The Exam

- Chapter 2 (excluding 2.5)
- Chapter 3
- Chapter 4 (excluding 4.4)
- Chapter 5.1, 5.2
- Chapter 6
- Chapter 7 (excluding 7.4.3)
- Chapter 8 (excluding 8.5.2)
- Corke article
- extra material on reflection from F&P
- basic Matlab
- extra material on color
Week 2

• Image noise
 – additive noise model
 – shot noise

• Convolution
 – basic algorithm
 – averaging, Gaussian templates
 – derivatives

• Fourier representation
 – Convolution theorem

• Image gradients
 – smoothing plus derivatives
Week 3

• Edge detection
 – edge types
 – gradient direction
 – magnitude

• Canny edge detector
 – assumptions
 – localization vs. detection tradeoff
 – nonmaximal suppression
 – hysteresis thresholding

• Hough transform
 – edges
 – extensions to other parametric forms
Week 4

• Grouping algorithms
 – neighborhood definitions
 – simple morphology
 – connected component labelling
 – top down partitioning
 – bottom-up grouping

• Reflectance
 – radience
 – irradiance

• BRDF functions
 – Lambertian surfaces
 – specular surfaces
Week 5

- Camera models
 - pinhole
 - thin lens
 - perspective
 - orthographic

- Algebraic forms for camera models
 - projective model

- Camera calibration
 - direct methods
 - indirect methods
 - overall algorithm
 - intrinsic vs. extrinsic parameters
Week 6

• More calibration
 – general idea of getting to a linear form
 – properties of SVD
 – direct calibration algorithm
 – idea of indirect algorithm

• Rectification
 – essential idea
 – algorithm

• Stereo
 – non-verged equations --- disparity
 – epipolar geometry
 – use of rectification to convert systems to non-verged
Week 7

• Stereo cont’d
 – E matrix
 • derivation and structure
 – F matrix
 • derivation from E matrix and intrinsics
 – reconstruction up to scale

• Correspondence
 – matching metrics
 – use of epipolar geometry (and rectification)

• Overall stereo algorithm
• Corke article for stereo evaluation
Week 8

• Motion problem
 – motion field
 – translation vs. rotation structure
 – FOE and TtC

• Motion of planar objects
 – orthographic = affine
 – perspective = quadratic
 – idea of parallax

• The optical flow field
 – image constancy constraint
 – aperture problem
 – two general methods for computing flow
 • regularization
 • finite patch
Week 9

• Computing optical flow
 – derivation of the least squares estimate of displacement
 – the iterative version of the algorithm
 – from flow to tracking
 • incremental
 • reference

• The factorization method
 – assumptions
 – problem formulation
 – rank theorem
 – final algorithm
Projects

• Ground rules
 – ideally two people/project
 – due at the end of reading period
 – submit a writeup showing results of experiments and code.
 – sanity check one week before the end of the semester
 • show results on simulation and/or simulated data
 • identify data that will be used for real experiments

• Possible projects
 – stereo
 – motion
 – grouping
 – tracking
 – other topics by approval

Due on Thursday: groups and projects

• Grading
 – simulation, testing at checkpoint (30%)
 – completeness and thoroughness (40%)
 – evidence of understanding topic (20%)
 – style (10%)