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1 Abstract

In this project we present two different approaches to the problem of finding a
bounding box for the left and right thalamus. The first approach (propoused
by Fabian) attempts to reduce the 3D registration problem to a 2D registra-
tion by identifying the middle Sagital plane and doing 2D registration along
the central sagital slice. The second approach (propoused by Rob) solve
for the full volumetric registration by taking the gradient of the NCC energy
function using a 6D Lie algebra parametrization of the rigid transformations.

2 Background

Registration of 2D and 3D images has been a widely explored research area.
The book of Hill[3] provide a review of the most common techniques in the
context of medical imaging. To look for state of the art results of brain reg-
istration we refer to [1].

Given images IS (source) and IT (target) the registration problem can
be formulated as the computation of deformation D : Ω Ñ Ω (where Ω is
the domain of the signal) that minimize an objective error, EpIS �D

�1, IT q,
between the target signal and the deformed source.

Form this definition, we can identify 3 characteristics that can assists us
in the classification of registration methods: (1) the set of transformations
considered, (2) the deformation energy, and (3) the energy optimization ap-
proach.

In the context of rigid transfornation, the most principal approach to the
registration problem is provided by the the Procruste’s method: given land-
marks txiui, tyiui solve for the optimal rotation and translation minimizing,
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min
R,t

¸

i

||yi � pRxi � tq||22

When landmarks are unknown, the target landmarks are usually defined
to be the closest point to the source landmarks. This approach is known as
Iterative Closest Point (ICP) registration [2].

Non-rigid deformation methods consider local transformation that are
stored in a coarse representation of the signal domain (e.g., a coarse grid or
mesh) and can be sampled at any other point of the domain using interpola-
tive kernels like cardinal bsplines or thin splines. Given a (discrete) signal
c and a (continuous) reconstruction kernel φ the value of the reconstructed
signal at any point x, is simply given by,

pf � φqpxq �
¸

i

f risφpx� iq

Some other methods represent the alignment transformation via a de-
formation field. This is the case of classical Optical Flow methods [4] and
Diffeomorphic Demons[5].

When the signals to be registered have similar intensity distribution (e.g.,
images of an individual captured from the same device) the sum of squares
distances (SSD) is an accurate measure of the deformation error. When,
the intensity values of the signals does not admit a simple correspondance
(e.g., through histogram equalization), a more robust energy is given by the
mutual information of the signals:

MIpA,Bq � HpAq �HpBq �HpA,Bq where HpAq � �
¸

a

pApaq logppApaqq

Minimization of the energy can be done by differential methods like Gra-
dient Descent and Quasi-Newton, or by methods that does not require deriva-
tive computation like adaptive search on a discrete parameter domain.

3 Approach

Given a testing brain J , and a collection of trainning brains pIiqi our approach
to identifying a bounding box for the right and left thalamus consisted on
three major steps:
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1. Compute an affine transformations Ti that register brain J to each
brain Ii. For such affine transformation, we have:

J � Ti � Ii

2. Map the thalamus mask Mi from each of the trainning brains to the
testing brain by taking the inverse of the registration transformation:

Li :�Mi � T
�

i 1

3. Output the bounding box of the testing brain thalamus by consolidating
the masks pLiqi

In this project we considered two different alternatives for computing the
affine transformation T . These are discussed in the section below.

3.1 Sagital Plane Dection + 2D Registration

My approach to the problem of doing brain registration looked to simplify
the problem from 3D to 2D registration. This was done by identifying the
middle sagital plane for each of the brains and applying 2D registration of
the middle sagital slice of the testing brain to each of the trainning ones.

3.1.1 Sagital Plane Detection

As we observe in Figure 1, due to the reflective properties of the sagital plane,
the axial (right image) and the coronal (left image) slices have almost perfect
reflective simmetry along the sagital axis.

The computation of the sagital axis is done in four simple steps:

1. Compute the brain center of mass.

2. Compute the brain principal direction.

3. Sample the slice normal to the principal direction through the center
of mass.
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Figure 1: Brain Reflective Symmetry. From left to right: axial, sagital and
coronal slices.

4. Align the sampled slice to be left-to-right simmetric.

For the computation of the center of mass, we apply a simple intensity
based tresholding to the entire brain (we use t � 0.05) to identify the voxels
interior to the skull. Taking these voxels coordinates as samples from a
distribution, we compute its mean and covariance. The estimated mean of the
distribution is the center of mass of the volume, and the largest eigenvector
of the covariance is the principal direction. The projection of these entities
on a single slice are illustrated in

Figure 2: Center of mass and principal direction of the brain.

Due to the elongated shape along the axial plane and the reflective sym-
metry across it, it is expected the principal direction of the brain to be
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contained within the sagital. This was the case for all the trainnng brains.

Once the principal direction is identified, we need a second direction in
the sagital plane to completely characterize it. To do this, we sample the slice
that is orthogonal to the principal direction of the brain and passes through
the center of mass. This slice is presented in the left of Figure Figure 3.
Observe that this slice has a one perfect reflective symmtric axis which is
highlited in red. This symmetry axis was identified by finding the optimal
rotation around the center of mass that minimize the left-to-right symmetric
error of the transformed image (depicted in the right image in Figure 3).

Figure 3: Alignemnet of the normal slice.

Each of the training brains and the testing brain can be compactly rep-
resented by a parameter description of the sagital plane, say pρ.~nq, and its
intensity values. For the trainning brains this characterization is precom-
puted and for the testing brain in is computed at evaluation time.

