
Efficient Memory Bound Puzzles
Using Pattern Databases

Sujata Doshi, Fabian Monrose, and Aviel D. Rubin

Johns Hopkins University, Computer Science Department, MD, USA
{sdoshi, fabian, rubin}@cs.jhu.edu

Abstract. CPU bound client puzzles have been suggested as a defense
mechanism against connection depletion attacks. However, the wide dis-
parity in CPU speeds prevents such puzzles from being globally deployed.
Recently, Abadi et. al. [1] and Dwork et. al. [2] addressed this limitation
by showing that memory access times vary much less than CPU speeds,
and hence offer a viable alternative. In this paper, we further investigate
the applicability of memory bound puzzles from a new perspective and
propose constructions based on heuristic search methods. Our construc-
tions are derived from a more algorithmic foundation, and as a result,
allow us to easily tune parameters that impact puzzle creation and veri-
fication costs. Moreover, unlike prior approaches, we address client-side
cost and present an extension that allows memory constrained clients
(e.g., PDAs) to implement our construction in a secure fashion.

1 Introduction

The Internet provides users a plethora of services, but at the same time, it
is vulnerable to several attacks. Denial of Service (DoS) attacks, for example,
represent a potentially crippling attack vector by which a user or organization is
deprived of legitimate services, and may be forced to temporarily cease operation.
While many approaches have been suggested as countermeasures to DoS attacks,
one of the more promising avenues for defending against such attacks is based
on the notion of client puzzles [3, 4, 5, 6].

Juels et. al. present one of the first practical solutions that employs CPU puz-
zles to defend against connection depletion attacks. [3]. That approach attempts
to overcome the limitations of SYN-cookies [7] and random dropping of connec-
tions [8] by instead issuing puzzles constructed from time-sensitive parameters,
secret information held by the server, and additional client request information.

To date, the design of client puzzles are bound by either CPU or Memory
constraints of the client. Memory bound puzzles, however, overcome a notable
obstacle in the widespread adoption of client puzzles, namely the large disparity
in client CPU speeds. Recently, Abadi et. al. [1] proposed the first memory-bound
puzzle construction aimed at addressing this disparity, and provide a solution
based on performing a depth first search through a large array.

Unfortunately, while that approach and subsequent work [2] has indeed vali-
dated the conjecture regarding the low disparity in memory access times, we find

J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 98–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Memory Bound Puzzles Using Pattern Databases 99

that prior work in this area lacks a thorough algorithmic foundation. Specifically,
the constructions presented to date involve accessing random locations in a large
array, but unlike some CPU-bound instances, these accesses are not semantically
associated to solving any known hard problem. Furthermore, the memory-bound
puzzle constructions presented thus far incur high creation and verification costs
which themselves can lead to a form of DoS attack. While it may be argued
that by appropriately adjusting the parameters of these constructions the task
remains memory rather than CPU bound, a rigorous empirical evaluation has
yet to be presented.

In this paper we propose a new memory bound puzzle construction based on
heuristic search using pattern databases. One of the primary advantages of such
an approach is that there already exists an equivalence class of problems (such
as the Sliding Tile [9] and the Rubik cube problems [10]) that have been solved
efficiently using memory based heuristics [11, 12], and that can be used as build-
ing blocks in our constructions. Furthermore, this class of problems enhances
the flexibility in controlling the hardness of the client puzzle.1

In what follows, we present constructions based on the Sliding Tile problem,
but note that it can be easily replaced with an equivalent problem. Additionally,
the algorithmic nature of our constructions allows for simple and efficient exten-
sions. Specifically, we consider the case of constrained clients (e.g, PDAs) that
may not have sufficient memory to implement our constructions, and propose
an enhancement which reduces the memory overhead at the client while still
maintaining the security of the scheme.

2 Preliminaries

Our primary goal is to explore memory bound puzzles and appropriate construc-
tions that meet the definition below. For the most part, the properties enlisted
have been introduced elsewhere [3, 1, 2, 13], but we restate them here for com-
pleteness. We also introduce a new Relaxed State property for client puzzles.

Definition 1. Memory Bound Client Puzzles are computable cryptographic
problems which provide the following properties:

– Stateless: The server can verify the puzzle solution without maintaining
state.

– Time-Dependent: The client is allowed limited time range in which the
puzzle must be solved.

– Inexpensive Server-Side Cost: Creation and verification of the puzzle is
inexpensive for the server.

– Controlled Hardness: The server can control the hardness of the puzzle it
sends to the client.

1 For instance, the branching factor of the problem controls the number of paths
that need to be explored in order to reach a solution. Hence, as technology evolves
the building blocks of our constructions can be replaced with ones having a higher
branching factor.

100 S. Doshi, F. Monrose, and A.D. Rubin

– Hardware Independent: The puzzle should not be hardware dependent —
ensuring that the puzzle can be widely deployed.

– Hardness of Pre-computation: It is computationally hard for the client
to pre-compute the puzzle solution. This ensures that while the puzzle can be
reused, its solution is not reusable.

