
A Multifaceted Approach to Understanding the Botnet
Phenomenon

Moheeb Abu Rajab Jay Zarfoss Fabian Monrose Andreas Terzis
Computer Science Department

Johns Hopkins University

ABSTRACT
The academic community has long acknowledged the existenceof
malicious botnets, however to date, very little is known about the
behavior of these distributed computing platforms. To the best of
our knowledge, botnet behavior has never been methodicallystud-
ied, botnet prevalence on the Internet is mostly a mystery, and the
botnet life cycle has yet to be modeled. Uncertainty abounds. In
this paper, we attempt to clear the fog surrounding botnets by con-
structing a multifaceted and distributed measurement infrastruc-
ture. Throughout a period of more than three months, we used this
infrastructure to track 192 unique IRC botnets of size ranging from
a few hundred to several thousand infected end-hosts. Our results
show that botnets represent a major contributor to unwantedIn-
ternet traffic—27% of all malicious connection attempts observed
from our distributed darknet can be directly attributed to botnet-
related spreading activity. Furthermore, we discovered evidence of
botnet infections in 11% of the 800,000 DNS domains we exam-
ined, indicating a high diversity among botnet victims. Taken as a
whole, these results not only highlight the prominence of botnets,
but also provide deep insights that may facilitate further research to
curtail this phenomenon.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive Soft-
ware

General Terms
Security, Measurement

Keywords
Botnets, Computer Security, Malware, Network Security

1. INTRODUCTION
Despite the fact that botnets first appeared several years ago,

they have only recently sparked the interest of the researchcom-
munity. The termbotnetsis used to define networks of infected
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end-hosts, calledbots, that are under the control of a human op-
erator commonly known as abotmaster. While botnets recruit
vulnerable machines using methods also utilized by other classes
of malware (e.g.,remotely exploiting software vulnerabilities, so-
cial engineering, etc.), their defining characteristic is the use of
command and control(C&C) channels. The primary purpose of
these channels is to disseminate the botmasters’ commands to their
bot armies. These channels can operate over a variety of (logical)
network topologies and use different communication mechanisms,
from established Internet protocols to more recent P2P protocols.
However, the vast majority of botnets today use the InternetRelay
Chat (IRC) protocol [13] which was originally designed to form
large social chat rooms.

While other classes of malware were mostly used to demonstrate
technical prominence among hackers, botnets are predominantly
used for illegal activities. These activities range from extortion of
Internet businesses to e-mail spamming, identity theft, and software
piracy. Unfortunately, even with the substantial increasein botnet
activity witnessed over the past few years, little is known about the
specifics of this malicious behavior. For instance, questions per-
taining to the prevalence of botnet activity, the number of different
botnet subspecies (and how they can be behaviorally categorized),
and the evolution of a botnet over its lifetime, abound.

This paper presents the results of our effort to address these ques-
tions. We argue that a thorough and complete understanding of this
problem calls for a multifaceted measurement approach. Further-
more, we believe that this approach must capture the behavior and
impact of botnets from multiple viewpoints. In that regard,this pa-
per makes two key contributions, namely(1) the development of a
multifaceted infrastructure to capture and concurrently track mul-
tiple botnets in the wild, and(2) a comprehensive analysis of mea-
surements reflecting several important structural and behavioral as-
pects of botnets. The infrastructure we developed synthesizes mul-
tiple data collection or “sensing” techniques, including distributed
malware collection points to capture botnet binaries, IRC tracking
to gain an insider perspective of the behavior of live botnets, and
DNS cache probing to assess the global prevalence of botnets. We
were able to observe more than two hundred botnets and actively
track more than a hundred long-lived ones over a period of more
than three months. By cross checking the multiple views gained
by the different sensing techniques we reveal a number of behav-
ioral and structural features of botnets not previously reported in
the literature.

The remainder of the paper is organized as follows: Section 2
provides background information on botnets and highlightsthe chal-
lenges associated with botnet detection and tracking. We present
the approach we developed to infiltrate large numbers of botnets
in Section 3, and describe a novel approach for extracting infor-



mation from the malicious binaries collected using our distributed
infrastructure. Section 4 presents the analysis of the collected data.
Related work is presented in Section 5. We conclude in Section 6.

2. BACKGROUND
A botnet is a group of infected end-hosts under the command

of a botmaster. Figure 1 illustrates the various stages in a typi-
cal botnet life-cycle. Botnets usually commandeer new victims by
remotely exploiting a vulnerability of the software running on the
victim. Botnets borrow infection strategies from several classes of
malware, including self-replicating worms, e-mail viruses, etc. In-
fections can also be spread by convincing victims to run someform
of malicious code on their machines (e.g.,by executing an email
attachment).

Once infected, the victim typically executes a script (known as
shellcode) that fetches the image of the actual bot binary from a
specified location.1 Upon completion of the download, the bot bi-
nary installs itself to the target machine so that it starts automati-
cally each time the victim is rebooted.
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Figure 1: The life-cycle of a typical botnet infection. Steps with
enclosed asterisk are optional.

As mentioned earlier, the defining characteristic of botnets is
manifested by the fact that individual bots are controlled via com-
mands sent by the network’s botmaster. The communication chan-
nel used to issue commands can be implemented using a variety
of protocols (e.g., HTTP, P2P, etc.). However, the majority of bot-
nets today use the Internet Relay Chat (IRC) protocol [13]. The
IRC protocol was specifically designed to allow for several forms
of communication (point-to-point, point to multi-point, etc.) and
data dissemination among large number of end-hosts. The inher-
ent flexibility of this protocol, as well as the availabilityof several
open-source implementations, enables third parties to extend it in
ways that suit their needs. These features make IRC the protocol
of choice for botmasters, as it simplifies the botnet implementation
and provides a high degree of control over the bots. Therefore, for
the rest of this paper, we focus our attention to IRC-based botnets
since IRC is the prominent botnet control mechanism in use today.

Upon initialization, each bot attempts to contact the IRC server
address given in the executable. In many cases, this step requires
resolving the DNS name of the IRC server (Step 3 in Figure 1).

1We observed that botnets using random scanning to spread, usu-
ally serve the bot binary from the same machine that exploited the
remote vulnerability in the first place.

Using a DNS name instead of a hard-coded IP address allows the
botmaster to retain control of her botnet in the event that the current
IP address associated with the DNS name of the IRC server gets
black-listed.

