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1 Introduction

In this project we present an overview of (1) low dimensional embedding,
and (2) K-Most Dissimilar Subset detection for a set of samples for which
only the matrix M of pairwise dissimilarity is provided.

For evaluation (and visual validation) our dissimilarity matrix is com-
puted on a collection of shapes, but the analysis and techniques discussed
can be applied to any set that admits a dissimilarity measure.

Following the approach of [2], we compute for each shape xi its charac-
teristic function χi and its euclidean distance transform si. We define,

Mij � min
gPG

xχi, sj � gy � xsi, χj � gy (1)

where G is the set of rigid transformations in R3.

We must notice that an ideal dissimilarity matrix M should satisfy metric
properties1, i.e,Mij � dpxi, xjq for some metric d : X �X Ñ R. Our shape
dissimilarity 1 satisfy positivity, identity, and symmetry properties but not
necessarily triangle inequality2. Methods based in Lp distance of rotational
invariant feature vectors satisfy triangular inequality but tend to have less
discriminative power.

Given a dissimilarity matrix M we will derive two types of affinity ma-
trices that will be used in the sections below. We define the product-affine
matrix A as:

A � �
1

2
JpM dMqJ (2)

1Metric properties are necessary for M to admit a perfect embedding.
2In our evaluation less than 8% of all triplets dont satisfy triangular inequality
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where J � I � 1
N
11J is a centering operator. We also define the kernel-

affine matrix W as:

Wij � expt�
M2

ij

2σ2
u (3)

In contrast to dissimilarity matrices, affinity matrices have large values
at entries associated to similar samples.

Finally, we denote by K to the k-nearest neighbor mask associated to M .
The k-nearest neighbor affinity matrix correspond to W d K. Abusing of
notation, we will keep denoting those affinity matrices as W .

2 Low Dimensional Embedding

Problem 1: Given dissimilarity M compute Y � ty1, . . . , yNu � Rd that
minimizes,

argminY
¸

i,j

p||yi � yj|| �Mijq
2 (4)

The problem above is non-convex and not admit a close form solution.

2.1 MultiDimension Scaling(MDS)

MDS states an alternative problem in terms of inner-product affinities,

argminY
¸

i,j

pxyi, yjy � aijq
2 � argminY ||Y

JY � A||2F (5)

Close form solution to this problem is given by Y J � RΣ
1{2
d Ud , i.e., an

optimal d-rank approxiamtion of A.

In equation 2 we formulate the relation between dissimilarity matrix and
inner-product affinity matrix. Lets formalize this derivation:
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Proposition 1. Given x1, . . . , xN � RD, let xi � Uyi � µ be its principal
componet decomposition. Define Mij � ||xi � xj|| and Aij � xyi, yjy. Then
A � �1

2
JpM dMqJ

Proof.

pM dMqij �M2
ij � ||xi � xj||

2 � ||yi � yj||
2 � ||yi||

2 � 2xyi, yjy � ||yj||
2

For any matrix T , pJTJqij � Tij � T i � T j � T . Since ȳ � 0, it can

be checked that pM dMqi � ||yi||
2 � ||y||

2
,pM dMqj � ||yj||

2 � ||y||
2
, and

pM dMq � 2||y||
2
. Thus �1

2
pJpM dMqJqij � xyi, yjy.

From the previous proposition, we obtain the next corollary,

Corollary 2. If M is the dissimilarity matrix of points in a d-dimensional
affine linear space, and A � �1

2
JpM dMqJ , then MDS provides a perfect

embedding (i.e. energy 4 is zero).

2.2 Laplacian Eigenmaps(LE)

LE minimize an energy that also admits close form solution,

argminY
¸

i,j

wij||yi � yj||
2 s.t. YD1 � 0 and YDY J � I (6)

The embedding in this case is given by the second to (d+1)-st eigevectors
of the generalized eigenvalue problem, LY J � ∆DY J where L � D �W ,
and Dii �

°
j wij

Large values of wij enforce proximity between yi and yj, while the con-
straints avoid a trivial solution. In fact, the following condition holds.

Proposition 3. Let ρi �
Dii°
i Dii

, and tyiui the embedding positions. Then the

weighted point distribution pyi, ρiqi has zero mean and covariance 1°
i Dii

Id.

For our evaluation we set wij � expt�
M2

ij

2σ2 u where σ2 �M2
ij. We evaluate

LE with both normalized and unnormalized constraints and with different
k-nearest neighbour masks.
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2.3 Low Dimensional Embedding Evaluation

All the tests in this section were done on a sequence of 2283 frames captured
in a continuous performance.

Test 1 : MDS Approximation Ratio

In this experiment we plot the approximation ratio 1 �
||Y JY�A||2F

||A||2F
as a

function of the embedding dimension d. For d � 3 we get an approximation
ratio of 0.72. Since A is not positive definite it can not represented as Y JY ,
however for this example we get an optimal approximation error of 0.9809.

Figure 1: Approximation Ratio.

Test 2 : Scaled Embedding Error

Given an embedding Y � ty1, . . . , yNu we define the optimal scaling λ as

argminλ
¸

i,j

p||λyi � λyj|| �Mijq
2 (7)

Solution to equation above is given by λ �
°
||yi�yj ||Mij°
||yi�yj ||2

. The scaled em-

bedding error is the value of the energy in 7 for the optimal scaling.

