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Abstract

In the first half of this report I present a brief review of MAXQP and a description of my
greedy and SDP approaches, as well as some other attempted ideas. In the second part, I focus on
MAX2CORR. Particularly, I present a probably good approximation of MAX2CORR
in cubic graphs. This is obtained by adapting Zwicks[8] CSDP+LI approach of MAXCUT
in cubic graphs. This approximation factor should be slightly improved using tighter bounds,
and it was calculated using computer assisted techniques1. The new factor outperforms the 1{3
approximation factor obtained independently from the Greedy and the SDP approach.

1 Formulation

Our formulation is based in MAXQP[1]:

Problem 1. Let A be a real nˆ n zero-diagonal matrix.
Maximize

qApxq “ xTAx

Subject to
x P t´1, 1un

Observations:

• Adding diagonal terms to A increases the value of the objective function by the constant
term

řn
i“1 di. Therefore, the optimality of a vector x˚ is invariant to the diagonal values.

This justifies the formulation of the problem using a zero-diagonal matrix.

• The matrix A is not necessarily symmetric. Since xTAx “ 1
2x

T pA ` AT qx, we get an
equivalent energy function defined for the symmetric matrix A “ 1

2pA`A
T q. WLOG I will

assume that A is symmetric.

• The matrix A can be associated to a real-weighted loop free graph. Specifically, we will
associate matrix A with the undirected graph GA with weights wij “ aij ` aji for the edge
pijq (see Figure 1). Then, our objective function can be written as the sum of edge weights
multiplied by the vertices signs:

1My current approximation factor is 0.8221. This follows an standard approach used by Zwick[10][8] to get a 7{8-
approximation of MAX3SAT, and a 0.9326-approximation of MAXCUT in cubic graphs. The approximation factor
was obtained from my naive MATLAB implementation, which still does not perform a detailed domain search due to
the large computational time. Any way, the real factor can be accurately computed as was done in the previously cited
examples. I think the real factor should not be too far from the one I computed. This seems to be a promising result,
and may be this could provide a good bound of MAX2CORR on cubic graphs.
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qApxq “
ÿ

i,j

aijxixj “
ÿ

pijqPEpGAq

wijxixj (1)

We said that an edge is satisfied whenever signpwijq “ signpxixjq.

(a) Graph GA (b) Problem Instance (c) Optimal Solution

Figure 1: The value of OPT is 27. Observe that for any optimal solution x˚, we have that ´x˚ is
also optimal. In this case the edges p2, 5q and p2, 3q are the only not satisfied.

1.1 Well Defined

In order to prove that MAXQP is a well defined problem we need to check OPTQP ě 0. This
follows from this simple claim

Proposition 1. Let A be a real nˆ n zero-diagonal matrix. Choose x uniformly at random in
t´1, 1un. Then EpqApxqq “ 0

Proof. Since the variables are independent, and all satisfy Epxiq “ 0, we get,

EpqApxqq “
ÿ

i,j

aijEpxixjq “
ÿ

i,j

aijEpxiqEpxjq “ 0

The result above is sufficient to prove that our problem is well defined but does not give a
significant lower bound. A larger lower bound of MAXQP can be obtained using matchings2

Proposition 2. Let GA be the graph associated to A, and G|A| the graph obtained by taking
the absolute value at each edge. Let MaxMatchpG|A|q denote the maximum sum of edge weights
in a match of G|A|. Then we have OPTQP ď MaxMatchp|G|A|q

Proof. Let pi1, j1q, pi2, j2q, . . . , pitn{2u, jtn{2uq be a maximum weighted match. For all pairs define
the following random assignations:

If wpik,jkq ą 0 then assign

#

xik “ xjk “ 1 with probability 1{2

xik “ xjk “ ´1 with probability 1{2

If wpik,jkq ă 0 then assign

#

xik “ 1, xjk “ ´1 with probability 1{2

xik “ ´1, xjk “ 1 with probability 1{2

2This is just an adaptation of the result presented in [1]
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Then,