Once the IP address of the IRC server is available, the bot at-
tempts to establish an IRC session with the server and joins the
command and control channel specified in the bot binary. Gener-
ally speaking, the bot-to-IRC server communication requires any
combination of three types of authentication. First, a bot needs to
authenticate itself to the IRC server using thePASS message in or-
der to successfully begin the IRC session with that server. Second,
botmasters normally protect the command and control channel with
a password and hence require the bot to authenticate itself before
joining. The passwords corresponding to these two authentication
phases are contained in the bot binary and authentication normally
takes place in the clear. The third type of authentication, which
is not part of the IRC protocol, requires the botmaster to authen-
ticate herself to the bot population before she is able to issue any
command. While the first two authentication steps are intended to
thwart outsiders from joining the C&C channel, the last authenti-
cation phase aims to protect bots from being overtaken by other
botmasters attempting to seize control of fledgling botnets.

Once the bot successfully joins the specified IRC channel, itau-
tomatically parses and executes the channel topic. The topic con-
tains the default command that every bot should execute. Depend-
ing on the channel mode set by the botmaster, botsmight be able
to “hear” all messages exchanged on the channel. This broadcast
behavior of IRC channels is a design feature that makes the IRC
protocol suitable for supporting large-scale chat rooms. As we
show later, broadcast via the C&C channel is an invaluable source
of insider information about the activities and capabilities of some
botnets. While convenient, one cannot rely on this feature for infor-
mation extraction, since in some cases, IRC servers disableit either
to reduce “chatter” or to limit communication overhead.

The steps described so far are shared among all IRC-based bot-
nets. The degree of commonality however ends here; different bot-
nets express the set of the commands and responses exchangedbe-
tween the botmaster and her bots as extensions on top of the stan-
dard IRC protocol. While the syntax of these commands followthe
same general structure, they do vary across different botnets. This
variability is primarily a result of botmasters’ desire to “person-
alize” their bots, and in doing so, complicate the task of tracking
these botnets in an intelligent manner. Moreover, the repertoire of
available commands elicit a wide variety of responses, which in
turn, greatly complicates the classification of botnet behaviors.

3. MEASUREMENT METHODOLOGY
As Figure 2 illustrates, our data collection methodology encom-

passes three logically distinct phases:(1) malware collection,(2)
binary analysis via gray-box testing and,(3) longitudinal tracking
of IRC botnets through IRC and DNS trackers.

The goal of the malware collection phase is simply to collectas
many bot binaries as possible. However, developing a scalable and
robust infrastructure to achieve this goal is a challengingproblem
in its own right, and has been the subject of numerous research
initiatives (e.g., [20, 23]). In particular, any malware collection in-
frastructure must support a wide array of data collection endpoints
and should be highly scalable. Additionally, special measures must
be implemented to prevent any part of the system from participat-
ing in malfeasance. Our system design and implementation draw
on experience learned from earlier work [1, 2, 10, 19, 20, 23], but
include several additions that are unique to our goals. In what fol-
lows, we discuss the specifics of our infrastructure.



Figure 2: Overall data collection architecture.

MALWARE COLLECTION. As we show later, a significant portion
of botnet-related spreading activity is localized, targeting certain
parts of the IP space. Any single vantage point is thus likelyto
miss substantial portions of such scanning activity. We attempt to
minimize this undesired effect by deploying our collectionarchi-
tecture on a conglomeration of distributed darknets2. This collec-
tion includes a large locally deployed darknet and 14 distributed
nodes using the PlanetLab testbed [18]. These nodes have access
to darknet IP space located in ten different /8 prefixes.

In this distributed darknet, we deploy a modified version of the
nepenthes platform [2]. In short,nepenthesmimics the replies
generated by vulnerable services in order to collect the first stage
exploit (typically a Windows shellcode). In the case of the Planet-
Lab nodes, several modifications tonepenthes were necessary.
For one, these nodes are setup to deliver traffic destined to the dark-
net as raw packets through a specialproxy interface. However,
sincenepenthes does not support raw sockets, packet transla-
tion is required to transform the raw packets and inject themto a
local tunneling interface. To do so, we configurednepenthes to
bind to the tunneling interface using regular sockets and receive the
packets via a translation module written inClick [15]. Moreover,
since PlanetLab nodes do not allow user-level processes to bind to
privileged ports, theClick module also performs port translation.
The process is shown pictorially in Figure 3.

To prevent excessive downloads from “heavy hitters” request-
ing the same URL multiple times, we disable the on-line download
modules innepenthes. This precaution also helps curtail reflec-
tion attacks. To retrieve the binaries, we instead generatea list of
the URL targets to be downloaded, and send this list to a machine
designated this task. This download station, filters the entries in
the received list and extracts the unique sources and URLs. All

2The term darknet is used to denote an allocated but unused portion
of the IP address space.
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Figure 3: PlanetLab configuration.

previously unseen URL targets are subsequently downloaded.
Additionally, to complement the role ofnepenthes, we make

use of a honeynet. The primary reason for doing so is to ensure
catching exploits missed bynepenthes. These failures are most
likely due to the responder’s inability to mimic unknown exploit
sequences or to parse certain shellcodes. Currently, our honeynet is
composed of a number of honeypots running unpatched instances
of Windows XP in a virtualized environment [21]. Each honeypot
instance is assigned a static private-space IP address on a separate
VLAN. Infected honeypots are allowed to sustain IRC connections
with unique botnet IRC servers until the virtual machines are re-
imaged. At that point, all suspect binaries are retrieved bycom-
paring the disk contents of the virtual machine to a clean Windows
image. As with the binaries collected by the responders, thebina-
ries retrieved from the honeynet are also sent to an analysisengine
for graybox testing (discussed in Section 3.1).



GATEWAY . The gateway supports a myriad of functions, key among
those being to route darknet traffic to various parts of the internal
network. In our current setting, the gateway forwards traffic des-
tined to eight /24 prefixes from the local darknet. The set of selected
prefixes is automatically rotated every day to ensure full coverage
of the darknet. At present, half of the monitored prefixes aredi-
rected to the local responder, and the other half to the honeynet.
In order to keep the number of required honeypots small, we use
Network Address Translation (NAT) to map each honeypot to 128
external darknet IP addresses. The use of NAT also reduces man-
agement overhead as the IP addresses of the honeypots need not be
changed each time the address space is rotated.

