
© 2004 Goodrich, Tamassia Graphs 1

Graphs

ORD

DFW

SFO

LAX

80
2

1843

1233

337

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

2

What is a Graph?

(in computer science, it’s not a data plot)

General structure for representing positions
with an arbitrary connectivity structure

• Collection of vertices (nodes) and edges (arcs)

— Edge is a pair of vertices - it connects the
two vertices, making them adjacent

• A tree is a special type of graph!

© 2004 Goodrich, Tamassia Graphs 3

Graphs
" A graph is a pair (V, E), where

n  V is a set of nodes, called vertices
n  E is a collection of pairs of vertices, called edges
n  Vertices and edges are positions and store elements

" Example:
n  A vertex represents an airport and stores the three-letter airport code
n  An edge represents a flight route between two airports and stores the

mileage of the route

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

© 2004 Goodrich, Tamassia Graphs 4

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
" Electronic circuits

n  Printed circuit board
n  Integrated circuit

" Transportation networks
n  Highway network
n  Flight network

" Computer networks
n  Local area network
n  Internet
n  Web

" Databases
n  Entity-relationship diagram

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

5

What can we do with graphs?

Find a path from one place to another

Determine connectivity

Find the shortest path from one place to
another

Find the “weakest link” (min cut)
•  check amount of redundancy in case of failures

Find the amount of flow that will go through
them

© 2004 Goodrich, Tamassia Graphs 6

Edge Types
" Directed edge

n  ordered pair of vertices (u,v)
n  first vertex u is the origin
n  second vertex v is the destination
n  e.g., a flight

" Undirected edge
n  unordered pair of vertices (u,v)
n  e.g., a flight route

" Directed graph
n  all the edges are directed
n  e.g., route network

" Undirected graph
n  all the edges are undirected
n  e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD 849
miles

© 2004 Goodrich, Tamassia Graphs 7

Terminology
" End vertices (or endpoints) of

an edge
n  U and V are the endpoints of a

" Edges incident on a vertex
n  a, d, and b are incident on V

" Adjacent vertices
n  U and V are adjacent

" Degree of a vertex
n  X has degree 5

" Parallel edges
n  h and i are parallel edges

" Self-loop
n  j is a self-loop

" Simple Graph
n  No self-loops or parallel edges

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

© 2004 Goodrich, Tamassia Graphs 8

P1

Terminology (cont.)
" Path

n  sequence of alternating
vertices and edges

n  begins with a vertex
n  ends with a vertex
n  each edge is preceded and

followed by its endpoints
" Simple path

n  path such that all its vertices
and edges are distinct

" Examples
n  P1=(V,b,X,h,Z) is a simple path
n  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a

path that is not simple

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

© 2004 Goodrich, Tamassia Graphs 9

Terminology (cont.)
" Cycle

n  circular sequence of alternating
vertices and edges

n  each edge is preceded and
followed by its endpoints

" Simple cycle
n  cycle such that all its vertices

and edges are distinct

" Examples
n  C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a

simple cycle
n  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)

is a cycle that is not simple

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

© 2004 Goodrich, Tamassia Graphs 10

Terminology (cont.)
" Connected

n  A path from every node to
every other node

n  Digraph is strongly connected if
directed path

n  Digraph is weakly connected if
undirected path

" Complete
n  An edge between every node

" Sparse: |E| = O(V)

" Question: What is the min
and max # of edges in a fully
connected simple graph?

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

C2

© 2004 Goodrich, Tamassia Graphs 11

Digraphs

" A digraph is a graph
whose edges are all
directed
n  Short for “directed graph”

" Applications
n  one-way streets
n  flights
n  task scheduling

A

C

E

B

D

© 2004 Goodrich, Tamassia Graphs 12

Digraph Properties

" A graph G=(V,E) such that
n  Each edge goes in one direction:

w  Edge (a,b) goes from a to b, but not b to a.

" If G is simple, m < n*(n-1).
" If we keep in-edges and out-edges in separate

adjacency lists, we can perform listing of in-
edges and out-edges in time proportional to
their size.

A

C

E

B

D

© 2004 Goodrich, Tamassia Graphs 13

Digraph Application
" Scheduling: edge (a,b) means task a must be

completed before b can be started

The good life

ics141 ics131 ics121

ics53 ics52 ics51

ics23 ics22 ics21

ics161

ics151

ics171

© 2004 Goodrich, Tamassia Graphs 14

Properties
Notation

 n number of vertices
 m number of edges
deg(v) degree of vertex v

Property 1
Σv deg(v) = 2m
Proof: each edge is

counted twice
Property 2

In an undirected graph
with no self-loops and
no multiple edges

 m ≤ n (n - 1)/2

Proof: each vertex has
degree at most (n - 1)

What is the bound for a
directed graph?