– Random Memory Access: A memory bound function should access ran-
dom memory locations in such a way that the cache memory becomes inef-
fective.

– Slower CPU bound solution variants: A client puzzle, can be solved
by a memory bound or a CPU bound method. However the Memory Bound
algorithm should converge faster than the corresponding CPU bound variant.

– Relaxed State: The server is allowed to maintain a limited amount of state
for puzzle creation and verification. This property is applicable where addi-
tional storage is not a primary concern.

3 Related Work

CPU Bound: Cryptographic puzzles were first introduced by Merkle [14] in the
context of key agreement protocols where the derived session key is the solution
to the puzzle. Juels et. al. [3] further extended the idea of puzzles in an attempt
to provide a countermeasure to connection depletion attacks. Essentially, the
client is forced to perform multiple hash reversals to correctly solve the puz-
zle. While [3] addresses server-side issues, little attention is given to client-side
overhead.

Another approach to building CPU bound puzzles is the use of Hashcash
[15]. HashCash was originally proposed as a countermeasure to email spam,
and hence requires non-interactive cost-functions. The drawback, however, of
a non-interactive approach is that an attacker can pre-compute all the tokens
(solutions) for a given day and temporarily overload the system on that day.

Dean et. al. [4] show the applicability of CPU bound puzzles in protecting
SSL against denial of service attacks and Wang et. al. [16] introduce the notion
of congestion puzzles to defend against DDoS attacks on the IP layer. Wang
and Reiter [5] address the issue of setting puzzle difficulty in the presence of
an adversary with unknown computing power. They present a mechanism of
puzzle auctions where each client bids for resources by tuning the difficulty of
the puzzles it solves. More recently, Waters et. al. [6] point out that the puzzle
distribution itself can be subject to attack, and present a defense mechanism
which outsources the puzzle via a robust external service called a bastion. Both
puzzle auctions and puzzle outsourcing can be adapted to use both CPU and
Memory Bound Puzzles.

Memory Bound: Dwork et. al. consider memory bound constructions for fighting
against spam mail [2]. The basic idea is to accompany email with proof of effort,
in order to reduce the motivation for sending unsolicited email. Here, puzzle
construction involves traversing a static table T of 222 random 32-bit integers,
and the sender is forced to perform a random walk of l steps through this table.

Efficient Memory Bound Puzzles Using Pattern Databases 101

3 1 2

7 5

4 6 8

1 2

3 4 5

6 7 8

Initial Goal

(a) Sliding Tile Problem

1 2

3 4 5

6 7 8

x x

x x x

x x x

Actual Abstract

(b) Mapping from actual to ab-
stract space

Fig. 1. The Sliding Tile Problem and its Abstract Mapping

The walk computes a one-way value R and success is defined when R contains a
number of 0’s in the least significant bit positions. The recipient accepts the proof
(a hash on R and a path identification number i) if i lies under a specific threshold
and the hash is correct. While Dwork et. al. show that the memory bound
running times vary much less compared to the CPU bound variants, a drawback
is the high verification cost on the server side. Rosenthal [17] further points out
that with Dwork’s solution, the sender of an email could have performed less
work than that stated in the accompanying proof. To mitigate this scenario a
modification was proposed that instead requires the sender to explore an entire
range of paths rather than stopping at the first index.

Abadi et. al. [1] also propose memory bound constructions which involve ac-
cessing random locations in a very large array. There, the server applies a func-
tion F (·) k times to a random number, x0, to obtain xk. The server then sends
xk and the checksum over the path, x0 · · · xk, and a keyed hash H(K, x0) (where
K is a secret key of the server) to the client. Note that the hash is used for veri-
fication of the solution sent by the client. The client builds a table of the inverse
function F−1(·) and performs random accesses through this table to arrive at x0.
Unfortunately, the construction imposes constant work on the server for puzzle
creation which is undesirable.

4 Memory Based Heuristic Search

In this paper we consider heuristic search for the Sliding Tile problem proposed
by Sam Lyod [9]. Figure 1(a) illustrates the basic 3x3 Sliding Tile Problem. Here,
eight numbers are arranged in a 3 x 3 grid of tiles where one tile is kept blank.
The idea is to find a set of moves from the set {Left, Right, Up, Down} which
transforms the initial configuration to the goal configuration. A widely known,
and very efficient, CPU bound method of solving such a problem is to use the
A∗ algorithm [18, 19, 20] along with the Manhattan Distance heuristic. In this
case, a heuristic function h(s) computes an estimate of the distance from state
s to a goal state. A more efficient way of solving such a problem is to use a
memory based heuristic, instead of the Manhattan Distance heuristic, whereby
one precomputes the exact distance from a state s to the abstract goal state and
stores that in a lookup table indexed by s. This lookup table is called a pattern
database or a heuristic table.

102 S. Doshi, F. Monrose, and A.D. Rubin

x x

x x x

x x x

x x x

x x

x x x

x x

x x x

x x x

x x x

x x x

x x

x x x

x x

x x x

x x

x x x

x x x

x x x

x x

x x x

(0)

(1)

(2)

Fig. 2. Pattern Database Creation. The
numbers near the configurations depict
the heuristic values.