The gateway also serves as a firewall whose main task is to pre-
vent the honeypots from engaging in any outbound attacks or in-
fecting each other. Cross-infections among honeypots is prevented
by configuring each honeypot on a separate Virtual LAN (VLAN)
and terminating any traffic across VLANs at the gateway. The fire-
wall prevents abuse by rate-limiting any allowed outbound connec-
tions and blocking all outbound traffic on popular vulnerable ports
(e.g., 135, 139, 445). All remaining outbound traffic is queued to a
detection process that is configured to allow infected honeypots to
follow the typical infection sequence outlined in Section 2.

Specifically, we exploit the fact that bots continuously attempt to
contact their IRC servers and run an IRC detection module at the
gateway. This module is implemented as an extension to snortinline
[16], and its main function is to detect and manage the IRC con-
nections. In short, we issue aSYN-ACK for the first connection
attempts from the honeynet; once a connection is established, the
detection module searches the application-level traffic for common
IRC protocol strings used during the server handshake (e.g.,NICK,
JOIN, USER). After a valid IRC connection attempt is witnessed,
the detection module establishes a record for that IRC session and
sends aRST to the originating honeypot. When the honeypot sub-
sequently attempts to reconnect, the connection is allowedto pro-
ceed to the actual IRC server—subject of course, to rate limiting.
Note that sinceall outbound connections are analyzed at the appli-
cation level, we can detect IRC traffic on non-standard IRC ports
as well.

Several additional measures were implemented to maximize the
information gain from our infrastructure. For instance, the de-
tection module only allows one honeypot to connect to a partic-
ular IRC server at any point in time. Since our honeypots run
on resource-limited virtual machines, having multiple malware in-
stances running on a honeypot is destabilizing. To avoid this prob-
lem, the gateway detects when a honeypot has been infected, and
dynamically inserts rules to block further inbound attack traffic to-
wards that honeypot.

Lastly, the gateway performs several miscellaneous control and
management tasks for different components of our architecture.
These tasks include triggering periodic re-imaging of the honey-
pots, loading clean Windows images, pre-filtering and control func-
tionality for the download station, and running a local DNS server
to resolve DNS queries from the honeypots.

3.1 Binary analysis via graybox testing
We use graybox analysis to extract the features of suspicious bi-

naries (regardless of the mechanism by which they were collected).
The analysis spans two logically distinct phases performedon an
isolated network segment. The first phase is aimed at deriving a
network fingerprint of the binary under scrutiny, while the second
attempts to extract its IRC-specific features. Since none ofthese
actions use debuggers, disassemblers, or other interactive tools tra-
ditionally used in binary analysis, both phases are easily automated.

To aid the analysis, we isolate part of our private network tocon-
tain a server (configured as a sink for all network traffic) anda
virtualized client machine. Each collected binary is executed on a
clean image of Windows XP instantiated as a virtual machine on
the client. All network traffic is logged during the inspection pe-
riod, and the following actions are performed:

Phase 1: Creation of a network fingerprint. Since the server acts
as a network sink, any network activity initiated by the suspected
malware will be detected. Moreover, as each new instance runs
within a clean image of Windows XP, any benign network activity
can be easily filtered. The traffic logs are automatically processed
to extract a network fingerprint,fnet = 〈DNS, IPs, Ports, scan〉,
representing the targets of any DNS requests, the destination IP
addresses, the contacted ports (and protocols), and whether or not
default scanning behavior was detected, respectively. We define de-
fault scanning behavior as any attempt to contact more than apre-
determined threshold ofn (=20) distinct destinations on the same
port during the monitored period. At present, this stage takes ap-
proximately six minutes to complete per binary, including the time
to reload the virtual machine.

Phase 2: Extraction of IRC-related features. While the previous
phase extracts the network-level characteristic of an unknown bi-
nary, the goal of the second phase is to identify the binary’sap-
plication level behavior. To extract IRC-related featureswe in-
stantiate a modified version of the UnrealIRC daemon [22] on the
network sink. This IRC server listens on all ports ever observed
in the network fingerprint created during Phase 1. This is impor-
tant as it is common to observe IRC connections on non-standard
ports. As before, a clean image of Windows XP is loaded be-
fore inspecting the binary at hand. When an IRC connection is
detected, our modified server creates an IRC-fingerprint,firc =

〈PASS, NICK, USER, MODE, JOIN〉, representing an initial pass-
word to establish an IRC session with the server, the format of the
nickname and username chosen by the bot, the particular modes
set, and which IRC channels are automatically joined (with asso-
ciated channel passwords). Taken together,fnet andfirc provide
enough information to join a botnet in the wild. However, in order
to mimic an actual bot behavior we need to learn the botnet’s “di-
alect” (i.e., the syntax of the botmaster’s commands as well as the
corresponding responses sent by the actual bot).

In order to learn a botnet “dialect” we make the bot connect to
our local IRC server. Once connected, the bot is forced into ade-
fault channel. Next, an IRC query engine is dynamically loaded.
From that point, our query engine essentially plays the roleof a
botmaster. That is, for a given bot, we learn how to correctlymimic
its behavior in the wild by subjecting it to a barrage of commands.
This set of commands includes all the IRC commands that we orig-
inally observed in our honeynet traces as well as the commands
extracted from the publicly available source code of known bots
analogous to the analysis in [3].

The observant reader may wonder how the query engine can co-
erce the bot into communicating since the query engine may not be
able to authenticate itself to the bot. As we noted earlier, botmas-
ters must generally authenticate themselves using a uniquepass-
word before the bot will be responsive [19]. This authentication
information can be automatically extracted from the logif the bot
was observed on a honeypot. Fortunately, in the cases where no log
exists, we can coerce these bots into communicating with us via a
very simple tactic: the standard behavior of IRC-based botsis to
parse the server’s channel topic message (RPL TOPIC) [13] and
execute its instructions, with no authentication. This command is



normally only sent when a bot first joins a channel, and running in-
structions from this command allows the botmaster’s minions to
become productive as soon as they connect to the C&C server.
Hence, we modified our IRC server to allow the query engine to
sendRPL TOPIC notifications on the fly. Bots accordingly parse
and execute the commands, without the need for authentication or
any requirement to restart the virtual machine instance.

