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Analysis of Dijkstra’s Algorithm 
" Graph operations 

n  Method incidentEdges is called once for each vertex 
" Label operations 

n  We set/get the distance and locator labels of vertex z O(deg(z)) times 
n  Setting/getting a label takes O(1) time 

" Priority queue operations 
n  Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time 
n  The key of a vertex in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time  
" Dijkstra’s algorithm runs in O((n + m) log n) time provided the 

graph is represented by the adjacency list structure 

n  Recall that Σv deg(v) = 2m 
" The running time can also be expressed as O(m log n) since the 

graph is connected 
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Shortest Paths Tree 
" Using the template 

method pattern, we 
can extend Dijkstra’s 
algorithm to return a 
tree of shortest paths 
from the start vertex 
to all other vertices 

" We store with each 
vertex a third label: 
n  parent edge in the 

shortest path tree 
" In the edge relaxation 

step, we update the 
parent label 

Algorithm DijkstraShortestPathsTree(G, s) 
 

 … 
 

 for all  v ∈ G.vertices() 
 … 

  setParent(v, ∅) 
 … 

 
 for all  e ∈ G.incidentEdges(u) 
  { relax edge e } 
  z ← G.opposite(u,e) 
  r ← getDistance(u) + weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 
   setParent(z,e)      
   Q.replaceKey(getLocator(z),r) 
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Why Dijkstra’s Algorithm Works 
" Dijkstra’s algorithm is based on the greedy method. It 

adds vertices by increasing distance. 
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n  Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed. 

n  When the previous node, D, on the 
true shortest path was considered, 
its distance was correct. 

n  But the edge (D,F) was relaxed at 
that time! 

n  Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex. 
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DAG-based Algorithm  

" Works even with 
negative-weight edges 

" Uses topological order 
" Doesn’t use any fancy 

data structures 
" Is much faster than 

Dijkstra’s algorithm 
" Running time: O(n+m). 

Algorithm DagDistances(G, s) 
 for all  v ∈ G.vertices() 
  if  v = s 
   setDistance(v, 0) 
  else  
   setDistance(v, ∞) 
 Perform a topological sort of the vertices 
 for u ← 1 to n do    {in topological order} 

 for each  e ∈ G.outEdges(u) 
  { relax edge e } 
  z ← G.opposite(u,e) 
  r ← getDistance(u) + weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 
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DAG Example 
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Why It Doesn’t Work for 
Negative-Weight Edges 

n  If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud.  
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" Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance. 

C’s true distance is 1, but 
it is already in the cloud 

with d(C)=5! 
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Bellman-Ford Algorithm  
" Works even with negative-

weight edges 
" Must assume directed 

edges (for otherwise we 
would have negative-
weight cycles) 

" Iteration i finds all shortest 
paths that use i edges. 

" Running time: O(nm). 

Algorithm BellmanFord(G, s) 
 for all  v ∈ G.vertices() 
  if  v = s 
   setDistance(v, 0) 
  else  
   setDistance(v, ∞) 
 for i ← 1 to n-1 do 

 for each  e ∈ G.edges() 
  { relax edge e } 
  u ← G.origin(e) 
  z ← G.opposite(u,e) 
  r ← getDistance(u) + weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 
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Bellman-Ford Example 
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Subgraphs 
" A subgraph S of a graph G is a 

graph such that  
n  The vertices of S are a subset 

of the vertices of G 
n  The edges of S are a subset of 

the edges of G 

" A spanning subgraph of G is a 
subgraph that contains all the 
vertices of G 

Subgraph 

Spanning subgraph 
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Connectivity 

" A graph is 
connected if there is 
a path between 
every pair of 
vertices 

" A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G 

Connected graph 

Non connected graph with two 
connected components 
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Trees and Forests 
" A (free) tree is an 

undirected graph T such 
that 
n  T is connected 
n  T has no cycles 
This definition of tree is 

different from the one of 
a rooted tree 

" A forest is an undirected 
graph without cycles 

" The connected 
components of a forest 
are trees 

Tree 

Forest 
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Spanning Trees and Forests 
" A spanning tree of a 

connected graph is a 
spanning subgraph that is 
a tree 

" A spanning tree is not 
unique unless the graph is 
a tree 

" Spanning trees have 
applications to the design 
of communication 
networks 

" A spanning forest of a 
graph is a spanning 
subgraph that is a forest 

Graph 

Spanning tree 
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Minimum Spanning Trees 
Spanning subgraph 