3 1 2

7 5

4 6 8

x x x

x x

x x x

Heuristic =2
Moves Possible To Lower

Heuristic Level
{L,U}

Step 1 Abstract

3 1 2

7 5

4 6 8

{L}

x x x

x x

x x x

Step 2 Abstract

Heuristic =1
Moves Possible To Lower

Heuristic Level
{U}

1 2

3 7 5

4 6 8

{U}

x x

x x x

x x x

Heuristic =0

Step 3 Abstract

Fig. 3. Solving a Sliding Tile problem
with a coarse abstraction

Pattern databases were introduced by Culberson and Schaeffer [21] to find
optimal solutions to the 4 x 4 Sliding Tile problem, and have been instrumental
in solving large problems efficiently [11]. The primary motivation behind using
pattern databases is that they enable search time to be reduced by using more
memory [12, 22]. When creating a pattern database, the goal configuration is
first mapped to an abstract goal state (as in Figure 1(b)) and then the heuristic
values are computed by performing a breadth first search backwards from the
abstract goal (as in Figure 2).

5 Memory Bound Constructions

In what follows we describe two constructions—a näıve algorithm that does not
meet all the properties of Definition 1, and then extend that to achieve a bet-
ter construction. Section 5.1 presents the initialization steps and some notation
common to both constructions.2

5.1 Initialization

The client and server have an agreed upon goal state(s). The client initially pre-
computes the pattern database corresponding to the goal. For example, Figure
1(b) shows the coarse mapping from the actual state space to the abstract space
for the 3 x 3 Sliding tile problem; such a mapping yields a database consisting
of 9 heuristic values corresponding to the 9 unique locations of the blank tile.

With this abstraction the database can be used to solve sub-versions of the
original problem. However, notice that while the goal state might be reached
in the abstract space, the goal might not be reached in the actual state space.
Consequently, one will also have to explore search paths in the actual state space

2 Note that in our protocols we do not focus on adapting the puzzle hardness in
accordance with the changing memory size of the client. However, such a mechanism
can be incorporated along the lines of the auction protocol provided by Wang and
Reiter [5].

Efficient Memory Bound Puzzles Using Pattern Databases 103

without using the database, hence, the client needs to also use an exhaustive CPU
bound search to completely solve the problem. Figure 3 illustrates the process of
solving the puzzle in Figure 1(a) given a database with this abstraction. Notice
that Steps 1 and 2 are memory bound and lead to the goal in the abstract space.
However, the client still has to perform additional moves from Step 3 to the
actual Goal state. This implies that the given abstraction leads to a partially
memory-bound search. Note, however, that a one-to-one mapping between the
actual and abstract goal yields a larger pattern database which stores the exact
heuristic values and that the corresponding search is completely memory bound.
We use such a mapping in the various constructions introduced. Also note that
precomputing this database is computationally expensive and hence it must be
created offline.

Additionally we assume there exists a publicly accessible random oracle which
can be queried to obtain a checksum value C. (In our case the oracle is imple-
mented using a cryptographic hash function). Furthermore the server has access
to a pseudorandom function FK(·) (such as HMAC-SHA1 [23]) where K is a
secret key known only by the server.

5.2 Näıve Construction

The client and server have an agreed upon goal state G. The client precomputes
the pattern database corresponding to the goal G. The protocol steps are:

– Puzzle Creation: The server applies d moves at random to G, from the set
{ Left, Right, Up, Down }, to arrive at the configuration P . Let Mi denote
the opposite of the ith move on the puzzle where i takes values in [1, d]. Note
that the parameter d controls the puzzle difficulty. The server computes a
checksum C over (Md . . . M1).3 The server also computes a verification value
V = FK(T, M1, . . .Md) where T is the time stamp associated with the client
visit. The server sends P, C, V , and T to the client.

– Puzzle Solving: The client uses the pattern database and performs a
guided search from P until he reaches the goal G and the checksum over
the moves performed from P to G matches C. A guided search essentially
involves following paths which lead closer to the goal. The client returns T, V
and the d moves {M ′

1 . . .M ′
d} to the server.

– Puzzle Verification: The server verifies that the d moves sent by the
client are correct using the verification value V

?= FK(T, M ′
1 . . . M ′

d).

Experimental Analysis. We implemented the above construction using the 2
x 4 Sliding Tile problem and evaluated it on machine M6 in Table 1. We chose
a 2 x 4 configuration instead of a larger configuration (e.g. 3 x 3), to prevent
a pattern database for one goal state from occupying too much main memory.
This consideration becomes important in Section 5.3 where the client needs to
store a pattern database for a large pool of goal states.
3 The checksum is computed in the opposite direction over the moves as the client

solves the puzzle from P towards G.