The output of the querying process is a command-responsetem-
plate that captures the “dialect” of the bot. This template is later
fed to our IRC tracker (discussed shortly). This learning compo-
nent is a core part of our architecture, and allows for a stealthy,
longitudinal study of botnet dynamics.

3.2 Longitudinal Tracking of Botnets
As Figure 2 indicates, we track botnets in our study by two in-

dependent means: an “insider’s perspective” made possibleby a
custom lightweight IRC tracker and by probing DNS caches across
the globe. The underpinnings of each method are discussed below.

3.2.1 IRC Tracker: A Look From Within
The IRC tracker (also called adrone) is a modified IRC client

that can join a specified IRC channel and automatically answer di-
rected queries based on the template created by the graybox testing
technique. Specifically, given the fingerprintfirc and a template,
the IRC tracker instantiates a new IRC session to the actual IRC
server. At this point, the drone operates in the wild, and pretends to
dutifully follow any commands from the botmaster, and provides
realistic responses to her commands. Clearly, our IRC trackers
need to be intelligent enough that they appear as responsiveand
powerful bots—otherwise, our drones may be exempted from par-
taking in interesting behaviors. In order to appear as real as possi-
ble, several non-trivial tasks must first be accomplished during the
template generation phase.

First, traffic must be “filtered” so that inappropriate information
is not included in the template. This filtering is performed auto-
matically while the actual bot software is executing. For example,
computer statistics such as memory and disk space are changed to
resemble values consistent with the hardware and software specifi-
cations of a real machine. Second, and more importantly, nearly all
bot software is statefull. Hence, a command, for example, tostop a
scan will usually result in a different reply depending on whether or
not scanning was already running. To address this, the IRC query
engine exposes the different responses by issuing sets of commands
that require statefull responses in varying combinations.The IRC
tracker is designed to mimic these state changes when it is inthe
wild so that it responds appropriately.

The efficiency of our approach allows us to run a large number
of drones on a single machine. To improve our mimicry, the IRC
tracker joins and leaves the tracked channels at random intervals.3

Once a drone’s staying interval expires, that drone leaves the server
for a random interval (of no more than 10 minutes) after which
it restarts and rejoins the same channel under a different user ID
that follows the naming convention inscribed in the template. In
addition, due to the address translation occurring at the gateway,
each newly instantiated drone is assigned a different external IP
address.

3.2.2 DNS Tracking
We gain a second perspective by exploiting the fact that most

bots issue DNS queries to resolve the IP addresses of their IRC
servers. Specifically, we probe the caches of a large number of
3Currently set to 2 hours with a randomized maximum drift
of 25%.

DNS servers in order to infer the footprint of a particular botnet,
defined here as the total number of DNS servers giving cache hits.
A cache hit implies that at least one client machine has queried the
DNS server within the lifetime (TTL) of its DNS entry. While DNS
cache probing has been used recently for a number of purposes[7,
9, 14], we are not aware of any prior effort that used cache probing
to infer a botnet’s footprint.

Our original list of 1.6 million DNS servers, denotedD, was ob-
tained by collecting theNS records of the DNS domains extracted
from a large list of crawled URLs [17]. The list was then subject to
a number of sanitization steps. First, we filter all name servers for
sensitive Top Level Domains (TLDs) (e.g., .gov, .mil). Next,
we apply additional filtering to check the consistency of each name
server’s replies. Namely, for each server inD, we send two con-
secutive DNS queries for an existing known DNS name and inspect
the replies. The first is a recursive query that forces the DNSserver
to resolve the query completely. The second query is sent with the
recursion flag turned off to elicit a local answer from the server’s
cache. We compare the replies for consistency and also validate
that the value of theTTL field in the second response is smaller
than the one in the first response. All the servers that fail any of
these checks, as well as those that did not respond to our queries,
are removed from the list. At the end of this process we are left
with ∼ 800,000 name servers4, denotedD̂, which we use as our
master list.

The DNS probing experiments are then carried out from a num-
ber of machines assigned this task. Each DNS name of a newly
detected IRC server is added to the list of servers to be probed,
denoted here asT . For a given IRC servert ∈ T , we probe the
caches of all DNS servers in̂D and record any cache hits. We
deliberately set a low querying rate so that no DNS server is un-
duly burdened. The average probing rate for a single DNS server is
about 20 queries per day. More recently detected IRC server names
are given priority and are queried more frequently.

Clearly, the number of cache hits for any entry inT is a lower
bound on its true DNS footprint. The discrepancy is due to the
fact that we will only be able to record a cache hit if a bot madea
lookup query to its local DNS server, and that entry was cached at
the time of our probe. Additionally, a cache hit only indicates that
at least one bot issued a DNS query for that IRC server, but does
not reveal how many bots actually queried the name server within
the TTL. Finally, even though the list of DNS servers we queryis
large, it is only a subset of the total number of nameservers on the
Internet. With these caveats in mind, we consider the DNS probing
results as a mere indication of the relative footprints created by dif-
ferent botnets. As we show later, although the results derived from
DNS probing are course grain, DNS probing provides an important
secondary avenue for tracking botnets that disable the broadcast
feature on their IRC channels.

4. RESULTS AND ANALYSIS
In what follows, we present the results and lessons learned by

integrating information from the various data collection channels
presented in the previous section. We report on data that we started
collecting on 2/1/2006 and include(1) traffic traces captured at our
local darknet over a period of more than three months,(2) IRC
logs gathered over the span of three months—covering data from
more than 100 botnet channels either visited by our IRC tracker
or observed on our honeynet, and(3) results of DNS cache hits
from tracking 65 IRC servers for more than 45 days. Unlike previ-

4A handful of servers were also removed after requests from their
respective network operators to not participate in the study.



ous botnet-related studies (e.g., [5, 6]), we focus on correlating the
results from these viewpoints in order to gain a deeper understand-
ing of botnet activity in general. Therefore, whenever applicable,
we cross-reference measurements acquired from different measure-
ment techniques to provide a more complete picture of this phe-
nomenon.

4.1 Prevalence of the Botnet Phenomenon
In order to provide a high level view of botnet prevalence, we

highlight the contribution of their spreading activity to the overall
unwanted traffic received at our darknet space. In particular, we
examine to what extent the traffic received at this viewpointcan be
attributed to botnets spreading activity. Additionally, we provide
cumulative statistics from our DNS probes showing the totalnum-
ber of potentially infected networks as well as how these networks
are distributed among the top-level domains.