n  Subgraph of a graph G containing 
all the vertices of G 

Spanning tree 
n  Spanning subgraph that is itself a 

(free) tree 

Minimum spanning tree (MST) 
n  Spanning tree of a weighted graph 

with minimum total edge weight 

" Applications 
n  Communications networks 
n  Transportation networks 
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Prim-Jarnik’s Algorithm 
" Similar to Dijkstra’s algorithm (for a connected graph) 
" We pick an arbitrary vertex s and we grow the MST as a 

cloud of vertices, starting from s 
" We store with each vertex v a label d(v) = the smallest 

weight of an edge connecting v to a vertex in the cloud  
"  At each step: 

n  We add to the cloud the 
vertex u outside the cloud 
with the smallest distance 
label 
n  We update the labels of the 
vertices adjacent to u  
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Prim-Jarnik’s Algorithm 
(cont.) 
" A priority queue stores 

the vertices outside the 
cloud 
n  Key: distance 
n  Element: vertex 

" Locator-based methods 
n  insert(k,e) returns a 

locator  
n  replaceKey(l,k) changes 

the key of an item 
" We store three labels 

with each vertex: 
n  Distance 
n  Parent edge in MST 
n  Locator in priority queue 

Algorithm PrimJarnikMST(G) 
 Q ← new heap-based priority queue 
 s ← a vertex of G 
 for all  v ∈ G.vertices() 
  if  v = s 
   setDistance(v, 0) 
  else  
   setDistance(v, ∞) 
  setParent(v, ∅) 
  l ← Q.insert(getDistance(v), v) 
while  ¬Q.isEmpty() 

 u ← Q.removeMin()  
 for all  e ∈ G.incidentEdges(u) 
  z ← G.opposite(u,e) 
  r ← weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 
   setParent(z,e) 

    Q.replaceKey(z,r) 
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Example 
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Example (contd.) 
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Analysis 
" Graph operations 

n  Method incidentEdges is called once for each vertex 
" Label operations 

n  We set/get the distance, parent and locator labels of vertex z O(deg(z)) 
times 

n  Setting/getting a label takes O(1) time 
" Priority queue operations 

n  Each vertex is inserted once into and removed once from the priority 
queue, where each insertion or removal takes O(log n) time 

n  The key of a vertex w in the priority queue is modified at most deg(w) 
times, where each key change takes O(log n) time  

" Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure 

n  Recall that Σv deg(v) = 2m 
" The running time is O(m log n) since the graph is connected 
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A 2nd Idea: Cycle Property 
Cycle Property: 

n  Let T be a minimum 
spanning tree of a 
weighted graph G 

n  Let e be an edge of G 
that is not in T and C let 
be the cycle formed by e 
with T 

n  For every edge f of C, 
weight(f) ≤ weight(e)  

Proof: 
n  By contradiction 
n  If weight(f) > weight(e) we 

can get a spanning tree of 
smaller weight by 
replacing e with f 

8 
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6 

7 

7 

9 

8 
e 

C 
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4 

2 3 
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7 

7 

9 

8 

C 

e 

f 

Replacing f with e yields 
a better spanning tree  
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U V

Partition Property 
Partition Property: 

n  Consider a partition of the vertices of 
G into subsets U and V 

n  Let e be an edge of minimum weight 
across the partition 

n  There is a minimum spanning tree of 
G containing edge e 

Proof: 
n  Let T be an MST of G 
n  If T does not contain e, consider the 

cycle C formed by e with T and let  f 
be an edge of C across the partition 

n  By the cycle property, 
  weight(f) ≤ weight(e)  

n  Thus, weight(f) = weight(e) 
n  We obtain another MST by replacing 

f  with e 
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Replacing f with e yields 
another MST 