The following were the results of this test for 3 dimensional embedding
on the evaluation sequence
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Zero Emb. Rand. Emb. MDS LE LE-10NN
5.11e+14 8.78e+13 4.46e+13 4.80e+13 2.37e+14

As expected MDS provided the best embedding error3.

Test 3 : Embedding Qualitative Results

In Figure 3 we observe the embedding provided by LE, LE-10NN and
MDS. The embedding for LE-10NN looks like a self intersecting curve. This is
particularly nice for a pose collection obtained from a continuous motion since
consecutive frames are mapped to consecutive points in the curve. However,
since the embedding only consider local similarity, very different poses can
be (and are indeed ) mapped to close points. On the other hand LE and
MDS provided suprisingly similar embeddings. Both embeddings perform a
satisfactory job on preserving similar poses close and separating dissimilars.

Figure 2: 3D Embedding Results.

3 K-Most Dissimilar Subset

The second problem we will consider is identifying a subset of samples that
are the most dissimilar among them. We will be considering the following
formulation for this problem:

Problem 2: Given dissimilarty M , identify a subset of size k that
maximize the minimal pairwise distance:

3By Corollary 2, MDS attains zero error of equation 7 when the dissimilarity matrix is
the euclidean distance samples in a d-dimensional subspace.
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max
S�rns,|S|�k

min
i,jPS

Mij (8)

Observe that this problem is combinatorial, and a brute force solution
would require the evaluation of

�
N
K

�
subsets. This is prohibitively expensive

for large values of N and K.

Rather than considering the entire set of N samples we propouse to con-
sider only a small subset of samples that make the combinatorial search
tractable. The set we will be considering is the convex hull of a low dimen-
sional embedding for d � 2, 3.

For d � 2 and d � 3 the convex hull of a set ofN samples can be computed
in OpN log hq where h is the size of the output [1]. For larger dimensions the
complexity is bounded by OpNd{2q.

In Figure 3 we show the percentage of samples (N � 2283) that belong
to the convex hull as a function of the embedding dimension. For d � 2, 3, 4
the number of points in the hull for MDS and LE is roghly 1%, 3% and 10%
of the input size.

Figure 3: Convex Hull. Left: plot of percentage of vertices in the hull as
function of d. Right: convex hull of the 3D embedding for MDS(middle) and
LE(right).
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Test 4: Most dissimilar pair and triplet

For our evaluation set, the most dissimilar pair is p963, 1678q and the most
dissimilar triplet is p645, 1679, 2283q. The convex hull of the 2-dimensional
embeddings provided by LE and MSD (with 19 and 21 samples, resp.) con-
tains the pair p963, 1678q. These convex hulls does not contain the triplet
p645, 1679, 2283q but a very close one : p642, 1679, 2283q (see Figure 3).

Since the d-dimensional embedding provided by LE and MSD is a projec-
tion of the d � 1-dimensional embedding (a projection of the first d coordi-
nates), all the samples belonging to the hull of the d-dimensional embedding
are still in the hull of the higher one. Thus p963, 1678q is keep in the hull of
the 3-dimensional embedding for both methods. Even more, the most dis-
similar triplet p645, 1679, 2283q is perfectly contained in the hull of the 3D
embedding for both methods.

Figure 4: Most dissimilar pair (top) and triplet (bottom). Both are within
the vertices of the convex hull of the 2D and 3D embedding provided by LE
(depicted in the images) and MDS.
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Test 5: Greedy K-Most Dissimilar

A natural approach to generate k dissimilar poses is following a greedy
approach: start by finding the most dissimilar and at each iteration add to
set the element that maximize the minimum distance to the already selected
poses. It is easy to check that such greedy algorithm has complexity OpNk2q.

If we use the Greedy K-Most Dissimilar algorithm to identify the 3 most
dissimilar triplet we get the result p963, 1678, 803q which has dissimilarity
score (i.e., the minima among pairwise similarity) of 2.18e108. Instead, using
exhaustive search in the convex hull of the 2-dimensional embedding of LE
(which evaluates

�
19
3

�
triplets), we get the triplet p642, 1680, 2283q which has

dissimilarity score 2.76e108.

Conclusions

MDS and LE produced a satisfactory embedding of the pose collection:
similar poses where mapped to close points in the embedding, while the most
dissimilar poses were well separated. Despite LE and MDS minimize signif-
icantly different energy functions, there was a surprisingly strong similarity
of the embedding points distributions and samples belonging to the convex
hull. This was an unexepected result since there is no direct relation between
the LE energy 6 and the optimal emebedding energy 4. Further experimental
and theoretical analysis is required to understand the extent of this relation.
In this project we propoused a characterization of the most dissimilar sub-
set. Our testing case reinforced the hypothesis that motivated this project:
the most dissimilar poses (or a very good approximation ) can be directly
obtained from the convex hull of a low dimensional embedding. Additional
evaluation and analysis is required to understand under what conditions this
is the case. Since the convex hull can be efficiently computed ( OpN log hq
for d � 2) and outputs a small subset of vertices ( 1% for d � 2 in our testing
case ) it would be a very useful tool to get a set vertices where the most
dissimilar subset computation can be tractable.

8



References

[1] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quick-
hull algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483,
December 1996.

[2] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min,
William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin.
Modeling by example. ACM Trans. Graph., 23(3), 2004.

9


	Introduction
	Low Dimensional Embedding
	MultiDimension Scaling(MDS)
	Laplacian Eigenmaps(LE)
	Low Dimensional Embedding Evaluation

	K-Most Dissimilar Subset