4.1.1 Botnet Traffic Share
Figure 4 shows a two week snapshot of the total incomingSYN

packets to our local darknet versus those originating from known
botnet spreaders. Simply speaking, a botnet spreader is anysource
that successfully completed an exploit transaction that delivered a
bot executable. We extract these botnet spreaders from our traffic
traces by mapping all collected bot binaries to the sources that de-
liver them. This traffic most likely represents botnets scanning to
find new victims.

A number of immediate observations can be inferred from Fig-
ure 4. For one, a rudimentary count of the total number ofSYN
packets shows that≈ 27% of the incomingSYNs can be attributed
to known botnet spreaders. If we consider the traffic directed to
target ports commonly used by botnet spreaders (e.g., 135, 139,
445, 3127), then the total share increases to76%. Of course, it is
well known that a wide variety of non-botnet related malware, such
as worms, may also target these ports, so the precise botnet traffic
share can not be easily determined. However, it is interesting that
many of the peaks in the total traffic are synchronized with peaks
in the botnet-related traffic.

A closer look at one of these peak periods, shown in Figure 5,
clearly shows a distinct alignment between traffic corresponding to
known botnet spreaders and all the traffic received at the darknet.
Upon further examination of the darknet traces, we found that more
than90% of all the traffic during that peak targeted ports used by
botnet spreaders. Additionally, for the sources that succeeded in
sending exploit shellcode, we also examined the active responder
logs for similarities among the downloaded exploits. Interestingly,
more than70% of the sources during peak periods sent shell ex-
ploits similar to those sent by the botnet spreaders. Similar patterns
were also observed in the traffic traces collected from the Planet-
Lab nodes. While these results do not provide an accurate estimate
for theoverall botnet traffic, the amount of botnet-related traffic is
certainly greater than27%.

4.1.2 Botnet Prevalence: A Global look
To provide a broader view of the scope of botnet activity, we

present the cumulative results of our DNS probing experiments.
Over the duration of the monitored period, we tracked cache hits for
a total of 65 IRC server domain names. From the 800,000 probed
servers, 85,000 (or≈ 11%) were involved in at least one botnet
activity.5

Table 1 presents a breakdown of the top level domains for which
botnet activity was detected. For example,55% of the servers in
5We consider hits from the primary and secondary nameserversof
the same domain as a single hit.
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Figure 4: Time series of incomingSYN packets to the darknet.
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Figure 5: Zoomed view showing synchronized peaks.

our dataset are for.com domains, and82% of the overall DNS
cache hits were from name servers in that TLD. Moreover,29%

of the.com servers (in our data) had at least 1 cache hit. Inter-
estingly, although the total fraction of servers from the.cn TLD
is small (0.2%), 95% of these servers (that is, greater than 1500)
showed evidence of botnet activity for the clients they serve. Fig-
ure 6 depicts examples of the widespread presence of botnet ac-
tivity on the Internet.6 The mapping of IP address to geographic
location is based on the IP2Location dataset [11], while thederived
locations are displayed using the GoogleMapsTMAPI. In the sec-
tion that follows we illustrate the size and the evolution ofDNS
footprints for individual botnets.

4.2 Botnets Spreading and Growth patterns
As noted earlier, botnets use a variety of means to spread and

recruit new victims, including (but not limited to) email, web and
active scanning to exploit vulnerable services. Scanning is by far
the most prevalent spreading mechanism. Unlike traditional worms
that exhibit a monotonic scanning behavior, botnets exhibit behav-
ior that varies across different classes of botnets as well as tempo-
rally for a single botnet. For the most part, botnets observed in the

6Additional maps can be found athttp://hinrg.cs.jhu.
edu/botnets/.



Fraction of Percentage of Normalized
TLD svrs probed all cache hits hit ratio

.com .55 82% 29%
.net .134 5.5% 8.1%
.kr .015 3.2% 40%
.org .037 2.4% 13%
.cn .002 0.9% 95%
.ru .017 0.6% 7.3%
.de .016 0.48% 6%
.edu .01 0.4% 8%
.ro .004 0.32% 0.4%
.jp .022 0.25% 2.2%

other .21 4.45% N/A

Table 1: TLD statistics of DNS servers supporting clients in-
volved in at least one botnet.

Figure 6: Geographic location of the DNS cache hits for one of
the tracked botnets. The star indicates the location of the IRC
server.

wild can be grouped into two broad types, (I ) worm-like botnets
that continuously scan certain ports following a specific target se-
lection algorithm and (II ) botnets with variable scanning behavior.
In the second case, bots are equipped with a number of scanning
algorithms (e.g., uniform, non-uniform, localized) and only scan
after receiving a command over the command and control channel.

Of the 192 IRC bots we captured, 34 were Type-I (i.e., exhibited
a worm-like behavior). Upon infection, a bot of this type imme-
diately starts scanning the IP space looking for new victims. Ad-
ditionally, these bots initiate connections to a hard-coded list of
DNS names corresponding to IRC servers (some of which may be
public). We found that all these IRC servers and/or the channels
the bots tried to join were unreachable—either because the channel
was banned by the public IRC server, or because the DNS name did
not resolve to a valid IP address. However, due to their unrelent-
ing scanning activity, the infected population of such worm-like
botnets continue to grow over time, and may become fairly large
in size. Indeed, Dagonet al. [6] reported botnets exhibiting this
same behavior with a footprint of up to 350,000 infected machines.
Finally, because the IRC servers corresponding to Type-I botnets
were for the most part unavailable, they were exempted from our
DNS probes.

Type-II botnets are the more prevalent class seen today. The
associated bots do not scan by default, but instead wait for some
command. As such, the majority of our analysis is focused on this
class. Such botnets are much more difficult to track due to their
intermittent and continuously changing behavior. This highly fluid
nature also complicates the task of generating signatures that can

identify their activity with high accuracy.
Table 2 summarizes the most common scanning practices used

by Type-II botnets. As the table shows, localized and non-uniform
scanning are the predominant scanning techniques. When botmas-
ters become active, 28% of their commands are scan related. By
contrast, 80% of the time, the default channel topic is to scan.
Approximately85% of the botmaster-issued scan commands are
targeted to a specific prefix /8 or /16 prefix. Additionally, notice
that most of the targeted scanning activity is aimed at /8 network
prefixes, while the localized scanning mostly targets the local /16
subnet of the victim. Finally, we note that bots are equippedwith
a set of flexible options to fine tune their scanning activity.These
options include choosing the target vulnerability, the scanning rate,
the number of threads to use, the number of packets to send, and the
duration of scanning. This flexibility produces heterogeneous bot-
net growth patterns that are distinct from those created by worms
or Type-I botnets.