104 S. Doshi, F. Monrose, and A.D. Rubin

Table 1. Machine Specifications

Label Processor CPU Cache Memory
(GHz) (KB) (MB)

M1 Pentium 2 0.4 512 128
M2 PowerMac G4 1.33 256 L2 1024

2048 L3
M3 Pentium 4 1.6 512 256
M4 PowerPC G4 1.67 512 1024
M5 PowerMac G5 2 512 3072
M6 Pentium 4 3.2 1024 1024

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14

T
im

e
 (

u
s
e

c
)

Puzzle Difficulty

Puzzle Solving
Puzzle Creation

Fig. 4. Client and Server Costs

Figure 4 compares the client versus server cost for varying puzzle difficulty d.
It can be seen that the work ratio between the client and server is substantial—
for instance, at d = 12 moves, the server takes merely 17.3μsec to create the
puzzle while solving the puzzle takes approximately 356.8μsec. Additionally, the
server does not maintain any database to verify the puzzle solution and so this
construction meets the Statelessness property of Definition 1.

To determine if the memory bound approach is more effective than CPU
bound methods for solving the puzzle, we compare our näıve construction against
the best known (to our knowledge) CPU-bound method for solving the Sliding
Tile problem — namely, the A∗ algorithm[18, 19] with the Manhattan Distance
Heuristic. Let P (x) denote the fraction of nodes with heuristic value ≤ x. If b
denotes the branching factor of the problem and d denotes the solution depth (i.e

puzzle difficulty) then the average case time complexity of A∗ is 1+
∑ d

i=0 biP (d−i)
2

[24, 25]. Note, however, that the regular A∗ algorithm does not incorporate the
checksum into the search algorithm and so once an optimal path is found the
result is returned. On the other hand, our setting requires that the client returns
the path for which the checksum matches. In this way, the naive construction
forces the client to search through non-optimal paths as well.

Figure 5 compares the time complexity for various search methods in terms
of node expansion at a given solution depth. Note that node expansion is a valid
metric for complexity because it inherently affects the search time. The results
in Figure 5 show that the time complexity of the Naive Construction is higher
than that of A∗ algorithm with Pattern Database heuristic, indicating that the
checksum forces the client to search non-optimal paths, thus confirming our
previous argument. Note also that the performance of the Näıve Construction
tends to follow the plot of A∗ with Manhattan Distance. These results indicate
that given an algorithm that incorporates the checksum into A∗ with Manhattan
Distance we can safely claim that the time complexity for such an algorithm
would be more inline with that of the Brute Force approach. As such, we argue
that brute force search is indeed a reasonable baseline for comparing our memory-
bound approach.

Figure 6 compares the search component of the näıve construction to the
brute force depth-first search approach which explores all paths until it reaches
the goal, and the checksum matches. The results clearly indicates that the näıve

Efficient Memory Bound Puzzles Using Pattern Databases 105

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

N
o

d
e

s
 E

x
p

a
n

d
e

d

Solution Depth

A* w/ Manhattan Distance
A* w/ Pattern Database

Naive Construction
Brute Force

Fig. 5. Time Complexity

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25

T
im

e
 t

o
 S

o
lv

e
(u

s
e

c
)

Puzzle Difficulty

Brute Force
Naive Algorithm

Fig. 6. Näıve vs Brute Force on M6

approach achieves better performance than the brute force algorithm and shows
that the construction achieves the Slower CPU bound solution variants property
of Definition 1. Unfortunately, this näıve construction suffers from a number of
significant limitations, most notably that it fails to meet the following criteria:

– Hardness of Pre-computation: If the client is presented with an initial
configuration P ′ whose moves to the goal state is a superset of the moves of a
previously solved configuration P , then the client can re-use his old solution.
While this issue cannot be completely resolved, the probability of re-using
old solutions can be reduced by increasing the pool of initial configurations
available to the server.

– Random Memory Access: The accesses in the pattern database are not
random. More specifically, if we consider the number of unique puzzle con-
figurations at a given heuristic level for the 2 x 4 Sliding Tile problem, then
the maximum number of configurations between two consecutive heuristic
levels is only 2000. This corresponds to at most 100 KB of memory and so
the consecutive moves made by the client will not be cache misses. Moreover,
the total number of configurations for the 2 x 4 Sliding Tile problem is just
over 20,000 which results in a table of roughly 1 MB—which can easily be
cached. Hence, this näıve solution is not memory bound.

In what follows we present a variant that overcomes the limitations of the
näıve construction.

5.3 A Construction Using Multiple Goals

Again, assume that the client and server have an agreed upon pool of goal
states {G0, . . .Gn}. The client precomputes the pattern database corresponding
to all of these goal states and stores it in one table. The database is indexed by
the tuple (Gi, P), i ∈ {0 . . . n} where P denotes the current configuration. The
indexed location contains the heuristic value — the distance from the current
configuration P to the goal configuration Gi. We define puzzle difficulty based
on two parameters, namely the horizontal puzzle difficulty which denotes the
number of Sliding Tile problems that have to be solved simultaneously, and the

106 S. Doshi, F. Monrose, and A.D. Rubin

vertical puzzle difficulty which denotes the number of moves required to reach
the goal state for a given initial configuration. The protocol steps are:

– Puzzle Creation: The server chooses f goal states at random from {G0, . . .
Gn}. Let the set G contain these f goal states. The server then applies d
moves at random to each goal Gk ∈ G, from the set { Left, Right, Up,
Down }, to arrive at the f initial configurations Pk. Note that the parameter
d controls the vertical puzzle difficulty and the parameter f controls the
horizontal puzzle difficulty. The server also computes checksums over the
moves as follows. Let Mk

j , 1 ≤ j < d denote the opposite of the jth move on
the goal Gk. For difficulty level j, 1 ≤ j < d, the checksum Cj is taken over
Mk

j , ∀Gk ∈ G.
The server also computes a verification value V = FK(T, d moves over f
configurations) where T is the time stamp associated with the client visit.
The server sends the goal configurations chosen Gk ∈ G, |G| = f , corre-
sponding initial configurations Pk, checksums Cj , 1 ≤ j ≤ d, V , and T to
the client.

– Puzzle Solving: The client uses the pattern database and performs a
guided search from each Pk. The client solves all the initial configurations
simultaneously. This implies that the client first infers the right set of moves
Mk

j , ∀Gk ∈ G for a given difficulty level j, d ≥ j ≥ 1 such that the check-
sum over those moves matches Cj . Then he proceeds to do the same for the
next level j − 1. This procedure is followed until the client reaches the goal
configurations Gk ∈ G. The client returns T, V and the d moves over these
f initial configurations to the server.

– Puzzle Verification: The server verifies that the d moves for all the f
Sliding Tile problems sent by the client are correct using the verification
value V

?= FK(T, d moves over f configurations).

If b is the brute force branching factor of the problem, then in the worst case,
the time complexity of our multiple goals construction is O((b− c)fd) where c is
a constant that depends on the number of paths pruned by the pattern database
heuristic at a given horizontal level.

Experimental Analysis. We now evaluate this construction using a pool of 100
configurations for the 2 x 4 Sliding Tile problem on the machines given in Table
1. The pattern database for 100 configurations took approximately 30 minutes to
build on M6 indicating that the database must be created offline. Note, however,
that this is a one time cost. The database occupies around 169MB of the main
memory and cannot be cached given that typical cache sizes are less than 8MB.
Figures 7(a) and 7(b) compares the cost for solving a puzzle with a brute force
search and a memory bound search against varying horizontal difficulty f . There,
the vertical difficulty was set at d = 20 which yields a larger pool of 1194 sliding
tile puzzles (per goal configuration) to choose from.

Observe that even though the worst case time complexity of brute force is
O(bfd), up to a horizontal difficulty of f ≤ 15 brute force search is more effective

Efficient Memory Bound Puzzles Using Pattern Databases 107

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 2 4 6 8 10 12 14 16 18

T
im

e
 (

u
s
e
c
)

Horrizontal Puzzle Difficulty

Multiple Goals M1
Multiple Goals M2
Multiple Goals M3

Brute Force M1

(a) Machines M1, M2 and M3

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 2 4 6 8 10 12 14 16 18

T
im

e
 (

u
s
e
c
)

Horrizontal Puzzle Difficulty

Multiple Goals M4
Multiple Goals M5
Multiple Goals M6

Brute Force M4

(b) Machines M4, M5 and M6

Fig. 7. Multiple Goals vs Brute Force

on all the machines.4 However, beyond f = 15 our memory bound approach is
considerably faster suggesting that for d = 20 the horizontal difficulty should be
set above 15. Moreover, our results show that the time for solving a puzzle is on
the order of seconds for f ∈ [15, 18], indicating that our construction performs
as well as or better than prior work. For example, in the solution presented by
Waters et. al. [6] a client may need to wait for roughly 20 minutes before she can
gain access to server resources. In addition, our solution is considerably better
than that of [1] in terms of puzzle solving times, indicating that our approach
reduces end user wait time compared to Abadi’s approach.

Comparison with HashCash: For completeness, we also compared our results
with the CPU bound algorithm, HashCash. Table 2 indicates the time to solve
a puzzle with parameters, f = 16, d = 20 and a pattern database for 100 2 x 4
goal configurations. We compare our results with the time to mint 100, 20 bit
hash cash tokens—more than 20 bit tokens take considerably longer to mint.
Our results show that with the memory bound approach, the disparity in puzzle
solving times across machines is much less when compared to HashCash. Specif-
ically, the maximum ratio of the time to solve a CPU bound puzzle (HashCash)
across machines is 9.17, but only 5.64 in the memory bound case. Furthermore,
the puzzle solving times are much lower in the memory bound case—our slowest
machine (M1) takes 291.88 seconds to mint a HashCash token versus only 33.91
seconds to solve the memory bound puzzle—indicating that our approach may
be even better suited for global deployment than HashCash.

Comparison to the Näıve Approach: Unlike the näıve approach, this alternative
does meet the Random Memory Access property of Definition 1. This is achieved
by choosing f goals at random from the available pool of goals. This ensures
that the pattern databases corresponding to each of these f goals would not be
located at contiguous regions in memory. The client is thus forced to access these
random locations when solving the Sliding Tile problems simultaneously.