EpqApxqq “
ÿ

pi,jq match edge

|wij |Epxixjq `
ÿ

pi,jq non match edge

|wij |Epxixjq

“
ÿ

pi,jq match edge

|wij |Ep1q `
ÿ

pi,jq non match edge

|wij |EpxiqEpxjq

“
ÿ

pi,jq match edge

|wij |

(2)

1.2 Relation to Other Problems

Real Weighted MAXCUT: Let’s denote W :“
ř

i,j aij “
ř

pijqPEpGAq
wij the total weight

of the graph. Let δGA
pxq :“

ř

xi‰xj
aij “

ř

pijqPEpGAq:xi‰xj
wij be the value of the cut on GA

induced by x. We have the following relation:

qApxq “
ÿ

i,j

aijxixj

“
ÿ

i,j

aij ´ 2
ÿ

xi‰xj

aij

“W ´ 2δGA
pxq

Denote by G´A the graph with identical connectivity of A but edges with opposite sign. Then
we get

max
x

qApxq “W ` 2 max
x

δG´A
pxq (3)

This equation provide a relation between real-weighted MAXCUT and MAXQP

MAXCUT: This is a particular case of the relation provided by equation 3, when all the
edges in G´A have positive weight (i.e., if all the wij ’s are negative). As we will see further, the
GW[6] 0.878-approximation does not provide any approximation of MAXQP.

2-Clustering Problems:

For the next three problems, we assume that GApV,Eq is a graph with edge weigths in t´1, 1u
and x P t´1.1u|V | defines a partition of the vertices set in two clusters. Define W` :“
ř

pijqPEpGAq
|wij | “ |EpGAq|.

MAX-2AGREE3: Define AgrGA
pxq “ |tpijq P EpGAq : wijxixj “ 1u|. It follows that

qApxq “ AgrGA
pxq ´ pW` ´AgrGA

pxqq “ 2AgrGA
pxq ´W`

Thus

max
x

qApxq “ 2 max
x

AgrGA
pxq ´W` (4)

MIN-2DISAGREE: Define DisGA
pxq “ |tpijq P EpGAq : wijxixj “ ´1u|. It follows that

3This is equivalent to MAX-2XOR
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qApxq “ pW
` ´DisGA

q ´DisGA
pxq “W` ´ 2DisGA

pxq

Thus

max
x

qApxq “W` ´ 2 min
x
DisGA

pxq (5)

MAX-2CORR: Define CorGA
pxq “ AgrGA

pxq ´DisGA
pxq. From the previous definitions

it follow that,

CorGA
pxq “

1

2
pqApxq `W

`q ´
1

2
pW` ´ qApxqq “ qApxq

Thus

max
x

qApxq “ max
x

CorGA
pxq (6)

Proposition 3. Constant approximations to MAXCUT or MAX-2AGREE does not provide
any approximation of MAXQP. In fact, they do not guarantee positivity of MAXQP.

Proof. I present the analysis for MAXCUT and for MAX-2AGREE is analogous. Let ´K2n be
the complete graph of 2n vertices with all edges of weight ´1. From equation 3, we get that
OPTQPp´K2nq “W`2 OPTMAXCUTpK2nq. For this graph we have W “ ´

2np2n´1q
2 “ ´2n2`n,

and it is easy to check OPTMAXCUTpK2nq “ n2. Suppose we have an algorithm providing a
constant α ă 1 approximation to MAXCUT. Computing the value of the quadratic function
from such approximation, we get qpxq “ n´ 2p1´ αqn2, which is negative when nÑ8.

1.3 Known Results

The following are the main results known about particular and general instances of MAXQP:

1. For planar graphs OPT of MAXQP can be computed in polynomial time. This was proven
by Hadlock [11] in the context of real weighted MAXCUT, so can be adapted for MAXQP
by the equivalence described in the previous section. Hadlock reduce the problem to find a
maximum weigthed matching in an expanded graph, which can be computed in polynomial
time from Edmonds algorithm.

2. Charikar and Wirth [1] provide Ωp 1
lognq-approximation for the general instance of MAXQP.

This is the best approximation factor known about this problem (to my extent), and was
obtained from a standard SDP relaxation (defined below) and a thorough rounding tech-
nique. This Ωp 1

lognq is also the best approximation factor known for MAXCORR.

