Secure and Efficient Metering

Discussion
Outline

- Clarifications
- Attack on Secure Metering
- Issues and Extensions
- Real World
- Other Directions
 - Metering for General Access Structures
Understanding the model

Audit Agency

\[P(x,y) \]

Change in communication pattern

\[P(C,y) \]

Scheme requires additional computation

\[P(0,S\|t) \]

Client Machines C

\[P(C,S\|t) \]

Server S
Recall Turnover

- Say you expect a particular client to visit again after c time frames

- Audit agency
 - Random challenge t from domain of size ck

- Hash function h, range ck

- Server should find $gr^{rP(C)}$ such that $h(gr^{rP(C)}) = t$

- gr^i is a future challenge
Multiple Client Visits not counted?

- Same or different time frames?

- Turnover
 - Measures client loyalty across different time frames
 - Can trace client visits to different servers in same time frame
Turnover vs Privacy

- Turnover breaks privacy

- C is client that visits server S in time frame i
 - $t = h(g^{r,P(C)})$

- S sends $g^{r,P(C)}$ to audit agency

- Audit agency
 - Use same challenge t with other servers
 - Trace C’s visits in time frame i
One Fix ???(Footnote 7)

- Universal One Way Hash Function h
- Challenge t will be of form $h(x)$
- Send x and t to servers
- Server replies with $g^{r_P(C)}$
 - $t = h(g^{r_P(C)})$
 - $g^{r_P(C)} \neq x$
- Essentially finding collisions?
Interpolation in exponent

- Sharing polynomial

\[s_i = f(i) = s + \sum_{j=1}^{k-1} f_j i^j \]

- Lagrange Interpolation

\[s = \sum_{i \in A} b_i s_i \]

\[b_i = \prod_{m \in A, m \neq i} \frac{m}{m-i} \]
Interpolation in the exponent

\[s = \sum_{i \in A} b_i s_i \]

\[g^s = g \sum b_i s_i \]

\[g^s = \prod_{i \in A} g^{b_i s_i} = \prod_{i \in A} (g^{s_i})^{b_i} \]
Polynomial Security

- n corrupt clients
- m corrupt servers
- T time frames
- Corrupt clients information: nd evaluations
- Corrupt servers information: mkT evaluations
- nmT evaluations overlap
- $nd + mkT - nmT < kd$
- $T < \frac{kd - nd}{mk - nm}$
Attack
Robustness trick

- “I liked the robustness trick” 😊
- Is it really a secure trick??
Provably Secure Metering Scheme
[Ogata and Kurosawa, Asiacrypt, 2000]

- Attack – 2 colluding clients can prevent server from constructing a valid proof

- Present provably secure metering schemes
Security Goals

- **Security for servers**
 - Server should be able to compute a valid proof in presence of corrupt clients

- **Security for audit agency**
 - \(<k \text{ clients visit} \), server should not be able to compute proof

- **Security for servers violated in Pinkas and Naor paper**
Quick Recap

■ Audit Agency

 □ $P(x,y)$
 ■ degree $k-1$ in x, degree $d-1$ in y

 □ $A(x,y)$
 ■ degree a in x, degree b in y

 □ $B(y)$
 ■ degree b in y

□ $V(x,y) = A(x,y)P(x,y)+B(y)$

k – Client visits
d – Time frames
Quick Recap ..

\[V(C_i, y), P(C_i, y) \]

\[P(C_i, S_j || t), V(C_i, S_j || t) \]

\[V(C_{i'}, S_j || t) = A(C_{i'}, S_j || t)P(C_{i'}, S_j || t) + B(S_j || t) \]

Client Machines

\[C_i \]

Audit Agency

\[A(x, S_j || t), B(S_j || t) \quad 1 \leq t \leq T \]