Default Botmaster
Topic Command

Localizedscanning 66% 15%
- Class A 11% 18%
- Class B 89% 82%

Targetedscanning 32% 87.4%
- Class A 80% 88%
- Class B 20% 12%

Uniform scanning 2% 0.3%

Table 2: Breakdown of scan-related commands seen on tracked
botnets during the measurement period.

We use two approaches to examine the different growth patterns
observed in botnets. First, we plot the cumulative number ofunique
DNS cache hits for individual botnets over time. Figure 7 shows
examples of three predominant growth patterns extracted from our
data. As the graphs indicate, footprint growth exhibits different pat-
terns across different botnets. To better understand possible causes
behind such patterns, we cross reference each growth pattern with
the corresponding inside behavior learned from the IRC tracker.
By correlating the two traces, we noticed that botnets with semi-
exponential growth patterns (Figure 7.a) exhibit persistent random
scanning activity that does not change over time—for example, for
one of the botnets the topic of the channel was set to randomly
scan port 445 indefinitely, and remained unchanged for over one
month. This growth pattern is more closely related to that ofworm
infections, which is a direct result of their monolithic spreading
behavior.

Figure 7.b shows another common pattern representative of bot-
nets with intermittent activity profiles. For example, Botnet III
from that figure corresponds to a botnet that infected our honey-
pots on3/13/2006, after which the IRC server went down for the
period between4/12-4/30/2006. Shortly after the IRC server
becomes available, the growth slope drastically increasesand our
the honeypots were re-infected by the same botnet. Finally,the
third growth behavior shown in Figure 7.c was generally observed
in botnets using time-scoped scanning commands targeting specific
network prefixes as opposed to continuous scanning using localized
or random scanning strategies.

To confirm these trends, we also examine botnet growth by lever-
aging the insider information learned by our tracker. In this case,
the results apply to the set of botnets that relay bot messageex-
changes to the IRC channel. Overall,52% of the botnets we ob-
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Figure 7: DNS views showing examples from multiple botnets with the three predominant growth patterns.
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Figure 8: View from IRC tracker showing multiple botnets wit h the three predominant growth patterns.

served broadcast their messages to the C&C channel. From these
messages we estimate the evolution of a botnet by counting the
unique sources for messages broadcast to the channel.7 Figure 8
provides examples of the predominant growth patterns extracted
from the tracker logs. For illustrative purposes, we only plot bot-
nets of comparable sizes on a given plot. These trends confirmthe
heterogeneity observed from the DNS experiments. A closer look
at the IRC tracker log shows that, for the most part, these growth
patterns are a result of the aforementioned reasons.

4.3 Botnet Structures
Of the 318 total malicious binaries we collected, 60% were IRC

bots; only a handful used HTTP for the command and control.8 Our
tracker traces reveal four predominant IRC structures:

• All the bots connect to a single IRC server. This architec-
ture is prevalent among the smaller class of botnets (typically
having on the order of a few hundred online users), and it is
not uncommon to see such botnets reaching the server’s ca-
pacity. 70% of the botnets we observed fell into this category.

• By leveraging the server linking capability of the IRC pro-
tocol [13], different IRC servers can be connected to form
an IRC network supporting large numbers of users. Infer-
ring the exact structure of a bridged botnet, however, can
be complicated without explicit information. We infer the

7There is of course caveat in using IP address (albeit real or
“cloaked” [13]) for this purpose. However, without a bettermea-
sure of uniqueness at hand, we assume for now that IP addresses
are a reasonable measure for uniqueness among members of a sin-
gle botnet.
8We did observe bots that attempted to spread themselves by send-
ing messages to contacts on the compromised machines’ IM list,
thereby enticing the unsuspecting users to download the malcode.

presence of bridged structures by examining the server status
messages (from the tracker’s logs) and seeing whether multi-
ple servers are in use. The discrepancy between local versus
total online users can also disclose whether or not bridging
is in place. Our analysis shows that 30% of the botnets were
bridged on multiple servers, 50% of which were bridged be-
tween two servers only. Roughly 25% of the bridged servers
were also known public servers.

• Several seemingly unrelated botnets appear, on closer exam-
ination, to be very similar when compared in terms of their
naming conventions, channel names, and operators’ user IDs.
In many cases, these botnets seem to belong to the same bot-
master(s).

• Lastly, we observe several instances where a selected group
of bots were commanded to download an updated binary,
which subsequently moved the bots to a different IRC server.
We return to this point with an in-depth look at different
forms of bot migration in Section 4.7.

4.4 Effective Botnet Sizes
The results of Section 4.2 argue that a botnet’s footprint can be-

come fairly large in size (e.g., more than 15,000 bots). That said,
the predominant structures we observed were botnets managed by a
single or few servers. For that reason, it is doubtful that these struc-
tures could support such large numbers of online bots. Therefore,
we draw a distinction between a botnet’s footprint and the number
of bots connected to the IRC channel at a specific time, which we
term at the botnet’seffective size.

Figure 9 plots the number of online bots versus time for several
“chatty” servers that broadcast join/leave information for members
on the channel. The plots reveal a number of important character-
istics, most notably that the maximum size of the online population
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Figure 9: Evolution of effective size for three of the botnets in
our study.

is (in general) significantly smaller than the botnet’s footprint. For
instance, the average footprint for the botnets depicted inFigure 9
was greater than10, 000, while at most≈ 3, 000 bots were online
at the same time. While the effective size has less impact on long
term activities (i.e., executing commands posted as channel topics),
it significantly affects the number of minions available to execute
timely commands (e.g., DDoS attacks).

Another interesting observation is the strong 24 hour diurnal pat-
tern in the botnet effective size. The notable synchronization in the
peaks is the composition of online populations belonging todiffer-
ent time zones. Indeed, this observation confirms the pattern first
noted and studied by Dagonet al. in their analysis of the connec-
tion attempts from Type-I bots to black-holed IRC servers [6].