Standard SDP: Maximize
ř

i,j aijvi ¨ vj s.t. vi P Rn, ||vi|| “ 1.

3. Alon and Naor [2] present a detailed analysis of the gap between the integer and vector
solutions of the standard SDP. They prove that this gap depends on the graph connectivity.
Let KpGq be the maximum gap between the optimal integer solution and the optimal vector
solution over all possible edge weights assignations on G. The authors prove:

ΩplogωpGqq “ KpGq “ OplogχpGqq

where ωpGq “ maximum clique, and χpGq=chromatic number. If G is complete we get
KpGq “ θplog nq. Therefore, the approximation factor of Charikar and Wirth is of the best
order that can be obtained from the standard SDP.
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4. Charikar and Wirth [1] prove that it is NP-hard to approximate MAXQP within a factor
of 11

13 ` ε.

2 Personal approaches to MAXQP in general instances

2.1 Greedy

We formulate the greedy approach having in mind the graph interpretation described in the
first section. For each vertex i, we define the value of its ring as Ri “

ř

jPNpiqwijxj . Then

qpxq “ 1
2

ř

iRixi since each edge is counted in two rings.

GreedyMAXQP
x initialized at random
S “ ti : Rixi ă 0u
while (S ‰ H)
Pick i P S
xi Ð ´xi
Update S
end while
return x

The following conclusions about general MAXQP can be derived from the greedy algorithm:

• The optimal value for MAXQP in r´1, 1sn is the same than in t´1, 1un: Let y P r´1, 1sn

be an optimal solution. If yi is a non integer coordinate we must have Ri “ 0 ( otherwise,
we can improve the solution by taking yi “ signpRiq). From this condition it follows that
any assignation to t´1, 1u of the non integer coordinates of y is a solution of the integer
problem with identical optimal value.

• GreedyMAXQP converges to a local optimal solution: The algorithm produces a sequence
of monotonically increasing values. The finite number of configurations (2n) and the mono-
tonicity guarantees termination in finite number of steps. I did not find a prove of polyno-
mial time termination for general instances of the problem. Also, no guarantee was found
on the approximation factor of the local optimal to OPTQP .

• Rix
˚
i ě 0 for all i in the OPTQP and the local optima of GreedyMAXQP : If x is a solution

that does not satisfy this condition for some i, a better result can be obtained by taking
xi “ signpRiq.

• Using the previous, result and defining mi “ min
xPt´1,1un

|
ÿ

jPNpiq

wijxj |, we get

OPTQP ě
1

2

n
ÿ

i“1

mi

This provides other proof of the positivity of MAXQP, and similar bound to Proposition 2.

• For the particular case of correlation cubic graphs (see definition in section 3), each mi ě 1,

so we get, OPTQP ě
1
2

n
ÿ

i“1

mi ě
n

2
, where n is the number of vertices. Observe that the

total number of edges in a cubic graph is 3n
2 , so this is also a upper bound of OPTQP . In

this case it is easy to check that the local optima of GreedyMAXQP satisfies Rix
˚
i ě 1 (by
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the same reason mi ě 1), so we conclude that 1
3 OPTQP ď

1
3p

3n
2 q “

n
2 ď GreedyMAXQP .

Therefore, GreedyMAXQP provides a 1
3 -approximation of MAXQP in correlation cubic

graphs.

2.2 SDP

In Charikar and Wirth[1], the projection-rounding technique used on the solution of the standard
SDP relaxation is based in a generalized approach introduced in [4]. Specifically, this rounding
technique provide an approximation:

Epqpxqq ě OPTQP

´ 1

4 log n
´ 8

1

n
q,

which is valid for large n.
For comparison, I compute the expected result using the standard hyperplane rounding tech-

nique [6]: Let v1, . . . , vn be the optimal solution of the standard SDP relaxation, and n a random
vector chosen uniformly on Sn´1. Let x be the rounded solution, defined as xi “ 1 if vi ¨ n ą 0
and xi “ ´1 otherwise. Then, it can be checked:

