Pose Estimation Algorithms

Professor Hager

http://www.cs.jhu.edu/~hager

Overview of Pose Estimation

Problem statement:

- Given: 3D coordinate vectors p₁ ... p_n and corresponding projections q₁ ... q_n
- Compute: $R \in SO(3)$ and $T \in \Re(3)$ so that q_i is the projection of p_i

Iterative Approaches

- photogrammetry style equations and gradient descent (Lowe, Haralick, ...)
- Lu Hager Mjolsness: iteration on SO(3)

Direct Approaches

- known algebraic solutions for 3 and 4 pts (Fischler, Horaud ...)
- no known solutions for lines?
- Embed nonlinear problem in a higher-dimensional linear space
 - usually release the constraints on rotations and fix it up later
 - Ansar and Daniilidis: algebraic varieties gives correct nonlinear solution within linear framework

Computing Pose

Problem:

- given points p₁ ... p_n and corresponding points q₁ ... q_n s.t. q_i = R p_i +
 T
- compute R ∈ SO(3) and T ∈ R(3)

Solution:

- define
 - $p'_i = p_i mean(p_1 ... p_n)$
 - $q_i' = q_i mean(q_1 ... q_n)$
 - $M = \sum q_i p_i^t$
- compute
 - M = U D V^t
 - R = V U^t

An Observation on Errors

- Consider $v_i = (Rp_i + t)/(r_3 p_i + t_z)$
- Define $V = v_i v_i^t / (v^t v)$
 - note that V is a projection operator (symmetric, idempotent) and
 - ||x|| >= || \(\times \) |
 - as such, it projects any point to the line of sight v_i
 - in particular, note R $p_i + t = V_i (R p_i + t)$ since $p_i = k v_i$ for some k
- Consider now define error as
 - $e_i = (I-V_i) R p_i + t$
 - $E(R,t) = \sum || (I-V_i)(Rp_i + t)||^2$
- Observe that t(R) can be easily computed in closed form

Solving for Rotation

- Define
 - $q_i(R) = V_i(Rp_i + t(R))$
 - $q'_{i}(R) = q_{i}(R) mean(q_{1}(R) ... q_{n}(R))$
 - $M(R) = \sum q_i(R) p_i^t$
- Observe that given an R, we can compute a new value of R using SVD as before.
- Algorithm:
 - Pick a starting R₀
 - Repeat
 - compute t(R_k)
 - compute q'_i(R_k)
 - compute M(R_k)
 - compute $M(R_k) = U D V^t$
 - set $R_{k+1} = V U^t$
 - Until convergence

Algorithm Convergence

- In order to show convergence, necessary to who that the mapping defined by this algorithm is
 - A closed mapping
 - this follows from closedness of SVD plus continuity of underlying calculations
 - All of the intermediate results come from a compact set
 - SO(3) is closed and bounded; therefore it is compact.
 - Strictly decreasing
 - This follows from the basic geometry of the situation together with properties of projection operators.
- Note this is global convergence (previously all algorithms were local)
 - Note this *does not*! imply that we are guaranteed to find the right solution
 - In fact, if we choose an initial guess that puts the points behind the camera, we are almost guaranteed to find the wrong solution!

Initialization

- Initialized using weak perspective model
 - $E(R,t,s) = \sum ||R p_i + t s v_i||^2$
 - Note that we can still solve the analogous absolute orientation problem
 - $s = (\sum ||p_i'||^2/\sum ||v_i'||^2)^{1/2}$ where $v_i' = v_i \text{mean}(v_1 \dots v_n)$
 - R as before
 - $t = s mean(v_1 ... v_n) R mean(p_1 ... p_n)$
 - Not unexpectedly, it is not hard to show this is a good approximation when the image of the object is small in the image and near the optical center.

Evaluation

- Look at the article
 - Experiment C1: error as a function of S/N ratio
 - Experiment C2: error as a function of outliers
 - Experiment C3: error as a function of number of points