4 On M2, M3 and M5 the bound is at f = 15. On machines M4 and M6 brute force is
more effective up to f = 14 and on M1 the bound is at f = 13.

108 S. Doshi, F. Monrose, and A.D. Rubin

Table 2. Memory Bound vs Hash Cash

Machine Memory Ratio Hash Ratio
Bound Cash

(seconds) (seconds)
M1 33.91 5.64 291.88 9.17
M2 14.75 2.45 71.01 2.23
M3 14.2 2.36 152.65 4.8
M4 17.44 2.9 37.9 1.19
M5 8.93 1.48 78.38 2.46
M6 6.01 1 31.8 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 4 6 8 10 12 14

T
im

e
 t

o
 C

re
a

te
(u

s
e

c
)

Puzzle Difficulty

Multiple Goals
Abadi
Naive

Fig. 8. Puzzle Creation Costs

As it stands, the approach does not meet the property of In-expensive Server
Side Cost of Definition 1. Specifically, the puzzle creation cost in this approach
remains high. Figure 8 compares the cost of creating a puzzle to that of Abadi et.
al. [1]. While the näıve algorithm outperforms Abadi’s approach, puzzle creation
in the multiple goals approach is 5 times as slow. This high work factor can in
itself lead to a DoS attack. In what follows, we show how server side puzzle
creation cost can be reduced considerably. We note that in doing so we forgo
the Stateless property in Definition 1 but achieve the Relaxed state property
suggesting that our construction is still of practical value.

5.4 Reducing Server Side Cost

In puzzle creation andverification the server side work involves performing d moves
on f goal configurations, computing d checksums (hashes), a MAC to compute
the verification value V , and a final MAC for puzzle verification. This overhead
is unfortunately much higher than [1] which involves only d moves, 1 checksum,
a hash for the verification value, and a final hash for puzzle verification. We can
address this limitation by having the server create p puzzles offline, and storing
these puzzles in a table. Each location of the table simply contains:

1. Puzzle to be sent to the client. The goal configurations chosen Gk ∈
G, |G| = f , corresponding initial configurations Pk, checksums Cj , 1 ≤ j ≤ d

2. Solution to Puzzle. The d moves for the f goal configurations Gk ∈
G, |G| = f

On a client visit, the server computes the time stamp T associated with the
visit and generates a random number R. The server computes an index into the
table I choosing log(p) bits of FK(T, R) deterministically. Recall that FK(·) is
a pseudo random function and K is the server’s secret key. The server sends
to the client, T, R and the puzzle at index I. The client returns the solution
to the puzzle with T and R and the server simply recomputes the index I and
verifies that the solution sent by the client matches the solution at index I. In
doing so, we reduce the online server work for puzzle creation and verification
to computing two MAC’s per client connection. This server work is a slight
improvement over Abadi et. al which adds additional online work on the server

Efficient Memory Bound Puzzles Using Pattern Databases 109

Table 3. Server storage per puzzle

State Table Items Storage (bytes)
16 Goal Configurations 32
16 Initial Configurations 32

20 Checksums 400
Puzzle Solution 320
(20 moves for

16 configurations)
Total Storage per Puzzle 784

Table 4. Memory Read Time

Machine Read Time (μsec)
M1 0.27
M2 0.18
M3 0.20
M4 0.27
M5 0.26
M6 0.15

for computing the d moves and the checksum over the path. Furthermore, this
approach outperforms that of Dwork et. al. [2] which adds additional overhead
on the server side during puzzle verification.

In the following discussion we show how an upper bound on the parameter p
is obtained, depending on the expected server load.

Setting the state parameters: Similarly to [3], we assume that the server is-
sues puzzles to defend against TCP SYN-flooding attacks. Let τ denote the total
time for the client server protocol, including the time for which the TCP buffer
slot is reserved. Let the server buffer contain p additional slots for legitimate
TCP connections when under attack. Note that the client induces at least fd
memory accesses when solving a puzzle. Hence, to solve p puzzles an adversary
will take at least pfd time steps. To mount a successful attack the adversary
must solve p puzzles in τ seconds. If m denotes the number of memory accesses
that an adversary can perform per second, then to prevent a flooding attack p
should be set to τm

fd . This is an upper bound on p, because fd is the minimum
number of memory accesses required to solve a given puzzle.

Assuming that a client server connection takes around τ = 150 seconds [3]
and that the average read time is 0.2μsec (see Table 4), then this allows for m =
5000000 accesses per second. Hence, for d = 20 and f = 16 a maximum of p =
2, 500, 000 puzzles need to be created offline. Additionally, each puzzle requires
the server to store 784 bytes of information (see Table 3). Under these parameters
the resulting state table is at most 1.96 GB, which can be easily stored in the
main memory of a storage server. This confirms that our construction is practical.