U V
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Kruskal’s Algorithm 
" A priority queue stores 

the edges outside the 
cloud 
n  Key: weight 
n  Element: edge 

" At the end of the 
algorithm 
n  We are left with one 

cloud that encompasses 
the MST 

n  A tree T which is our 
MST 

Algorithm KruskalMST(G) 
 for each vertex V in G do 
  define a Cloud(v) of ß {v} 
 let Q be a priority queue. 
 Insert all edges into Q using their 
 weights as the key 
 T ß ∅  
 while T has fewer than n-1 edges do
    edge e = T.removeMin() 
  Let u, v be the endpoints of e 
  if Cloud(v) ≠ Cloud(u) then 
   Add edge e to T 
   Merge Cloud(v) and Cloud(u) 
 return T 
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Data Structure for Kruskal 
Algorithm  
" The algorithm maintains a forest of trees 
" An edge is accepted it if connects distinct trees 
" We need a data structure that maintains a partition, 

i.e., a collection of disjoint sets, with the operations: 
    -find(u): return the set storing u 
    -union(u,v): replace the sets storing u and v with 

their union 
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Representation of a 
Partition 
" Each set is stored in a sequence 
" Each element has a reference back to the set 

n  operation find(u) takes O(1) time, and returns the set of which 
u is a member. 

n  in operation union(u,v), we move the elements of the smaller 
set to the sequence of the larger set and update their 
references 

n  the time for operation union(u,v) is min(nu,nv), where nu and nv 
are the sizes of the sets storing u and v 

" Whenever an element is processed, it goes into a set of size 
at least double, hence each element is processed at most log 
n times 
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Partition-Based 
Implementation 
" A partition-based version of Kruskal’s Algorithm 

performs cloud merges as unions and tests as finds. 
Algorithm Kruskal(G): 
   Input: A weighted graph G. 
   Output: An MST T for G. 
Let P be a partition of the vertices of G, where each vertex forms a separate set. 
Let Q be a priority queue storing the edges of G, sorted by their weights 
Let T be an initially-empty tree 
while Q is not empty do 
    (u,v) ← Q.removeMinElement() 
    if P.find(u) != P.find(v) then 

 Add (u,v) to T 
 P.union(u,v) 

return T 

Running time: O(m log n) 

or O(m log*n) with path 
compression 
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Depth-First Search 
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Connectivity 

" A graph is 
connected if there is 
a path between 
every pair of 
vertices 

" A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G 

Connected graph 

Non connected graph with two 
connected components 
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Depth-First Search 
" Depth-first search (DFS) 

is a general technique 
for traversing a graph 

" A DFS traversal of a 
graph G  
n  Visits all the vertices and 

edges of G 
n  Determines whether G is 

connected 
n  Computes the connected 

components of G 
n  Computes a spanning 

forest of G 

" DFS on a graph with n 
vertices and m edges 
takes O(n + m ) time 

" DFS can be further 
extended to solve other 
graph problems 
n  Find and report a path 

between two given 
vertices 

n  Find a cycle in the graph 

" Depth-first search is to 
graphs what Euler tour 
is to binary trees 
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DFS Algorithm 
" The algorithm uses a mechanism for 

setting and getting “labels” of 
vertices and edges Algorithm DFS(G, v) 

 Input graph G and a start vertex v of G  
 Output labeling of the edges of G  
  in the connected component of v  
  as discovery edges and back edges 
 setLabel(v, VISITED) 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
   setLabel(e, DISCOVERY) 
   DFS(G, w) 
  else 
   setLabel(e, BACK) 

Algorithm DFS(G) 
 Input graph G 
 Output labeling of the edges of G  
  as discovery edges and 
  back edges 
for all  u ∈ G.vertices() 
 setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
 setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
 if  getLabel(v) = UNEXPLORED 
  DFS(G, v) 
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Example 
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Example (cont.) 
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Properties of DFS 
Property 1 

 DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v 

Property 2 
 The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v 

D B 

A 

C 

E 
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DFS Analysis 

" Each edge or vertex initialized: O(n+m) 
" Each edge or vertex marked once O(n+m) 
" Each edge visited twice (once for each vertex): O(m) 
" Each vertex v visited ind(v) times: O(m) 
" Assumes opposite is constant time 
" Method incidentEdges is called once for each vertex 
" DFS runs in O(n + m) time provided the graph is 

represented by the adjacency list structure 
n  Recall that Σv deg(v) = 2m 

Graphs 111 
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Path Finding 
" We can specialize the DFS 

algorithm to find a path 
between two given 
vertices u and z using the 
template method pattern 

" We call DFS(G, u) with u 
as the start vertex 

" We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex 

" As soon as destination 
vertex z is encountered, 
we return the path as the 
contents of the stack  