Epxixjq “ 1p
π ´ arccospvi ¨ vjq

π
q ` p´1qp

arccospvi ¨ vjq

π
q “

π ´ 2 arccospvi ¨ vjq

π
(7)

We can write π´2 arccospµq
π “ µ ` εpµq, where εpµq P r´0.22, 0.22s as can be observed from

Figure 2. Defining W` “
ř

ij |aij |, we get

Epqpxqq “
ÿ

ij

aijEpxixjq “
ÿ

ij

aijpvi ¨ vj ` εpvi ¨ vjqq ě OPTQP ´ 0.22W`

If αOPTQP ąW` with 1 ď α ă 4.5, we get a constant approximation,

Epqpxqq ě p1´ 0.22αqOPTQP (8)

In general the ratio
OPTQP

W` can be done arbitrarily small as shown in Proposition 3. So
the result of equation 8 only can be applied to limited instances. One of such instances are
correlation cubic graphs (see definition in section 3). From the greedy algorithm, we already
know that 3 OPTQP ě W`. Plugging this in equation 8 (using α “ 3), we obtain that the
standard hyperplane rounding of the SDP also provide a 1 ´ 0.22 ˚ 3 « 1

3 approximation of
OPTQP.

2.3 Other Approaches

2.3.1 LP

Observe that for any x P t´1, 1un, the energy function

qApxq “
ÿ

i,j

aijxixj “
ÿ

i,j

aijp1´ |xi ´ xj |q “
ÿ

i,j

aij ´
ÿ

i,j

aij |xi ´ xj |

Therefore, in the integer set, computing the optimal of MAXQP is equivalent to solve

Problem 2. Minimize
ÿ

i,j

aij |xi ´ xj |

Subject to,
x P t´1, 1un
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(a) Comparison (b) Absolute Difference

Figure 2: (a) Plots π´2 arccospµq
π

vs µ. (b) Plots the absolute value of the difference.

The problem above is not even an IP, due to the non-linearity of the objective function. At
first glance, this problem could resemblance the approach to facility location presented in class,
where an intial nonlinear formulation of problem ( using linear combinations of l1 norms of vec-
tors) is transformed to a LP. However, we will show that in this case such transformation is not
possible.

We would like to introduce variables zij such that zij “ |xi ´ xj |. So the problem now is
stated as

Minimize
ÿ

i,j

aijzij

Subject to,
zij “ |xi ´ xj |

x P t´1, 1un

The inequality zij ě |xi ´ xj | can be done using the trick :

zij ě |xi ´ xj | ðñ

#

zij ě xi ´ xj

zij ě xj ´ xi

On the other hand, a formulation of zij ď |xi ´ xj | can not be attained in a direct way. Lets
decompose the energy function in two terms:

ÿ

i,j

aijzij “
ÿ

aiją0

aijzij `
ÿ

aijă0

aijzij

For the pairs in
ř

aiją0
aij |xi ´ xj |, the condition zij ě |xi ´ xj | is enough to guarantee

zij “ |xi ´ xj | at the optimal solution. Analogously, for the pairs in
ř

aijă0
aij |xi ´ xj |, the

condition zij ď |xi ´ xj | would be enough to guarantee zij “ |xi ´ xj | at the optimal solution.

My attempt to express zij ď |xi´xj | as a set of linear inequalities was based in the following
idea:

zij ď |xi ´ xj | ðñ

#

zij ď 2|xi ´ xj | ´ pxi ´ xjq

zij ď 2|xi ´ xj | ´ pxj ´ xiq
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Then, I a introduced new variable uij for all negative aij ’s. The formulation for the part of
the problem associated only to the negatives aij ’s is as follows:

Minimize
ÿ

aijă0

aijzij `
ÿ

aijă0

pijuij

Subject to,
uij ě xi ´ xj if aij ă 0

uij ě xj ´ xi if aij ă 0

zij ď 2uij ´ pxi ´ xjq if aij ă 0

zij ď 2uij ´ pxj ´ xiq if aij ă 0

x P t´1, 1un

I associate to each uij a positive weights pij in the objective function. The intuition is that the
objective function should force uij to approximate |xi ´ xj |. If uij indeed approximate |xi ´ xj |,
then the objective function should also force zij to approximate |xi ´ xj |. However, since both
terms