Example
n  n = 4
n  m = 6
n  deg(v) = 3

© 2004 Goodrich, Tamassia
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

Concrete graph
representations

" Edge List: simple but inefficient in time
" Adjacency List: moderately simple and

efficient
" Adjacency Matrix: simple but inefficient in

space

© 2004 Goodrich, Tamassia
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

Adjacency List

" Similar to Edge List
" Each vertex also has container of

references to incident edges

© 2004 Goodrich, Tamassia Graphs

Adjacency List Structure
" Incidence sequence

for each vertex
n  sequence of

references to
vertex objects of
incident edges

" Augmented edge
objects
n  references to

edges which in
turn provide
references to
adjacent nodes

u

v

w
a b

v u, w

u v

w v

© 2004 Goodrich, Tamassia
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

Adjacency list (linked list)
efficiency
" vertices() : O(n)
" edges(): O(m)
" endVertices(e): O(1)
" incidentEdges(v): O(deg(v))
" areAdjacent(v, w): O(min(deg(v), deg(w))
" removeEdge(e): O(deg(u)+deg(v)) (can be O(1) with

back links
" e = (u,v)

" removeVertex(v): O(deg(v) + Σ deg(u)) (can be
O(deg(v)) with back links)

" u ∈ adj(v)

© 2004 Goodrich, Tamassia
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

Adjacency Matrix

" Extend edge list with v x v array
n  each entry holds null reference or reference

to edge connected vertex i to vertex j

v u w

v ∅ a ∅

u a ∅ b

w ∅ b ∅
u

v

w
a b

© 2004 Goodrich, Tamassia
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Greg Hager (via Jonathan Cohen)

Adjacency Matrix efficiency
" vertices() : O(n)
" edges(): O(m)
" endVertices(e): O(1)
" incidentEdges(v): O(n)
" areAdjacent(v, w): O(1)
" removeEdge(e): O(1)
" removeVertex(v): O(n2)

n  perhaps O(n) with amortization

© 2004 Goodrich, Tamassia Graphs 27

Asymptotic Performance
" n vertices, m edges
" no parallel edges
" no self-loops
" Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2
removeEdge(e) 1 1 1

© 2004 Goodrich, Tamassia Graphs 28

DAGs and Topological Ordering
" A directed acyclic graph (DAG) is a

digraph that has no directed cycles
" A topological ordering of a digraph is a

numbering
 v1 , …, vn

 of the vertices such that for every edge
(vi , vj), we have i < j

" Example: in a task scheduling digraph,
a topological ordering a task sequence
that satisfies the precedence
constraints

Theorem
 A digraph admits a topological ordering
if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

© 2004 Goodrich, Tamassia Graphs 29

write c.s. program	

play	

Topological Sorting
" Number vertices, so that (u,v) in E implies u < v

wake up	

eat	

nap	

study computer sci.	

more c.s.	

work out	

 	

sleep	

dream about graphs	

A typical student day	

1	

2	

 3	

4	

 5	

6	

7	

8	

9	

10	

11	

make cookies
for professors	

© 2004 Goodrich, Tamassia Graphs 30

" Running time: ???

Algorithm for Topological Sorting
TopologicalSort(G)
 counter = 0; q is empty queue
 for all v in G

 if (indegree(v) == 0)
 q.enqueue(v)

 while q is not empty do
 v = q.dequeue
 v.index = ++counter;
 for each w adjacent to v
 w.indegree—
 if (w.indegree == 0)
 q.enqueue(w)