4.5 Lifetime
The wide discrepancy between the footprint and the effective

size is likely due to the relatively long lifetime of a typical botnet.
Under these conditions, bot death rates (e.g., as a result of patching)
can significantly impact a botnet’s effective size. Additionally, as
we show shortly, the high churn rate of bots connected to the IRC
channel significantly contributes to this disparity.

Figure 10 illustrates the distributions of channel occupancy times
for a number of botnets. These results were inferred by tracking
unique joins and quits for the IRC servers that broadcast such in-
formation. As the graph shows, botnet IRC channels exhibit high
churn rates, implying that bots generally do not stay long onthe
IRC channel. The average staying time for all bots across thebot-
nets we tracked is approximately 25 minutes, with 90% of them
staying for less than 50 minutes.

Although we can not explain with certainty what causes this high
churn rate, some likely causes include client instability as a result
of the infection, machine hibernation, and (as we have frequently
seen) botmasters commanding bots to leave the channel. Lastly,
inspection of the traces also shows that botmasters have thelongest
staying times among all users on the channel. Their fascination
with keeping a close watch on the activities of the bots undertheir
control, as well as the desire to keep their operator status on the
channel, is probably the impetus behind their behavior.

With regards to botnets lifetimes, our data shows that botnets are
generally long-lived. Those that were shutdown remained active,
on average, for about 47 days before ceasing operation. Among
all the botnets we tracked, 84% of the IRC servers were still up at
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Figure 10: CCDF of bot channel occupancy.

the end of the monitoring period, 55% of which were still actively
scanning the Internet. A rather troubling finding is that among the
botnets with the longest lifetimes were those that used static IP ad-
dresses rather than DNS names for their IRC servers; we tracked
three such botnets for nearly three months with footprints exceed-
ing 3,500 bots. Lastly, several botnets were available onlyintermit-
tently, but as soon as they were re-activated, they quickly regained
momentum due to the continual connection attempts of their zom-
bies. These observations raise serious concerns about the effective-
ness of current measures in curtailing the botnet problem.

4.6 Botnet Software Taxonomy
Of the 192 confirmed IRC-based bot executables,9 138 responded

to the probes of the IRC query engine (Phase 2 of the graybox test-
ing process described in Section 3.1). The collected responses were
used to assess the threads that the bots start after they are executed.
Table 3 tabulates the percentage of binaries that reported threads
of each type. For example, almost50% of the bots run a utility
thread that disables anti-virus and firewall processes running on the
infected host (the so-called “AV/FW Killer”). Likewise, many bots
run anidentd [12] server which is used to identify the user on the
client-end of a TCP connection; this feature is required by some
IRC servers and is used to verify that only intended bots joina
specific IRC channel. The registry monitor thread checks formod-
ifications to the system’s registry and is presumably used toalert
the bot of any attempts to disable it.

Utility Software Thread Frequency (%)
AV/FW Killer 49
Identd Server 43
System Security Monitor 40
Registry Monitor 38

Table 3: The percentage of bots that launched the respective
services on the victim machines.

The System Security Monitor is also related to bot self-defense
in that it periodically calls thesecure() function. This function
is often called manually by the botmaster to perform rudimentary
security “tightening” tasks, such as disabling DCOM services and
file sharing. To our surprise, we witnessed newer versions ofthe
secure command that actually patched the LSASS vulnerability.
9These binaries were unique based on their MD5 sums.



The number of reported exploit modules bundled within bot bi-
naries varied from 3 to 29, with an average of 15 exploits per bi-
nary.10 The three most popular exploits wereDCOM135, LSASS-
445, andNTPASS, all of which appear in over75% of the binaries.
We also note that several executables reported identical results,
with the exception of their exploit capabilities. This is indicative
of the modularity of bot software, in that new exploit modules can
be added with relative ease.

Service Pack
OS version % inf. None SP1 SP2 SP3+

Win XP 82.6 .47 .52 .01 n/a
Win 2000 16.1 .09 .05 .03 .83
Win Server 1.3 .57 .43 n/a n/a

Table 4: Distribution of exploited hosts extracted from theIRC
tracker logs.

Table 4 indicates that the botnets we tracked target a diverse set
of operating systems. It is noteworthy that even the latest version of
Windows XP (Service Pack 2) is not immune to attacks. Given the
danger that bots pose to end-users, and to the Internet in general, we
were interested to see if off-the-shelf anti-virus products offer pro-
tection against IRC bots. To answer this question, we subjected all
confirmed IRC-bot binaries to virus scans using the Open Source
ClamAV tool [4] and Norton’s anti-virus, each using their most re-
cent definitions. The results were somewhat reassuring: ClamAV
classified 137 of 192 binaries as malicious, and Norton AV detected
179.

Figure 11 depicts the categorization of the 192 binaries based on
ClamAV’s report11. Despite all the binaries having unique MD5
sums, several inspected binaries seem to be logically equivalent.
The superfluous differences are mainly due to different configura-
tion parameters (such as contacting a different IRC server or chan-
nel,etc.) or can be manifestations of polymorphism.
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Figure 11: Breakdown of captured IRC-bots based on Cla-
mAV’s classification

10Many “different” exploits were variants of the same vulnerability,
such as the DCOM vulnerability for different ports.

11We choose to show results for ClamAV simply because its report
was more descriptive compared to Norton AV.

4.7 Insights from the “Insider’s view”
The tracker observed botmasters of varying skill levels, rang-

ing from novices frustrated with their lack of success at manag-
ing a handful of bots to botmasters performing far more sophisti-
cated behaviors. For example, our traces show that (i) botmasters
share information regarding what prefixes they should not scan12,
(ii ) tweak their bots to keep chatter on the C&C channel to a min-
imum, and (iii ) actively probe selected bots to detect and isolate
“misbehavers” (i.e. bots that do not seem to respond to their com-
mands) and similarly, look for “super-bots” with valuable resources
(e.g., high bandwidth network links and storage capacities).

Our inside look has also afforded us the opportunity to witness
several instances during which bots were commanded to migrate,
either by being instructed to move to a new IRC channel/server or
to download replacement software that pointed them to a different
C&C server. Figure 12 provides a snapshot of one such migration
instance captured by the IRC tracker. By simultaneously partici-
pating in two separate botnets, the tracker was able to witness the
surge in membership in one botnet immediately after a migration
command was issued in the other. Additionally, we observed sev-
eral instances of cloning (i.e., instantiating multiple IRC sessions to
a specified server). Many of the cloning events we witnessed can
be attributed to attacks intended to overwhelm another IRC server;
other events may be evidence of some form of bot “leasing”.
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Figure 12: Migration of a botnet as observed by our IRC
Tracker.