ř

aijă0
aijzij and

ř

aijă0
pijuij are optimized simultaneously, my two step argument does

not hold. In fact, the previous formulation is equivalent to

Minimize
ÿ

aijă0

p2aij ´ pijquij ´
ÿ

aijă0

|xi ´ xj |

Subject to
uij ą |xi ´ xj |

x P t´1, 1un

If 2aij ´ pij ă 0 the global problem is unbounded (by taking uij Ñ 8). If 2aij ´ pij ě 0
then the optimal solution for the global problem is given by xi “ xj “ 1 and uij “ 0, what are
non relevant values.

2.3.2 Sampling And Consensus

Other approach we attempted for MAXQP was based is sampling and consensus. The idea is
that a complete graph4 can be decomposed in a basis of as chains or trees, and the optima of
the problem restriction to this kind of subgraphs is easily computed (see Figure ??).

The naive algorithm proposed is as follows (and illustrated in Figure 3):

Sampling+Consensus
Fix a vertex v1 to be positive.
For all vertices define pi “ ni “ 0
for i “ 1 : numiterations
Let Si be a subgraph of G, where Si is either a chain or a tree containing v1.
Compute the optimal solution of the problem restricted to Si taking vi “ 1.
If vertex i is positive in the restricted solution, set pi Ð pi ` 1.
If vertex i is negative in the restricted solution, set ni Ð ni ` 1.

4WLOG we can assume the graph complete by taking weight equal to zero is absent edges.
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end for
If pi ą ni set xi “ 1
Else set xi “ ´1
return x

(a) Reference

(b) Chains (c) Trees

Figure 3: By fixing the sign of one of the vertices the optimal solution of a tree or a chain is unique.

The intuition behind this approach is that we can write qpxq “ 1
Edge Rep.

ř

ciPChains cipxq and

qpxq “ 1
Edge Rep.

ř

tiPTrees
tipxq. What Sampling+Consensus naively try to do is to find a

vertex assignation that maximizes the larger number of chains or trees. However since the best
assignation is computed for each vertex independently I was not able to provide a global guar-
antee.

It would be interesting to see how this method works in practice. Some modification may
include update pi and ni using a value dependent of the particular subgraph (e.g., the absolute
value of the minimum edge),and a probabilistic rounding from the sampling results. Cycles and
small cliques are other interesting type of subgraphs that may be considered.

3 Probably Good Approximation Factors of MAX-

2CORR in cubic graphs

In the previous section we presented a 1
3 -approximation of MAXQP in correlation cubic graphs

(now ahead I will refer this problem as MAX-2CORR in cubic graphs). In this section I present a
probably better approximation using a constrained SDP problem followed by local improvement
steps. For clarity lets restate the basic definitions:

A correlation cubic graph is graph of degree 3 at all its vertices, and edge weights wij in
t´1, 1u. MAX-2CORR is the problem of finding a vertex assignation xi in t´1, 1u, such that
ř

pijqPEpGqwijxixj is maximized.
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Let introduce the basic ideas that motivated my approach:

Feige et.al. [5] presented an improvement of the GW[6] 0.878-approximation of MAXCUT
for general graphs, to a 0.921-approximation in the particular case of cubic graphs. The authors
presents two fundamental ideas: (1) the inclusion of a set of constraints in the SDP and (2) a set
of local improvement steps. The set of constraints added to the SDP are satisfied by the integer
problem, thus reducing the integral gap between the integer solution and the vector solution.
The local improvement steps increases the value of the integer solution provided by the rounded
vector solution, thus also reduces the integral gap.

A further improvement was attained by Zwick et.al.[10] by formulating the cut problem as
a particular instance of MAX-2XOR, and providing a 0.9326-approximation of MAX-2XOR in
cubic graphs. The approach of Zwick et.al., follows closely the one of Feige et.al.[5], but there
are three notorious differences: (1) It uses a different objective function (the 2-XOR, instead of
the CUT function), (2) It introduces new constraints (reducing further the integral gap), and
(3) The local improvement step is simpler and may provides larger increases.