 if (counter != G.size())
 throw cycleFoundException

© 2004 Goodrich, Tamassia Graphs 53

Topological Sorting Example

© 2004 Goodrich, Tamassia Graphs 54

Topological Sorting Example

9

© 2004 Goodrich, Tamassia Graphs 55

Topological Sorting Example

8

9

© 2004 Goodrich, Tamassia Graphs 56

Topological Sorting Example

7
8

9

© 2004 Goodrich, Tamassia Graphs 57

Topological Sorting Example

7
8

6

9

© 2004 Goodrich, Tamassia Graphs 58

Topological Sorting Example

7
8

5 6

9

© 2004 Goodrich, Tamassia Graphs 59

Topological Sorting Example

7

4

8

5 6

9

© 2004 Goodrich, Tamassia Graphs 60

Topological Sorting Example

7

4

8

5 6

3

9

© 2004 Goodrich, Tamassia Graphs 61

Topological Sorting Example
2

7

4

8

5 6

3

9

© 2004 Goodrich, Tamassia Graphs 62

Topological Sorting Example
2

7

4

8

5 6

1

3

9

© 2004 Goodrich, Tamassia Graphs 63

Shortest Paths

C B

A

E

D

F

0

3 2 8

5 8

4 8

7 1

2 5

2

3 9

© 2004 Goodrich, Tamassia Graphs 64

Weighted Graphs
" In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
" Edge weights may represent, distances, costs, etc.
" Example:

n  In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

1205

© 2004 Goodrich, Tamassia Graphs 65

Shortest Paths
" Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.
n  Length of a path is the sum of the weights of its edges.

" Example:
n  Shortest path between Providence and Honolulu

" Applications
n  Internet packet routing
n  Flight reservations
n  Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

1205

© 2004 Goodrich, Tamassia Graphs 66

Shortest Path Properties
Property 1:

 A subpath of a shortest path is itself a shortest path
Property 2:

 There is a tree of shortest paths from a start vertex to all the other vertices
Example:

 Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

1205

© 2004 Goodrich, Tamassia Graphs 67

Unweighted SP: BFS Algorithm
Algorithm BFS(G, s)

 for all u ∈ G.vertices() setLabel(u, UNEXPLORED)
 L ← new empty queue
L.insertLast(s)
setLabel(s, VISITED)
setDist(s,0)
i ← 1
while ¬L.isEmpty()

 v = L.dequeue()
 for all w ∈ G.Adjacent(v)
 if getLabel(w) = UNEXPLORED
 setLabel(w, VISITED)
 setDist(w, i)
 setPath(w, v)
 L.insertLast(w)
 end
 end
 i ← i +1

end

© 2004 Goodrich, Tamassia Graphs 68

Dijkstra’s Algorithm
" The distance of a vertex v

from a vertex s is the
length of a shortest path
between s and v

" Dijkstra’s algorithm
computes the distances of
all the vertices from a given
start vertex s

" Assumptions:
n  the graph is connected
n  the edges are undirected
n  the edge weights are

nonnegative

" We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

" We store with each vertex v a label
d(v) representing the distance of v
from s in the subgraph consisting of
the cloud and its adjacent vertices

" At each step
n  We add to the cloud the vertex u

outside the cloud with the smallest
distance label, d(u)

n  We update the labels of the vertices
adjacent to u

© 2004 Goodrich, Tamassia Graphs 70

Dijkstra’s Algorithm
" A priority queue stores

the vertices outside the
cloud
n  Key: distance
n  Element: vertex

" Locator-based methods
n  insert(k,e) returns a

locator
n  replaceKey(l,k) changes

the key of an item
" We store two labels

with each vertex:
n  Distance (d(v) label)
n  locator in priority

queue

Algorithm DijkstraDistances(G, s)
 Q ← new heap-based priority queue
 for all v ∈ G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, ∞)
 l ← Q.insert(getDistance(v), v)

 setLocator(v,l)
while ¬Q.isEmpty()

 u ← Q.removeMin()
 for all e ∈ G.incidentEdges(u)
 { relax edge e }
 z ← G.opposite(u,e)
 r ← getDistance(u) + weight(e)
 if r < getDistance(z)
 setDistance(z,r)

 Q.replaceKey(getLocator(z),r)

© 2004 Goodrich, Tamassia Graphs 71

Example

C B

A

E

D

F

0

4 2 8

∞ ∞

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 11

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

© 2004 Goodrich, Tamassia Graphs 72

Example (cont.)