3.1.2 2D Registration

Once the sagital slices of the trainning and testing brains have been computed
we proceed to compute a 2D affine registrations. The error of the registration
is measure as the SSD of the target and transformed source image, i.e.,
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Figure 4: Sagital Slices.

SSDpI, J ;T q �
¸

ij

|JpT�1pi, jqq � Ipi, jq|2

As shown in class, minimizing the SSD error is equivalent to maximizing
correlation,

CORRpI, J ;T q �
¸

ij

JpT�1pi, jqqIpi, jq

In order to make the SSD minimzation more robuts, the histogram of
the testing image J was matched to the histogram of each of the trainning
images before proceeding to the pairwise registration.

Minimixing this energy using gradient descent tend to produce subopti-
mal results (i.e., convergence to local minima). Instead I used an Alternating
Minimization approach with an adaptive step size. This was still fast and
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produced accurate results.

In my current implementation, I only consider stricly rigid transforma-
tions (i.e., translations and rotations), but scale and skew transformations
should be considered as well. Thus the registering transformation was of the
form T pxq � Rθx� t where Rθ is a 2D rotation by angle θ. The alternation
minimization iterated between two steps: UpdateRotation and UpdateTrans-
lation (in pratice I used 3 iterations of alternating minimization).

Each method UpdateTranslation and UpdateRotation performed an adap-
tive grid search. This is, I explored the error for the transformation with
parameters on a uniformly separated grid (20 pixels in x and y directions for
translation, 12 degrees for rotation). After I found the minima on this initial
grid, I subdivide it around the optimal parameter, and keep improving the
accuracy of the optimal parameter by finding minima on refined grids. The
result of 2D registration for a pair of images is provided in Figure 5.

Figure 5: 2D Registration.
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3.2 Full 3D Registration

This approach was developed by teammate and was the one we presented in
the contest.

In this approach, the energy to be minimized is the normalized cross
correlation of the signals,

NCCpI, J ;Tθq �
¸ pIpxq � ĪqpJpT�1pxqq � J̄q

σIσJ

whose parameter gradient is given by,

B

Bθ
NCCpI, J ;Tθq �

1

σIσJ

¸
pIpxq � Īq∇pJpT�1θ pxqq

B

Bθ
T�1θ pxq

The way this energy is minimized is done is also by alternating between
different groups of transformations. More specifically our method iterate be-
tween solving for the best translation, rotation , scale, general linear, and
general affine transformation.

Computation of the best translation, rotation and scale is done using a
Quasi-Newton BFGS minimization. The Quasi-Newton method requires the
estimation of the gradient of the correlation energy respect to these param-
eters. This was done using the MATLAB’s symbolic toolbox.

For rigid transformation we choose a 6D Lie Algebra parametrization.
This parametrization allows a smooth transitions on the manifold of rigid
transformation compared to other parametrizations (e.g., euler angles).

For general linear and general affine transformation we did not Quasi-
Newton optimization but Neldar-Mead method.

In Figure 6 we observe the accuracy of our method when solving for the
optimal rigid alignment.

In order to satisfy the imposed time constraints the intial volume was
subsampled by a factor of 4 and 6.
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Figure 6: 3D Registration. From left to right: missalingned sagital views,
results after translation correction,result after rigid correction.

4 Results

In the following table we report the results of the Sagital Detection + 2D
Registration on the provided trainning data. An average score of 0.72 was
obtained for pairwise registration, and an average score of 0.78 when using
one-to-all registration with median box consolidation.

Cross Registration Score
Brain ID 2000501 2000301 2000101 1003101 1001701 1000901
2000501 0.438 0.820 0.683 0.750 0.506
2000301 0.506 0.382 0.714 0.660 0.726
2000101 0.853 0.349 0.698 0.739 0.732
1003101 0.749 0.717 0.773 0.806 0.658
1001701 0.851 0.657 0.795 0.844 0.847
1000901 0.549 0.670 0.781 0.655 0.793
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Bounding Box Selection Score
Brain ID Lowest SSD Box Cummulative Box Median Box
2000501 0.506 0.459 0.733
2000301 0.726 0.607 0.655
2000101 0.732 0.463 0.794
1003101 0.658 0.727 0.805
1001701 0.847 0.734 0.908
1000901 0.549 0.577 0.777

For the Full3D registration we got an average score of 0.8163 for the
one-to-all registration using a majority vote consolidation. For Full3D regis-
tration the average Dice Coefficient was 0.8391 the average distance 5.8676.

5 Team Evaluation

We compared the performance of Sagital Detection + 2D Rotation and
Full3D, and observed superior performance on the latter. Thus, this was
the approach we submitt for the course contest. The Full3D method was
entirely developed by Rob so we must deserve a contribution score of 3. We
interchanged ideas about both registration methods and about how was the
best way to consolidate a bounding box (or a thalamus mask) after comput-
ing the alignment transformations. Since I also implemented a registration
method for the task, that despite its simplicity provides an acceptable perfor-
mance I would give a score of 2 to my contribution. Our submitted method
(Full3D) got a slightly lower performance than the expected in the contest.
According to the contest results our method performed well on the imges
prefixed by 100 but did not do as well for those prefixed by 200.

6 Conclusions

Full3D registration provided a superior performance compared to my sym-
metry based approach. This is sound given that Full3D registration cou-
pled with a Quasi-Newton solver allow a wider parameter space search. My
method is also prone to a poor initialization : if the central sagital plane
is not properly identified at the beginning this wont be corrected at further
steps of the algorithm. Also the use of a NCC energy was more robust than
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the more simple SSD. Our best method (Full3D) performed satisfactory both
in trainning data and int the contest.
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