Here I present my adaptation of these techniques to the MAX-2CORR problem. By simplic-
ity, I will be following very closely the approach of Zwick et.al. rather than Feige et.al.

The algorithm can be described in three steps:

CSDP+LI MAX-2CORR

1. Solve the constrained SDP.

2. Round the vector solution using a random hyperplane.

3. Improve the solution using local steps.

(1)Solve the constrained SDP.

Problem 3. Maximize
ÿ

aijPE

aijvi ¨ vj

Subject to:
vi ¨ vj ` vi ¨ vk ` vj ¨ vk ě ´1, pI1q, 1 ď i, j, k ď n

vi ¨ vj ´ vi ¨ vk ´ vj ¨ vk ě ´1, pI2q, 1 ď i, j, k ď n

vi ¨ vj ` vi ¨ vk ` vj ¨ vk “ ´1, pE1q, if aij “ ´1, aik “ ´1,

´vi ¨ vj ´ vi ¨ vk ` vj ¨ vk “ ´1, pE2q, if aij “ 1, aik “ 1,

vi ¨ vj ´ vi ¨ vk ´ vj ¨ vk “ ´1, pE3q, if aij “ ´1, aik “ 1,

vi P Rn, ||vi|| “ 1, pV q, 1 ď i ď n

(9)

To understand where these constrains come from lets introduce the function f : t´1, 1u3 Ñ
t3,´1u, where fpxi, xj , xkq “ xixj ` xixk ` xjxk. We must notice two properties of f :

1. fpxi, xj , xkq “ 3 just for the triples p1, 1, 1q and p´1,´1,´1q. fpxi, xj , xkq “ ´1 for the
remain 6 triples.

2. fp´xi, xj , xkq “ ´xixj´xixk`xjxk and fpxi, xj ,´xkq “ xixj´xixk´xjxk, are the integer
equivalent expression for constrains E2 and E3. From the previous item we also get that
there are 6 triples satisfying fp´xi, xj , xkq “ ´1 and 6 triples satisfying fp´xi, xj , xkq “ ´1
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The constrains pI1q and pI2q can be called soft constrains and as we have seen, they are
satisfied by any triple pxi, xj , xkq P t´1, 1u3. In particular, the optimal integer solution satisfy
these constrain, so adding them to the SDP wont increase the integral gap.

Constrains pE1q,pE2q, and pE3q can be called hard constrains, and capture specific properties
of the integer optimal. We say that an arc is a pair of edges pij, ikq with i as a vertex in common.
These hard constrains discard the configurations where both edges in the arc are unsatisfied (this
is, discarding two of the eight possible signs assignation in each case). The cases discarded are
shown in Figure 5. Since any vertex in the integer OPT has at most one unsatisfied adjacent
edge (this follows from the greedy algorithm), all these constrains are satisfied by the integer
OPT, so adding them to the SDP wont increase the integral gap.

Figure 4: Configurations discarded by the hard constrains.

(2)Round the vector solution using a random hyperplane.

The optimal vector solution of the SDP is rounded using standard random hyperplane tech-
niques. As was shown in section 2, the rounded integer solution satisfies:

Epxixjq “
π ´ 2 arccospvi ¨ vjq

π

Where vi’s are the optimal vector solution of the SDP.

(3)Improve the solution using local steps.

Once we obtain an integer approximation from SDP, we proceed to improve this solution
using a sequence of transformations. For clarity, I present a simple algorithm of sequential trans-
formations and give some rough (but still significant) guarantees on its improvements5. The
Zwick analysis provide finer bounds on the guarantees but require thorough work that wont be
described here.

Let Vi be the set of vertices with i unsatisfied edges.

Local Improvement Algorithm
s0 “ Rounded integer solution from SDP
while improvements are possible (give priority to (a)):
(a) Change the sign of a vertex in V3 with minimum number of neighbours in V3.
(b) For a path of unsatisfied edges through the vertices x´u1´u2´ . . .´uk´ y, with x, y R V2,

5The improvement algorithm is the same than Zwick’s. However, for the analysis of the guarantees I am not assuming
an initial reduction of the graph, or separating triangle free and non triangle free cases.