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

© 2004 Goodrich, Tamassia Graphs 73

Analysis of Dijkstra’s Algorithm
" Graph operations

n  Method incidentEdges is called once for each vertex
" Label operations

n  We set/get the distance and locator labels of vertex z O(deg(z)) times
n  Setting/getting a label takes O(1) time

" Priority queue operations
n  Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
n  The key of a vertex in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
" Dijkstra’s algorithm runs in O((n + m) log n) time provided the

graph is represented by the adjacency list structure

n  Recall that Σv deg(v) = 2m
" The running time can also be expressed as O(m log n) since the

graph is connected

© 2004 Goodrich, Tamassia Graphs 74

Shortest Paths Tree
" Using the template

method pattern, we
can extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex
to all other vertices

" We store with each
vertex a third label:
n  parent edge in the

shortest path tree
" In the edge relaxation

step, we update the
parent label

Algorithm DijkstraShortestPathsTree(G, s)

 …

 for all v ∈ G.vertices()
 …

 setParent(v, ∅)
 …

 for all e ∈ G.incidentEdges(u)
 { relax edge e }
 z ← G.opposite(u,e)
 r ← getDistance(u) + weight(e)
 if r < getDistance(z)
 setDistance(z,r)
 setParent(z,e)
 Q.replaceKey(getLocator(z),r)

© 2004 Goodrich, Tamassia Graphs 75

Why Dijkstra’s Algorithm Works
" Dijkstra’s algorithm is based on the greedy method. It

adds vertices by increasing distance.

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

n  Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

n  When the previous node, D, on the
true shortest path was considered,
its distance was correct.

n  But the edge (D,F) was relaxed at
that time!

n  Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

© 2004 Goodrich, Tamassia Graphs 76

DAG-based Algorithm

" Works even with
negative-weight edges

" Uses topological order
" Doesn’t use any fancy

data structures
" Is much faster than

Dijkstra’s algorithm
" Running time: O(n+m).

Algorithm DagDistances(G, s)
 for all v ∈ G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, ∞)
 Perform a topological sort of the vertices
 for u ← 1 to n do {in topological order}

 for each e ∈ G.outEdges(u)
 { relax edge e }
 z ← G.opposite(u,e)
 r ← getDistance(u) + weight(e)
 if r < getDistance(z)
 setDistance(z,r)

© 2004 Goodrich, Tamassia Graphs 77

∞

-2

DAG Example

∞ ∞

0

∞

∞

∞

4 8

7 1

-5 5

-2

3 9

∞

0

∞

∞

∞

4 8

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4

∞

4 8

7 1

-5 5
3 9

∞

-2 4

-1

1 7

-2 5

0

1

-1

7

4 8

7 1

-5 5

-2

3 9
4

1

2 4 3

6 5

1

2 4 3

6 5

8

1

2 4 3

6 5

1

2 4 3

6 5

5

0

(two steps)

© 2004 Goodrich, Tamassia Graphs 78

Why It Doesn’t Work for
Negative-Weight Edges

n  If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

C B

A

E

D

F

0

4 5 7

5 9

4 8

7 1

2 5

6

0 -8

" Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud

with d(C)=5!

© 2004 Goodrich, Tamassia Graphs 79

Bellman-Ford Algorithm
" Works even with negative-

weight edges
" Must assume directed

edges (for otherwise we
would have negative-
weight cycles)

" Iteration i finds all shortest
paths that use i edges.

" Running time: O(nm).

Algorithm BellmanFord(G, s)
 for all v ∈ G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, ∞)
 for i ← 1 to n-1 do

 for each e ∈ G.edges()
 { relax edge e }
 u ← G.origin(e)
 z ← G.opposite(u,e)
 r ← getDistance(u) + weight(e)
 if r < getDistance(z)
 setDistance(z,r)

© 2004 Goodrich, Tamassia Graphs 80

∞

-2

Bellman-Ford Example

∞ ∞

0

∞

∞

∞

4 8

7 1

-2 5

-2

3 9

∞

0

∞

∞

∞

4 8

7 1

-2 5
3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4

∞

4 8

7 1

-2 5
3 9

∞

8 -2 4

-1 5

6
1

9

-2 5

0

1

-1

9

4 8

7 1

-2 5

-2

3 9
4

© 2004 Goodrich, Tamassia Graphs 81

Subgraphs
" A subgraph S of a graph G is a

graph such that
n  The vertices of S are a subset

of the vertices of G
n  The edges of S are a subset of

the edges of G

" A spanning subgraph of G is a
subgraph that contains all the
vertices of G

Subgraph

Spanning subgraph

© 2004 Goodrich, Tamassia Graphs 82

Connectivity

" A graph is
connected if there is
a path between
every pair of
vertices

" A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

© 2004 Goodrich, Tamassia Graphs 83

Trees and Forests
" A (free) tree is an

undirected graph T such
that
n  T is connected
n  T has no cycles
This definition of tree is