5.5 Improving Client Side Cost

Earlier we noted that the pattern database for heuristic values corresponding
to 100 goal configurations is approximately 169 MB in size. For some devices,
however, 169 MB is prohibitively large. As such, it is desirable to have a method
by which the pool of configurations available stays the same, but the size of the
pattern database is reduced. Specifically, it would be ideal if a given pattern
database could be used for multiple goal configurations. Intuitively, we can do
so as follows: assume that a client has a pattern database for goal configuration
G. Our task is to adapt this pattern database for goal configuration G′. One

110 S. Doshi, F. Monrose, and A.D. Rubin

way of achieving this is by providing the client a hint in the form of the relative
distance r (either positive or negative) between G and G′. The client augments
the heuristic values stored in the table with r when performing the guided search
to the goal G′. In this case, the protocol steps are now as follows:

– Puzzle Creation: The client and server have an agreed upon pool of goal
states {G0 . . . Gn}. The client maintains pattern database corresponding to
these goal states. The server picks f goal states at random from the pool (say
G contains these f goals) and performs a set of d moves from the f goals in
G to arrive at the corresponding initial configurations. This operation is the
same as presented in Section 5.3. The server also performs a set of r moves
from the randomly chosen goals to the actual goal states G′. The checksum is
computed over all levels starting from the actual goal states up to the initial
configurations. Along with this puzzle the server sends a hint, r, which is the
distance between the actual goal states in G′ and the database goal states in
G and the verification value V as before.

– Puzzle Solving: The client performs a guided search as before, but also
augments the heuristic values with this relative distance, r, when deciding
which path should be followed.

– Puzzle Verification: The server uses the verification value V to verify
that the d + r moves for all the f Sliding Tile problems are correct.

Adding relative distance thus allows the client to use the same pattern
database for multiple goal configurations, and still meets all the properties of
Definition 1. Additionally, this enhancement provides more flexibility in control-
ling vertical difficulty of a puzzle. Furthermore, the simplicity of this extension
is an added benifit of our algorithmic approach.

We argue that considering both the client and the server side improvements the
multiple goals construction offers a viable memory bound puzzle construction.

6 Security Analysis

In this section we informally justify the claims that our constructions meet the
(security) properties outlined in Section 2. Note that the justifications assume a
computationally bounded adversary A.

Claim 1. The Sliding Tile problem is more efficiently solved with a memory
bound approach (i.e., A∗ with pattern database heuristic) compared to the best
known CPU bound approaches (to date).

Korf et.al [11] showed that memory based heuristics for this class of problem
provide a significant reduction in search time at the cost of increasing the avail-
able memory. Specifically, if n denotes the number of states in the problem space
and m the amount of memory used for storing the heuristic values, then the run-
ning time t of A∗ is governed by the expression t ≈ n/m. This analysis was later
revisited by Holte et. al. [22] who subsequently showed a linear relation between

Efficient Memory Bound Puzzles Using Pattern Databases 111

log(t) and log(m). Specifically, as m increases, the number of states explored
in the heuristic search diminishes, which inherently reduces the running time.
These results [11, 22] show that memory bound heuristics are indeed the most
efficient method to date to reduce search time, and so we argue that Claim 1 is
satisfied. To address the security of the underlying approach we first restate the
properties of a pseudo random function [26].

Definition 2. A cryptographically secure pseudorandom function FK(·) is an
efficient algorithm that when given an l-bit key, K, maps n-bit argument x to an
m-bit string such that it is infeasible to distinguish FK(x) for random K from a
truly random function.

Claim 2. The multiple goals scheme is secure against an adversary, A, in the
random oracle model as long as Claim 1 holds and the verification value, V , is
the output of a pseudorandom function.

Following from Claim 1, and assuming that the pattern database heuristic is
computed using a one-to-one mapping between the abstract and actual state
space (see Section 5.1), then A can not solve the puzzle faster using a CPU
bound approach. Furthermore, even though A can perform multiple queries to
the random oracle, it is computationally hard to determine information about
the underlying moves from Ci. In addition since V is computed using a pseudo
random function FK(·), it is difficult for A to determine the moves, considering
that K is a secret random key of the server.

Claim 3. A parallelizable solver can not solve the puzzle more efficiently than
a brute force approach when puzzle difficulty is set appropriately.

To see why that is the case, assume that A uses multiple processes to simulta-
neously solve the multiple goal configurations. Note that in order to arrive at
a correct solution, the moves obtained by each process must collectively match
the checksum. In other words, given the set of moves obtained by each process,
A needs to determine the correct permutation of these moves that will match
the given checksum. However, the process of determining the correct set is es-
sentially a brute force search, which we showed to be ineffective for d = 20 and
f > 15.

7 Conclusion

In this paper we introduce the first heuristic search based memory bound puz-
zle, and present several constructions accompanied by rigorous experimental
analysis. Our constructions address the issues of non-reusable solutions, random
memory access, and easily parametrized client and server-side tuning. Addition-
ally, we present several improvements to our multiple goals construction that
limit server and client side overhead. From the client’s perspective, we also ad-
dress a major concern regarding limited memory on constrained clients such
as PDAs, and present an enhancement that allows the client to use the same

112 S. Doshi, F. Monrose, and A.D. Rubin

pattern database for multiple goals—without violating the general properties of
client puzzles. Our client puzzle protocol is interactive and hence is applicable
to defend against DoS attacks such as TCP SYN flooding. Exploring methods
to extend our construction to defend against spam and DDoS attacks remains a
possible area of future work.