11



change the sign of u1is with i odd.
(c ) For a cycle of unsatisfied edges through the vertices u1´ u2´ . . .´ uk ´ u1, change the sign
of u1is with i even.
end while

The following proposition states the guarantees provided by this algorithm:

Proposition 4. Let s be an initial signed vertex assignation obtained by the rounded SDP.
Then the Local Improvement Algorithm increases the solution by at least 2

3 |V2| `
20
9 |V3|.

Proof. The prove follows Zwick’s ideas. If qpsq “ OPT , then V2 “ V3 “ 0, and the condition
trivially holds in this case. Now we proceed by decreasing induction on the value of the quadratic
function: Let s be an assignation of value OPT ´ k and assume that the proposition is valid for
all assignation of larger value.

Observe that if all vertices in V3 has 3 neighbours in V3, then V “ V3 (i.e, all vertices are
in V3 assuming V is connected). This configuration provides the smallest value of the quadratic
function, so it is highly improbable that such configuration corresponds to a rounded solution
of the SDP vector optimum6. Since the Local Improvement Algorithm provide a sequence of
monotonic increasing values of the function, this worst configuration wont be reached from any
other configuration. For simplicity and following the previous arguments, we skip the analysis
of this configuration.

Suppose we are in an instance of (a). Let v P V3 the vertex to be changed of sign. Let n2
be number of neighbours in V2 and n3 the number of neighbours in V3. We know n2 ` n3 ď 3
and n3 ď 2. When the algorithm changes the sign of a vertex in V3, the function value increases
by 6, and from the induction hypothesis, we can improve the new configuration by at least,
2
3p|V2| ´n2`n3q `

20
9 p|V3| ´n3´ 1q. Therefore the total gain from the initial configuration is at

least,

2

3
|V2| `

20

9
|V3| `

34´ 14n3 ´ 6n2
9

ě
2

3
|V2| `

20

9
|V3|

Suppose we are in instance of (b) or (c). Observe that all the vertices in u1, u2, . . . uk belong
to V2 (otherwise we would still be in case (a)), so the exterior edge adjacent to each ui that is not
in the path must be satisfied. If we change the sign of the vertices in odd positions in the case
(b) (resp. the even position in case (c)), the value of the quadratic function increases by 2tk`12 u

(resp. 2tk2 u in (c)) since 2tk`12 u edges passes from unsatisfied to satisfied, and tk`12 u edges passes
from satisfied to unsatisfied (resp in (c)). Since exterior edges are satisfied there is no risk that
exterior vertices to the cycle be “downgraded” from V2 to V1, instead, it may happen that some
exterior vertices be upgraded from V2 to V3 or from V1 to V2 what is good for us. Then by the
induction hypothesis the new configuration can be improved by at least 2

3p|V2| ´ kq. Therefore
the total gain from the initial configuration of instance (b) and (c) is at least,

2

3
p|V2| ´ kq ` 2t

k

2
u ě

2

3
|V2| “

2

3
|V2| `

20

9
|V3|

The above inequality is satisfied (i.e., the worst case) for a triangle with vertices in V2.

6I think that it should be possible show from the SDP constraints that the probability of having a worst case
initialization is either 0 or much less than any other configuration
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Let plpiq be the probability that vertex i, obtained from the rounded SDP solution, belong
to Vl, where l “ 2, 3. Combining the results of the rounding and the improvement algorithm we
get that for the rounded solution x,

Epxq “
ÿ

i,jPEpGq

wijEpxixjq `
2

3

ÿ

iPV pGq

p2piq `
20

9

ÿ

iPV pGq

p3piq

“
ÿ

i,jPEpGq

wij
π ´ 2 arccospvi ¨ vjq

π
`

2

3

ÿ

iPV pGq

p2piq `
20

9

ÿ

iPV pGq

p3piq

(10)

To compute p2piq and p3piq we must check the sign of the edges adjacent to vertex i. For
each of the 4 possible configurations of edge neighbourhood, the probabilities that the central
vertex is in p2piq and p3piq is given in the next table. pHpa, b, c, dq denotes the probability that
vectors a, b, c, d are in the same side of the random rounding hyperplane.