different from the one of
a rooted tree

" A forest is an undirected
graph without cycles

" The connected
components of a forest
are trees

Tree

Forest

© 2004 Goodrich, Tamassia Graphs 84

Spanning Trees and Forests
" A spanning tree of a

connected graph is a
spanning subgraph that is
a tree

" A spanning tree is not
unique unless the graph is
a tree

" Spanning trees have
applications to the design
of communication
networks

" A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

© 2004 Goodrich, Tamassia Graphs 85

Minimum Spanning Trees
Spanning subgraph

n  Subgraph of a graph G containing
all the vertices of G

Spanning tree
n  Spanning subgraph that is itself a

(free) tree

Minimum spanning tree (MST)
n  Spanning tree of a weighted graph

with minimum total edge weight

" Applications
n  Communications networks
n  Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

2 5

7

4

© 2004 Goodrich, Tamassia Graphs 86

Prim-Jarnik’s Algorithm
" Similar to Dijkstra’s algorithm (for a connected graph)
" We pick an arbitrary vertex s and we grow the MST as a

cloud of vertices, starting from s
" We store with each vertex v a label d(v) = the smallest

weight of an edge connecting v to a vertex in the cloud
" At each step:

n  We add to the cloud the
vertex u outside the cloud
with the smallest distance
label
n  We update the labels of the
vertices adjacent to u

© 2004 Goodrich, Tamassia Graphs 87

Prim-Jarnik’s Algorithm
(cont.)
" A priority queue stores

the vertices outside the
cloud
n  Key: distance
n  Element: vertex

" Locator-based methods
n  insert(k,e) returns a

locator
n  replaceKey(l,k) changes

the key of an item
" We store three labels

with each vertex:
n  Distance
n  Parent edge in MST
n  Locator in priority queue

Algorithm PrimJarnikMST(G)
 Q ← new heap-based priority queue
 s ← a vertex of G
 for all v ∈ G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, ∞)
 setParent(v, ∅)
 l ← Q.insert(getDistance(v), v)
while ¬Q.isEmpty()

 u ← Q.removeMin()
 for all e ∈ G.incidentEdges(u)
 z ← G.opposite(u,e)
 r ← weight(e)
 if r < getDistance(z)
 setDistance(z,r)
 setParent(z,e)

 Q.replaceKey(z,r)

© 2004 Goodrich, Tamassia Graphs 88

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ∞

∞

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

© 2004 Goodrich, Tamassia Graphs 89

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

© 2004 Goodrich, Tamassia Graphs 90

Analysis
" Graph operations

n  Method incidentEdges is called once for each vertex
" Label operations

n  We set/get the distance, parent and locator labels of vertex z O(deg(z))
times

n  Setting/getting a label takes O(1) time
" Priority queue operations

n  Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

n  The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

" Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

n  Recall that Σv deg(v) = 2m
" The running time is O(m log n) since the graph is connected

© 2004 Goodrich, Tamassia Graphs 91

A 2nd Idea: Cycle Property
Cycle Property:

n  Let T be a minimum
spanning tree of a
weighted graph G

n  Let e be an edge of G
that is not in T and C let
be the cycle formed by e
with T

n  For every edge f of C,
weight(f) ≤ weight(e)

Proof:
n  By contradiction
n  If weight(f) > weight(e) we

can get a spanning tree of
smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C

f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

© 2004 Goodrich, Tamassia Graphs 92

U V

Partition Property
Partition Property:

n  Consider a partition of the vertices of
G into subsets U and V

n  Let e be an edge of minimum weight
across the partition

n  There is a minimum spanning tree of
G containing edge e

Proof:
n  Let T be an MST of G
n  If T does not contain e, consider the

cycle C formed by e with T and let f
be an edge of C across the partition

n  By the cycle property,
 weight(f) ≤ weight(e)

n  Thus, weight(f) = weight(e)
n  We obtain another MST by replacing

f with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

© 2004 Goodrich, Tamassia Graphs 93

Kruskal’s Algorithm
" A priority queue stores

the edges outside the
cloud
n  Key: weight
n  Element: edge

" At the end of the
algorithm
n  We are left with one

cloud that encompasses
the MST

n  A tree T which is our
MST

Algorithm KruskalMST(G)
 for each vertex V in G do
 define a Cloud(v) of ß {v}
 let Q be a priority queue.
 Insert all edges into Q using their
 weights as the key
 T ß ∅
 while T has fewer than n-1 edges do
 edge e = T.removeMin()
 Let u, v be the endpoints of e
 if Cloud(v) ≠ Cloud(u) then
 Add edge e to T
 Merge Cloud(v) and Cloud(u)
 return T