Algorithm pathDFS(G, v, z) 
 setLabel(v, VISITED) 
 S.push(v) 
if  v = z 

 return S.elements() 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
    setLabel(e, DISCOVERY) 
   S.push(e) 
   x = pathDFS(G, w, z) 
   if (not x=null) 
    return x 
   S.pop(e) 
  else 
    setLabel(e, BACK) 

S.pop(v) 
return null  
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Cycle Finding 
" We can specialize the DFS 

algorithm to find a simple 
cycle using the template 
method pattern 

" We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex 

" As soon as a back edge (v, 
w) is encountered, we 
return the cycle as the 
portion of the stack from 
the top to vertex w 

Algorithm cycleDFS(G, v, z) 
 setLabel(v, VISITED) 
 S.push(v) 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  S.push(e) 
  if getLabel(w) = UNEXPLORED 
    setLabel(e, DISCOVERY) 
   x = pathDFS(G, w, z) 
   if (x=null) 
    S.pop(e) 
   else 
    return x; 
  else 
   T ← new empty stack 
   repeat 
    o ← S.pop() 
    T.push(o) 
   until o = w 
   return T.elements() 

S.pop(v) 
return null 
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Finding Articulation Points 

" An articulation point is a vertex such 
that removing the vertex would 
disconnect the graph 

" How can we find such points? 

Graphs 114 
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DFS for articulation pts 
" Key idea—if I do a DFS, v cannot be an articulation 

point if it has a child that has a back edge to an 
ancestor (i.e. there is a cycle) 

" Do a DFS to keep track of: 
n  Order of visitation 
n  lowest # back edge in descendents 

" Finally, check if  some child’s “low” is at least as 
large as v’s “num” 

" Special case for root; if it has 2 (or more) children, it 
is automatically an articulation pt 

Graphs 115 
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Algorithm 
" findArt(v) 

n  v.visited = true 
n  v.low=v.num = counter++ // low=num at start 
n  foreach w adjacent to v, (v,w) not visited 

w  if (!w.visited) 
n  mark e= (v,w) visited 
n  findArt(w) 
n  if (w.low >= v.num) // no cycle back to anc. in decendants 

n  output v as articulation pt 
n  v.low=min(v.low,w.low); // record if cycle dec. to anc. 

w else 
n  v.low = min(v.low, w.num) // back edge 

Graphs 116 
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Directed DFS 
" We can specialize DFS and to 

digraphs by traversing edges 
only along their direction 

" In the directed DFS 
algorithm, we have four types 
of edges 
n  discovery edges 
n  back edges 
n  forward edges 
n  cross edges 

" A directed DFS starting at a 
vertex s determines the 
vertices reachable from s A 

C 

E 

B 

D 
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Reachability 

" DFS tree rooted at v: vertices reachable 
from v via directed paths 
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Strong Connectivity 
" Each vertex can reach all other vertices 
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b 

e 
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" Pick a vertex v in G. 
" Perform a DFS from v in G. 

n  If there’s a w not visited, print “no”. 

" Let G’ be G with edges reversed. 
" Perform a DFS from v in G’. 

n  If there’s a w not visited, print “no”. 
n  Else, print “yes”. 

" Running time: O(n+m). 

Strong Connectivity 
Algorithm 

G: 

G’: 
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Topological Sorting 
Algorithm using DFS 
" Simulate the algorithm by using 

depth-first search 

" O(n+m) time. 

Algorithm topologicalDFS(G, v) 
 Input graph G and a start vertex v of G  
 Output labeling of the vertices of G  
  in the connected component of v  
 setLabel(v, VISITED) 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
   setLabel(e, DISCOVERY) 
   topologicalDFS(G, w) 
  else 
   {e is a forward or cross edge} 

Label v with topological number n 
 n ← n - 1 

Algorithm topologicalDFS(G) 
 Input dag G 
 Output topological ordering of G  

    n ← G.numVertices() 
for all  u ∈ G.vertices() 
   setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
   setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
  if  getLabel(v) = UNEXPLORED 
  topologicalDFS(G, v) 
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" Maximal subgraphs such that each vertex can reach 
all other vertices in the subgraph 

" Can also be done in O(n+m) time using DFS, but is 
more complicated (similar to biconnectivity). 