Configuration p3p1q p2p1q

pHp´v1, v2, v3, v4q pHp´v1,´v2, v3, v4q ` pHp´v1, v2,´v3, v4q ` pHp´v1, v2, v3,´v4q

pHp´v1, v2, v3,´v4q pHp´v1,´v2, v3,´v4q ` pHp´v1, v2,´v3,´v4q ` pHp´v1, v2, v3, v4q

pHpv1,´v2, v3, v4q pHpv1, v2, v3, v4q ` pHpv1,´v2,´v3, v4q ` pHpv1,´v2, v3,´v4q

pHpv1, v2, v3, v4q pHpv1,´v2, v3, v4q ` pHpv1, v2,´v3, v4q ` pHpv1, v2, v3,´v4q

Observe that the ratio between the Epxq and OPTSDP satisfies:

Epxq

OPTSDP
“

ř

i,jPEpGqwij
π´2 arccospvi¨vjq

π ` 2
3

ř

iPV pGq p2piq `
20
9

ř

iPV pGq p3piq
ř

i,jPEpGqwijvi ¨ vj

“

ř

PV pGq

´

ř

jPNpiq
1
2wij

π´2 arccospvi¨vjq
π ` 2

3p2piq `
20
9 p3piq

¯

ř

iPV pGq

´

ř

jPNpiq
1
2wijvi ¨ vj

¯

ě min
iPV pGq

ř

jPNpiq
1
2wij

π´2 arccospvi¨vjq
π ` 2

3p2piq `
20
9 p3piq

ř

jPNpiq
1
2wijvi ¨ vj

(11)

The previous assumes that
ř

jPNpiq
1
2wijvi ¨ vj ą 0 for all vertices i. I do not have a rigorous

proof of this, however there are very strong facts that should make this condition hold: (1) It
is true for the integer OPT, (2) here the vectors v’s are the solution OPTSDP, (3) the SDP
constraints may not allow negative values for this term (4) numerical results.
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For each of the 4 possible configurations of edge adjacency values, define7,

Ck :“ min
v1,v2,v3,v4

1
2

´

ak12
π´2 arccospv1¨v2q

π ` ak13
π´2 arccospv1¨v3q

π ` ak14
π´2 arccospv1¨v4q

π

¯

` 2
3p
k
2piq `

20
9 p

k
3piq

1
2pa

k
12v1 ¨ v2 ` a

k
13v1 ¨ v3 ` a

k
14v1 ¨ v4q

(12)
Subject to the SDP constraints of Equation 9.

Let C :“ mink Ck. From Equation 11, and the previous definition we get that Epxq
OPTSDP

ě C,
i.e., CSDP+LI MAX-2CORR provide a C-approximation of MAX-2CORR.

The value of C can be calculated from a computer assisted technique. This is the kind of
approach presented in [8][10] for MAX-3SAT, and MAX-2XOR in cubic graphs. It consists on
doing a discrete search in the hole domain and bounding the derivative of the function.

In our case, since the function only depends of 4 vectors, we can limit the search to S3. The
hard part of the computations is the estimation of pH , i.e., the probability of 4 vector to belong
in the same side of a random hyperplane. As described by [10], this probability is just a function
of the angles formed by each pair of vectors, but no closed formula is known.

I did a very basic MATLAB implementation of a discrete search on S3 of the minimum of
equation12 subject to the SDP constraints of equation 9, for each of the 4 possible configuration.
My implementation genereta 4-tuples of vectors to evaluate using angle parametrization. This
is a very intuitive and easy to implement approach, but does not guarantee uniform distribution
of samples in pS3q4. Computation of pH is done using random sampling from 105 vectors what
provides a result with moderate variance.

The minimum of Equation 12 from the 206 4-tuples provided by my implementation was
0.8221. Although the exact value (which can be computed by a thorough computation) may
be some below the one currently described, this seems to be a promising result. Disregarding
the contribution of the local improvements (i.e, assuming p2piq “ p3piq “ 0) the approximation
factor fall to 0.6634, what corroborates the importance of adding a local improvement term.

I attach the code used and the results.
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