© 2004 Goodrich, Tamassia Graphs 94

Data Structure for Kruskal
Algorithm
" The algorithm maintains a forest of trees
" An edge is accepted it if connects distinct trees
" We need a data structure that maintains a partition,

i.e., a collection of disjoint sets, with the operations:
 -find(u): return the set storing u
 -union(u,v): replace the sets storing u and v with

their union

© 2004 Goodrich, Tamassia Graphs 95

Representation of a
Partition
" Each set is stored in a sequence
" Each element has a reference back to the set

n  operation find(u) takes O(1) time, and returns the set of which
u is a member.

n  in operation union(u,v), we move the elements of the smaller
set to the sequence of the larger set and update their
references

n  the time for operation union(u,v) is min(nu,nv), where nu and nv
are the sizes of the sets storing u and v

" Whenever an element is processed, it goes into a set of size
at least double, hence each element is processed at most log
n times

© 2004 Goodrich, Tamassia Graphs 96

Partition-Based
Implementation
" A partition-based version of Kruskal’s Algorithm

performs cloud merges as unions and tests as finds.
Algorithm Kruskal(G):
 Input: A weighted graph G.
 Output: An MST T for G.
Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do
 (u,v) ← Q.removeMinElement()
 if P.find(u) != P.find(v) then

 Add (u,v) to T
 P.union(u,v)

return T

Running time: O(m log n)

or O(m log*n) with path
compression

© 2004 Goodrich, Tamassia

Example

B
D

C

A

F

E

7
4

2
8

5

3

9

8

B
D

C

A

F

E

7
4

2
8

5

3

9

8

B
D

C

A

F

E

7
4

2
8

5

3

9

8

B
D

C

A

F

E

7
4

2
8

5

3

9

8

6 6

6 6

© 2004 Goodrich, Tamassia

Example

B
D

C

A

F

E

7
4

2
8

5

3

9

8

B
D

C

A

F

E

7
4

2
8

5

3

9

8

6 6

© 2004 Goodrich, Tamassia Graphs 100

Depth-First Search

D B

A

C

E

© 2004 Goodrich, Tamassia Graphs 102

Connectivity

" A graph is
connected if there is
a path between
every pair of
vertices

" A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

© 2004 Goodrich, Tamassia Graphs 105

Depth-First Search
" Depth-first search (DFS)

is a general technique
for traversing a graph

" A DFS traversal of a
graph G
n  Visits all the vertices and

edges of G
n  Determines whether G is

connected
n  Computes the connected

components of G
n  Computes a spanning

forest of G

" DFS on a graph with n
vertices and m edges
takes O(n + m) time

" DFS can be further
extended to solve other
graph problems
n  Find and report a path

between two given
vertices

n  Find a cycle in the graph

" Depth-first search is to
graphs what Euler tour
is to binary trees

© 2004 Goodrich, Tamassia Graphs 106

DFS Algorithm
" The algorithm uses a mechanism for

setting and getting “labels” of
vertices and edges Algorithm DFS(G, v)

 Input graph G and a start vertex v of G
 Output labeling of the edges of G
 in the connected component of v
 as discovery edges and back edges
 setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 DFS(G, w)
 else
 setLabel(e, BACK)

Algorithm DFS(G)
 Input graph G
 Output labeling of the edges of G
 as discovery edges and
 back edges
for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all e ∈ G.edges()
 setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 DFS(G, v)

© 2004 Goodrich, Tamassia Graphs 107

Example

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

© 2004 Goodrich, Tamassia Graphs 108

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

© 2004 Goodrich, Tamassia Graphs 110

Properties of DFS
Property 1

 DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
 The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

D B

A

C

E

© 2004 Goodrich, Tamassia

DFS Analysis

" Each edge or vertex initialized: O(n+m)
" Each edge or vertex marked once O(n+m)
" Each edge visited twice (once for each vertex): O(m)
" Each vertex v visited ind(v) times: O(m)
" Assumes opposite is constant time
" Method incidentEdges is called once for each vertex
" DFS runs in O(n + m) time provided the graph is

represented by the adjacency list structure
n  Recall that Σv deg(v) = 2m

Graphs 111

© 2004 Goodrich, Tamassia Graphs 112

Path Finding
" We can specialize the DFS

algorithm to find a path
between two given
vertices u and z using the
template method pattern

" We call DFS(G, u) with u
as the start vertex

" We use a stack S to keep
track of the path between
the start vertex and the
current vertex