Strongly Connected 
Components 

{ a , c , g }	


{ f , d , e , b }	
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Network Flow Problems 
" What is the max flow 

from a source to a sink 
" Dual problem is min cut 

(lowest cost to 
disconnect source from 
sink graph) 

" Basic idea is to find 
paths from source to 
sink, compute flow, and 
keep track of residual 
graph 

A possible algorithm sketch: 
 
FG = RG = G 
Set weights in FG to zero 
while P = NonZeroPath(RG, s, t) 

 FG = Addpath(FG, P, flow(P)) 
 RG = G – FG 

end 
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Flow Path  
Finding 
" We can specialize the DFS 

algorithm to find a 
nonzero flow path 
between two given 
vertices u and z using the 
template method pattern 

Algorithm nonZeroPath(G, v, z) 
 setLabel(v, VISITED) 
 S.push(v) 
if  v = z 

 if flow(S) > 0 
     return S.elements() 

    else 
  return null;   

for all  e ∈ G.incidentEdges(v) 
 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
    setLabel(e, DISCOVERY) 
   S.push(e) 
   x = pathDFS(G, w, z) 
   if (not x=null) 
    return x 
   S.pop(e) 
  else 
    setLabel(e, BACK) 

S.pop(v) 
return null  
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Network Flow Problems 
" What is the max flow 

from a source to a sink 
" Dual problem is min cut 

(lowest cost to 
disconnect source from 
sink) 

" Basic idea is to find 
paths from source to 
sink, compute flow, and 
keep track of residual 
graph 

A possible algorithm sketch: 
 
FG = RG = G 
Set weights in FG to zero 
while P = NonZeroPath(RG, s, t) 

 FG = Addpath(FG, P, flow(P)) 
 RG = G – FG 

end 
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Network Flow Problems 
" What is the max flow 

from a source to a sink 
" Dual problem is min cut 

(lowest cost to 
disconnect source and 
sink) 

" Basic idea is to find 
paths from source to 
sink, compute flow, and 
keep track of residual 
graph 

A possible algorithm sketch: 
 
FG = RG = G 
Set weights in FG to zero 
while P = NonZeroPath(RG, s, t) 

 FG = Addpath(FG, P, flow(P)) 
 RG = G – FG 
 Augment(RG, P, G) 

end 
 
Good algorithms are  

 O(|E||V| + |V|2+e) 
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A Few Words on Complexity 

" Computational 
Problems are 
curiously brittle 
n  Euler Tour – visit all 

edges once = 
polynomial time 

n  Hamiltonian Cycle – 
visit all vertices once 
= very hard 
(exponential) 
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Complexity Theory 

" Complexity theory 
studies the difficulty 
of computation 
problems 

" The key is a 
complexity heirarchy 
of problems 
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P=NP is THE open question 

" Consider only 
decision problems 

" P – polynomial time 
" NP – 

nondeterministic 
polynomial time 

" NP complete – 
hardest problems in 
NP 
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The recipe 

" Establishing NP: Cook 
1971 – any NP problem 
can be reduced to SAT 

" Proving NP-complete 
n  Show is in NP by 

exhibiting an algorithm 
n  Show complete by 

reducing some known 
problem to it 
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The recipe 

" Establishing NP: Cook 
1971 – any NP problem 
can be reduced to SAT 

" Proving NP-complete 
n  Show is in NP by 

exhibiting an algorithm 
n  Show complete by 

polynomial reduction of 
some known problem to 
it 
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The recipe 

" Establishing NP: Cook 
1971 – any NP problem 
can be reduced to SAT 

" Proving NP-complete 
n  Show is in NP by 

exhibiting an algorithm 
n  Show complete by 

reducing some known 
problem to it 
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SAT 

TSP 
HG 

Your Problem 

http://en.wikipedia.org/wiki/List_of_NP-complete_problems 
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Even Worse 

" The Halting Problem 
n  Will a given program 

halt on a given 
input? 

n  halt(prog)=> yes/no 
n  Loop(P) 

w  If (halt(P(P))) inf loop 
n  Else halt 

n  What is Loop(Loop)? 

" If loop(loop) halts, 
then loop(loop)=inf 
loop 

" If loop(loop) is inf 
loop, then 
loop(loop) halts 
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Summary 

" Graphs - directed/undirected weighted 
" Data structures 
" Traversals (BFS, DFS) 

n  what you can compute with them 

" Shortest path 
" Minimum Spanning Trees 
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