Command Type Frequency (%)
Control 33
Scanning 28
Cloning 15
Mining 7
Download 7
Attack 7
Other 3

Table 5: Relative frequency of commands observed across all
tracked botnets.

In addition to cloning, the botnets we tracked were used for a
variety of purposes (as indicated by the commands issued by their

12For example, we observed botmasters alerting each other to avoid
scanning certain address prefixes.
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botmasters). The relative frequency of commands issued across
all botnet instances is summarized in Table 5. One can see that
in addition to control commands (e.g.,channel joins and leaves),
scanning commands are relatively popular. The mining category
includes commands that collect information about the capabilities
of the machines the bots run on (e.g., processor specs, physical
memory, etc.), while the attack category includes direct orders by
the botmaster for the bots to use their arsenal of flooding-related
commands to attack other networked computers.

What is not evident from Table 5 is the diversity in botnet usage.
We have observed markedly different patterns of behaviors in the
botmasters’ personal traits and a difference in the operational utility
across different botnets. In the interest of space, we present only
how the relative frequency of command types varies across botnets
of different sizes. Similar inferences can be made when botnets are
grouped according to other criteria.

As Figure 13 illustrates, small botnets (i.e., those with fewer than
250 online nodes) receive a larger portion of control and mining
commands. This behavior corresponds to “hands-on” botmasters
that devote considerable time and effort to manually control their
botnets, something that is possible only for small numbers of ma-
chines. On the other hand, medium and large botnets have a larger
percentage of cloning and download commands. Cloning can beat-
tributed to the use of a botnet to attack another botnet by overload-
ing its IRC server with a barrage of join requests. This technique is
effective only when a considerable number of machines participate
in the attack.

5. RELATED WORK
Despite their relatively long presence in the Internet, fewfor-

mal studies have examined the botnet problem. The Honeynet
group [19] was among the first to perform an informal study of
the botnet problem. In a related study, Freilinget al. [8] presented
a proposal for countering certain classes of DDoS attacks originat-
ing from botnets through a multi-step process: first bot binaries are
collected using honeypots and active responders, then information
necessary to join the botnets is extracted by running those binaries
on honeypots and allowing them to contact the actual IRC server.
Finally, a “silent drone” infiltrates the botnets to collectinformation
that can be useful in dismantling them. Our study is focused on a
broader understanding of the botnet phenomenon through a multi-
faceted, longitudinal tracking approach that integrates information

learned from multiple data collection mechanisms including net-
work traces collected from darknets, DNS cache probes, and “in-
sider” views of botnet activity, made possible by an “activedrone”
that mimics the behavior of an actual bot learned through graybox
testing. This infrastructure is broader both in scale and scope and
allows us to draw deeper conclusions about several previously un-
known aspects of botnet behavior.

Cookeet al. presented an initial look at the prevalence of bot-
nets by measuring the elapsed time before an un-patched system
was infected by a botnet [5]. They also highlighted the potential
threat from a new generation of botnets that use P2P protocols for
their C&C channels. More recently, Barfordet al. presented an al-
ternative perspective based on an in-depth analysis of bot software
source code [3]. Our study complements these efforts by providing
multifaceted observations gleaned from real-world botnetbehavior
and via graybox testing of bot binaries gathered by our distributed
collection platform.

Malware collection infrastructures have been the cornerstone of
a number of recent initiatives. Indeed, implementing a scalable and
stable collection infrastructure is an important researchproblem in
its own right. Vrableet al. presented Potemkin, a scalable virtual
honeynet system [23]. While Potemkin can be very useful in botnet
detection (as it enables malware collection at a large scale), it is in-
appropriate for long term botnet tracking which requires techniques
such as the IRC tracker discussed earlier.

The lightweight responder is a central component in our botnet
measurement infrastructure. However, the ability of such respon-
ders to faithfully emulate complex, stateful protocols is limited.
More recently, Cuiet al. [24] presented RolePlayer—a protocol
independent lightweight responder that tries to overcome some of
these limitations by reverting to a real server when the responder
fails to produce the proper response. Instead, our infrastructure
employs deep interaction honeypots to complement the active re-
sponder and capture any sessions it misses. To further reduce the
tasks performed by these honeypots, we are currently extending
our malware collection system so that the honeypots only handle
potential exploit attempts that the lightweight responders can not
parse.

Finally, Dagonet al. [6] provide an initial analytical model for
capturing the spreading behavior of botnets. Their model assumes
botnets spreading through uniform scanning. As our resultsshow,
this behavior is only exhibited by a narrow class of worm-like bot-
nets, while botnets in general exhibit heterogeneous spreading be-
havior. Our findings can be used to develop more realistic models
that better reflect such behaviors.

6. CONCLUSIONS
Botnets pose one of the most severe threats to the Internet. De-

spite this fact, our knowledge of botnet behavior is, at best, incom-
plete. To improve our understanding, we present a compositeview
that combines measurements from multiple independent sources.
Doing so not only produces a richer set of insights, but also allows
us to validate the results collected by the different data acquisition
methods.

In summary, our results show that botnets are a major contributor
to the overall unwanted traffic on the Internet. While botnets’ con-
tribution to the aggregate traffic can be mostly attributed to scans
used to recruit new victims, botnet scanning behavior is markedly
different from that seen by autonomous malware (e.g.,worms) be-
cause of its manual orchestration. We found that IRC is stillthe
dominant protocol used for C&C communications, and that itsuse
is adapted to satisfy different botmasters’ needs. Moreover, the ef-
fective sizes of the botnets we studied ranges from a few hundreds



to a few thousands of online bots. On the other hand, botnet foot-
prints are usually much larger than their effective sizes. This dis-
crepancy can be explained by the high churn rate within a botnet; a
bot’s average channel occupancy is less than half an hour. Finally,
our graybox testing technique enabled us to understand the level of
sophistication reached by bot software today, which includes self-
protection mechanisms and modular packages with multiple attack
vectors.
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Data Availability
To promote further research and awareness of the botnet problem,
the datasets collected from our distributed platform are available
to the research community. Additional information on how toget
timely access to this data is available athttp://hinrg.cs.
jhu.edu/botnets/.
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