" As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
 setLabel(v, VISITED)
 S.push(v)
if v = z

 return S.elements()
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 S.push(e)
 x = pathDFS(G, w, z)
 if (not x=null)
 return x
 S.pop(e)
 else
 setLabel(e, BACK)

S.pop(v)
return null

© 2004 Goodrich, Tamassia Graphs 113

Cycle Finding
" We can specialize the DFS

algorithm to find a simple
cycle using the template
method pattern

" We use a stack S to keep
track of the path between
the start vertex and the
current vertex

" As soon as a back edge (v,
w) is encountered, we
return the cycle as the
portion of the stack from
the top to vertex w

Algorithm cycleDFS(G, v, z)
 setLabel(v, VISITED)
 S.push(v)
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 S.push(e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 x = pathDFS(G, w, z)
 if (x=null)
 S.pop(e)
 else
 return x;
 else
 T ← new empty stack
 repeat
 o ← S.pop()
 T.push(o)
 until o = w
 return T.elements()

S.pop(v)
return null

© 2004 Goodrich, Tamassia

Finding Articulation Points

" An articulation point is a vertex such
that removing the vertex would
disconnect the graph

" How can we find such points?

Graphs 114

© 2004 Goodrich, Tamassia

DFS for articulation pts
" Key idea—if I do a DFS, v cannot be an articulation

point if it has a child that has a back edge to an
ancestor (i.e. there is a cycle)

" Do a DFS to keep track of:
n  Order of visitation
n  lowest # back edge in descendents

" Finally, check if some child’s “low” is at least as
large as v’s “num”

" Special case for root; if it has 2 (or more) children, it
is automatically an articulation pt

Graphs 115

© 2004 Goodrich, Tamassia

Algorithm
" findArt(v)

n  v.visited = true
n  v.low=v.num = counter++ // low=num at start
n  foreach w adjacent to v, (v,w) not visited

w  if (!w.visited)
n  mark e= (v,w) visited
n  findArt(w)
n  if (w.low >= v.num) // no cycle back to anc. in decendants

n  output v as articulation pt
n  v.low=min(v.low,w.low); // record if cycle dec. to anc.

w else
n  v.low = min(v.low, w.num) // back edge

Graphs 116

© 2004 Goodrich, Tamassia Graphs 117

Directed DFS
" We can specialize DFS and to

digraphs by traversing edges
only along their direction

" In the directed DFS
algorithm, we have four types
of edges
n  discovery edges
n  back edges
n  forward edges
n  cross edges

" A directed DFS starting at a
vertex s determines the
vertices reachable from s A

C

E

B

D

© 2004 Goodrich, Tamassia Graphs 118

Reachability

" DFS tree rooted at v: vertices reachable
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

© 2004 Goodrich, Tamassia Graphs 119

Strong Connectivity
" Each vertex can reach all other vertices

a

d

c

b

e

f

g

© 2004 Goodrich, Tamassia Graphs 120

" Pick a vertex v in G.
" Perform a DFS from v in G.

n  If there’s a w not visited, print “no”.

" Let G’ be G with edges reversed.
" Perform a DFS from v in G’.

n  If there’s a w not visited, print “no”.
n  Else, print “yes”.

" Running time: O(n+m).

Strong Connectivity
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

© 2004 Goodrich, Tamassia Graphs 121

Topological Sorting
Algorithm using DFS
" Simulate the algorithm by using

depth-first search

" O(n+m) time.

Algorithm topologicalDFS(G, v)
 Input graph G and a start vertex v of G
 Output labeling of the vertices of G
 in the connected component of v
 setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 topologicalDFS(G, w)
 else
 {e is a forward or cross edge}

Label v with topological number n
 n ← n - 1

Algorithm topologicalDFS(G)
 Input dag G
 Output topological ordering of G

 n ← G.numVertices()
for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all e ∈ G.edges()
 setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 topologicalDFS(G, v)

© 2004 Goodrich, Tamassia Graphs 122

" Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

" Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

Strongly Connected
Components

{ a , c , g }	

{ f , d , e , b }	

a

d

c

b

e

f

g

© 2004 Goodrich, Tamassia

Network Flow Problems
" What is the max flow

from a source to a sink
" Dual problem is min cut

(lowest cost to
disconnect source from
sink graph)

" Basic idea is to find
paths from source to
sink, compute flow, and
keep track of residual
graph

A possible algorithm sketch:

FG = RG = G
Set weights in FG to zero
while P = NonZeroPath(RG, s, t)

 FG = Addpath(FG, P, flow(P))
 RG = G – FG

end

Graphs 123

© 2004 Goodrich, Tamassia Graphs 124

Flow Path
Finding
" We can specialize the DFS

algorithm to find a
nonzero flow path
between two given
vertices u and z using the
template method pattern

Algorithm nonZeroPath(G, v, z)
 setLabel(v, VISITED)
 S.push(v)
if v = z

 if flow(S) > 0
 return S.elements()

 else
 return null;

for all e ∈ G.incidentEdges(v)
 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 S.push(e)
 x = pathDFS(G, w, z)
 if (not x=null)
 return x
 S.pop(e)
 else
 setLabel(e, BACK)

S.pop(v)
return null

© 2004 Goodrich, Tamassia

Network Flow Problems
" What is the max flow

from a source to a sink
" Dual problem is min cut

(lowest cost to
disconnect source from
sink)

" Basic idea is to find
paths from source to
sink, compute flow, and
keep track of residual
graph

A possible algorithm sketch:

FG = RG = G
Set weights in FG to zero
while P = NonZeroPath(RG, s, t)

 FG = Addpath(FG, P, flow(P))
 RG = G – FG

end

Graphs 125

Where is the problem here?

© 2004 Goodrich, Tamassia

Network Flow Problems
" What is the max flow

from a source to a sink
" Dual problem is min cut

(lowest cost to
disconnect source and
sink)

" Basic idea is to find
paths from source to
sink, compute flow, and
keep track of residual
graph

A possible algorithm sketch:

FG = RG = G
Set weights in FG to zero
while P = NonZeroPath(RG, s, t)

 FG = Addpath(FG, P, flow(P))
 RG = G – FG
 Augment(RG, P, G)

end

Good algorithms are

 O(|E||V| + |V|2+e)

 Graphs 126

© 2004 Goodrich, Tamassia

A Few Words on Complexity

" Computational
Problems are
curiously brittle
n  Euler Tour – visit all

edges once =
polynomial time

n  Hamiltonian Cycle –
visit all vertices once
= very hard
(exponential)

Graphs 127

© 2004 Goodrich, Tamassia

Complexity Theory

" Complexity theory
studies the difficulty
of computation
problems

" The key is a
complexity heirarchy
of problems

Graphs 128

© 2004 Goodrich, Tamassia

P=NP is THE open question

" Consider only
decision problems

" P – polynomial time
" NP –

nondeterministic
polynomial time

" NP complete –
hardest problems in
NP

Graphs 129

© 2004 Goodrich, Tamassia

The recipe

" Establishing NP: Cook
1971 – any NP problem
can be reduced to SAT

" Proving NP-complete
n  Show is in NP by

exhibiting an algorithm
n  Show complete by

reducing some known
problem to it

Graphs 130

SAT

TSP
HG

Cook’s theorem

© 2004 Goodrich, Tamassia

The recipe

" Establishing NP: Cook
1971 – any NP problem
can be reduced to SAT

" Proving NP-complete
n  Show is in NP by

exhibiting an algorithm
n  Show complete by

polynomial reduction of
some known problem to
it

Graphs 131

SAT

TSP
HG

Reduction

© 2004 Goodrich, Tamassia

The recipe

" Establishing NP: Cook
1971 – any NP problem
can be reduced to SAT

" Proving NP-complete
n  Show is in NP by

exhibiting an algorithm
n  Show complete by

reducing some known
problem to it

Graphs 132

SAT

TSP
HG

Your Problem

http://en.wikipedia.org/wiki/List_of_NP-complete_problems

© 2004 Goodrich, Tamassia

Even Worse

" The Halting Problem
n  Will a given program

halt on a given
input?

n  halt(prog)=> yes/no
n  Loop(P)

w  If (halt(P(P))) inf loop
n  Else halt

n  What is Loop(Loop)?

" If loop(loop) halts,
then loop(loop)=inf
loop

" If loop(loop) is inf
loop, then
loop(loop) halts

Graphs 133

© 2004 Goodrich, Tamassia Graphs 134

Summary

" Graphs - directed/undirected weighted
" Data structures
" Traversals (BFS, DFS)

n  what you can compute with them

" Shortest path
" Minimum Spanning Trees

© 2004 Goodrich, Tamassia Graphs 135

© 2004 Goodrich, Tamassia Graphs 136