Acknowledgements

We thank Patrick McDaniel and Seny Kamara for their invaluable feedback
on this research. We also thank the anonymous reviewers for their insightful
comments on this paper. This work is funded by the NSF grant CNS-0524252.

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. In: Proceedings of Network and Distributed Systems Security
Symposium, San Diego, California, USA. (February 2003) 107–121

2. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Proceedings of the 23rd Annual International Cryptology Conference. (2003)
426–444

3. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: Proceedings of Networks and Distributed Security
Systems. (February 1999) 151–165

4. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: Proceedings
of the 10th USENIX Security Symposium. (August 2001) 1–8

5. Wang, X., Reiter, M.K.: Defending against Denial-of-Service attacks with puzzle
auctions. In: Proceedings of the IEEE Symposium on Security and Privacy, IEEE
Computer Society (2003) 78–92

6. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New client puzzle outsourcing
techniques for DoS resistance. In: Proceedings of the 11th ACM conference on
Computer and Communications Security. (2004) 246–256

7. Bernstein, D.J.: SYN cookies (1996) http://cr.yp.to/syncookies.html.
8. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.

IEEE/ACM Transactions on Networking 1(4) (1993) 397–413
9. Loyd, S.: Mathematical Puzzles of Sam Loyd. Dover (1959) Selected and Edited

by Martin Gardner.
10. Singmaster, D.: Notes on Rubik’s Magic Cube. Enslow Pub Inc. (1981)
11. Korf, R.: Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases.

In: Proceedings of the 14th National Conference on Artificial Intelligence and 9th

Innovative Applications of Artificial Intelligence Conference, Rhode Island, AAAI
Press/MIT Press (July 1997) 700–705

12. Hern’advolgyi, I.T., Holte, R.C.: Experiments with automatically created memory-
based heuristics. In: Proceedings of the 4th International Symposium on Ab-
straction, Reformulation, and Approximation, London, UK, Springer-Verlag (2000)
281–290

13. Bocan, V.: Threshold puzzles: The evolution of DoS-resistant authentication. Pe-
riodica Politechnica, Transactions on Automatic Control and Computer Science
49(63) (2004)

http://cr.yp.to/syncookies.html

Efficient Memory Bound Puzzles Using Pattern Databases 113

14. Merkle, R.C.: Secure communications over insecure channels. Communications of
ACM 21(4) (April 1978) 294–299

15. Back, A.: Hash cash - A Denial of Service Counter-Measure. Technical report
(2002) http://www.hashcash.org/.

16. Wang, X., Reiter, M.K.: Mitigating bandwidth-exhaustion attacks using congestion
puzzles. In: Proceedings of the 11th ACM conference on Computer and Commu-
nications Security, New York, NY, USA, ACM Press (2004) 257–267

17. Rosenthal, D.S.H.: On the cost distribution of a memory bound function. Com-
puting Research Repository cs.CR/0311005 (2003)

18. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics 4(2) (1968) 100–107

19. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to a formal basis for the heuristic
determination of minimum cost paths. ACM SIGART Bulletin (37) (1972) 28–29

20. Parberry, I.: A real-time algorithm for the (n2 −1)-puzzle. Information Processing
Letters 56(1) (1995) 23–28

21. Culberson, J.C., Schaeffer, J.: Searching with pattern databases. In: Advances
in Artificial Intelligence, 11th Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, Springer (1996) 402–416

22. Holte, R.C., Hern’advolgyi, I.T.: A space-time tradeoff for memory-based heuris-
tics. In: Proceedings of the 16th national conference on Artificial Intelligence and
the 11th Innovative Applications of Artificial Intelligence conference, Menlo Park,
CA, USA, American Association for Artificial Intelligence (1999) 704–709

23. FIPS: The Keyed-Hash Message Authentication Code (HMAC). (2002)
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

24. Korf, R.E.: Recent progress in the design and analysis of admissible heuristic
functions. In: Proceedings of the 17th National Conference on Artificial Intelligence
and 12th Conference on Innovative Applications of Artificial Intelligence, AAAI
Press / The MIT Press (2000) 1165–1170

25. Korf, R.E., Reid, M.: Complexity analysis admissible heuristic search. In: Pro-
ceedings of the 15th national/10th conference on Artificial Intelligence/Innovative
Applications of Artificial intelligence, Menlo Park, CA, USA, American Association
for Artificial Intelligence (1998) 305–310

26. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4) (1986) 792–807

http://www.hashcash.org/
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

	Introduction
	Preliminaries
	Related Work
	Memory Based Heuristic Search
	Memory Bound Constructions
	Initialization
	Naïve Construction
	A Construction Using Multiple Goals
	Reducing Server Side Cost
	Improving Client Side Cost

	Security Analysis
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

