Design and Implementation of
Constrained-RPCA Decomposition in CUDA

Fabian Prada-Nino
May 13, 2014

1 Thesis

The thesis of this project is the convenience of massively parallel processors
architectures for the design and implementation of the Alternating Direction
Method of Multipliers(ADMM) (an iterative descent method) on the solution
of a particular optimization problem.

The optimization problem we want to solve is motivated by the constrained-
RPCA decomposition of a signal. Given a vector x, a matrix M, and a parameter
a we solve:

min ||[M|m]||« + «|le]1 st.z=m+e (1)
m,e

This provide a decomposition of the input signal x in a pseudo-projection
on the space spanned by the columns of M, and a sparse vector e.

2 Development

2.1 Algorithm

Constrained RPCA

Initialization();

for i = 1 : total iterations
Update Vectors();
Reduction();
SVD();

end for

Initialization() is a tiny portion of the serial algorithm. We will focus our
efforts on optimizing the iterative section.

The task decomposition induced by the for loop is order dependent: each
iteration strictly requires completion of the iteration before. The parallel opti-
mizations in this project will focus on the design and implementations of the
Update Vectors(),Reduction(), and SVD() methods.

2.2 Decomposition

Update Vectors()

This is an embarrassingly parallel function. Transformations per-coordinate
can be excecuted concurrently. This defines a natural Data/Task decomposi-
tion: each thread runs the transformation for a single coordinate.

Reduction()

This function corresponds to the computation of a dot product between set
of arrays. To take advantage of the multicore architecture this operation will be
decomposed in two reduction steps: a per-block-reduction and a partial-results-
reduction.

Per-block-reduction decompose the arrays in blocks and maps a thread to
compute the product between pair of blocks : given a block size B, thread(i,j)
computes ¢;((j —1)B:jB—1)-m((j —1)B: jB —1).

Partial-results-reduction maps a thread to accumulate the partial results:
thread(i) sums ¢;((j—1)B : jB—1)-m((j—1)B : jB—1) for j = 1 : num—blocks.

SVD()

This function involve a Singular Value Decomposition of a constant size ma-
trix. Parallel optimization of this function' in a massively parallel processor
architecture is challenging: (1) For loop iterations are order dependent (2) Par-
allel portion of the algorithm is small (3) Lots of conditional statements (4) Data
size is too small to actually use a significant amount of computing resources.
Due to these constraints this task was entirely mapped to a single thread.

2.3 Implementation

Kernels
Ideally the entire solution should be computed from a single kernel call (to
avoid kernel overhead). In our problem this was not possible by two reasons:

1. Thread communication is required for the Reduction() step, which would
force to use a single block in a one-kernel-call implementation. How-
ever, using a single block impose constrains on the number of threads and
amount of shared memory that can be used. This was inappropriate to
our problem.

T took as start point an implementation provided at http://www.cs.colorado.edu/ gru-
dic/teaching/CSCI4202/svd.c.

2. Computing SVD() in a single CUDA core was painfully slow. Modifiying
the little parallelizable sections to run in parallel in a warp make the things
worse: the overhead imposed by the conditional statements and the small
data size overshadow parallelism. It turns out that transferring data to
CPU and run the function on the host was around 10x faster.

Update Vectors() and Reduction() were implemented as CUDA kernels and
SVD() as host function. This structure compensates the kernel call overhead by
(1) mapping UpdateVectors() and Reduction() to larger computational resources
and (2) alleviating the SVD() bottleneck. The memory transfer between host
and device is very small (less than 1Kb per iteration) but still a relevant portion
of the running time.

Memory
The matrix M in equation 1 is keep fixed along the entire computation.
Solving equation 1 for a set of k vectors z1, o, .. ., Tk, requires 2k reading passes

on M per iteration. To compare performance of different CUDA memory types,
matrix M was either stored as a (1) linear array in global memory,(2) a 2D
cudaArray in texture memory, (3) or a partial copy in shared memory. Using
the last strategy we just require one reading pass through M in global memory
and 2k passes in shared memory. Data that required successive updates (e.g.
m,e) or multiple reading from global memory (e.g.) was either stored as
registers or shared memory.

3 Results

I compared the performance of the algorithm on two problem instances and
different implementation configurations. For each problem instance M is a
common 4096 x 15 matrix, and the loop runs for 200 iterations. For the Single
Instance z is a 4096 x 1 vector. For the Multiple Instance x is a 4096 x 16
matrix, where each column corresponds to a different instance.

Running Time Per Method (seconds)

MATLAB CUDA GLOBAL CUDA TEXTURE CUDA SHARED

Single Instance 0.362 0.032 0.031 0.028
Multiple Instance 5.673 0.296 0.245 0.241

Running Time Per Section in CUDA SHARED? (seconds)

UpdateVectors() Reduction() SVD() Memory Transfer
Single Instance 0.004 0.003 0.016 0.009
Multiple Instance 0.028 0.003 0.203 0.009

2Similar results were obtained for CUDA GLOBAL and CUDA TEXTURE. Update Vec-
tors() in CUDA GLOBAL took 0.008 and 0.084 seconds in Single and Multiple Instance
respectively due to the larger amount of global memory accesses.

= | Constrained Rl

alpha = 62.8[829.2 fs

Figure 1: Result above was generated mapping a CUDA memory location to an
OpenGL pixel buffer using CUDA graphics interoperability. Solution to single
instances of the problem on a 64 x 64 vector run at 25-30 fps.

4 Conclusions

In this project we discovered some of the gains and challenges of implementing
an iterative algorithm in CUDA. The algorithm choosen provide a rich variety
of tasks: data independent tasks (i.e., embarrassingly parallel), data sharing
tasks (i.e.,thread communication required), and order dependent tasks (inher-
ently serial). This diversity of task allowed identify different features of CUDA
programming :

e Kernel call overhead does not seem to be as harmful to performance as
initially expected. Instead, host-device memory transaction represented a
huge cost on the overall performance. In our results, cost of transactions
were independent of data size which suggest that small transactions should
be avoided as possible.

e GPU is very eflicient on task scheduling and use of computational re-
sources, therefore, granularity must be the central principle on the task
decomposition. As can be observed from the results, running our imple-
mentation on 16 instances was in average more efficient than running on
a single instance.

e Running a serial and highly branched method on a single CUDA core was
a bad deal. Certainly, GPU is not designed for this, but I did not expected
as poor results. I should clarify this situation. Running this portion of
the code on the CPU and even paying for the memory transactions was a
better deal.