Server \(S_j \)
The Attack

- Say you are trying to trick server S_j in some time frame t

- Clients C_0, C_1
 - $P(C_0, S_j|t) = 0$
 - $P(C_1, S_j|t) \neq 0$

- Clients can collude and compute
 - $B(S_j|t)$, $A(C_1, S_j|t)$
Attack

For C_0:

$$V(C_0, S_j || t) = A(C_0, S_j || t)P(C_0, S_j || t) + B(S_j || t)$$
$$= A(C_0, S_j || t)(0) + B(S_j || t)$$
$$= B(S_j || t)$$
Attack

For C_1:

- $V(C_1, S_j | t) = A(C_1, S_j | t)P(C_1, S_j | t) + B(S_j | t)$

- $A(C_1, S_j | t) = \frac{V(C_1, S_j | t) - B(S_j | t)}{P(C_1, S_j | t)}$

 \[= \frac{V(C_1, S_j | t) - V(C_0, S_j | t)}{P(C_1, S_j | t)}\]

Use value from C_0
Attack …

- C_1 computes (P', V')
 - $P' \neq P(C_1, S_j || t)$
 - $V' = A(C_1, S_j || t)P' + B(S_j || t)$

- S_j will accept incorrect (P', V')
Issues and Extensions
Issues

- Fixed k can lead to a disaster!!!

- Doesn’t count accurately??

- Their scheme does not look like sampling
 - Audit agency to interact with each client before
 Is that the only aspect???
Right popularity metric?

- Consider how many clients visited in a time frame
- Multiple visits from same client to same server in given time frame
 - What happens to anonymity?
- Duration of client visit
 - Tied to Content
Issues and Extensions

- Model Broken
- Using metering for SPAM
Micro payment Schemes

- A micro-payment scheme encouraging collaboration in multi-hop cellular networks
 - [Jakobsson et. al. Financial Crypto 2003]
Distributed Metering

- Service is provided by multiple servers
- Collective popularity
- Audio/Video streaming
Metering an Outsourced service

- Would the model remain the same?
- How would it change?
India’s secret army of online ad ‘clickers’

NEW DELHI: With her baby on her lap, Maya Sharma (name changed) gets down to work every evening from her eighth-floor flat at Vasant Vihar. Maya's job is to click on online advertisements. She doesn't care about the ads, but diligently keeps count — it's $0.10 to $0.25 per click.

"It's boring, but it is extra money for a couple of hours of clicking websites every day," says a resident of Delhi's Patel nagar, who has kept a $500目标 for the summer.

Traffic to click overseas Internet ads — from home loans to insurance — is spreading fast in India. "I have no interest in what appears when clicking an ad. I care only whether I pause 60 seconds or 90 seconds, as money is credited if you stay online for a fixed time," says another user.

Here’s how it works: online advertisers in developed markets agree to pay hosting websites each time an ad is clicked. With performance-based deals becoming dominant on the Internet, intermediaries have sprung up to "do the needed." Why type in 'som rupees clicking ads' in..."
Search Engine Market

Yahoo: 26.6%
Google: 36.8%
MSN: 14.5%
AOL: 12.8%
Others: 1.1%
Lycos: 0.8%
InfoSpace: 1.3%
Excite: 4.3%
Ask: 1.8%

Source: http://www.completecents.com/public/marketing/free_traffic.htm
Google AdSense – Security?

You get ads that are relevant to your web pages. And when people click on these ads, Google pays you.
Google AdWords

- **Prohibited Uses.** You shall not, and shall not authorize any party to: (a) generate automated, fraudulent or otherwise invalid impressions or clicks;

- **Disclaimer and Limitation of Liability.** GOOGLE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION FOR NONINFRINGEMENT, MERCHANTABILITY AND FITNESS FOR ANY PURPOSE. Google disclaims all guarantees regarding positioning or the levels or timing of: (i) costs per click, (ii) click through rates …
Other Directions
Applying General Access Structure to Metering Schemes [Nikov et. al. WCC’03, Cryptology Eprint 2002]

- Assumptions in threshold schemes
 - Uniformly distributed trust over players
 - Subset of players of certain cardinality is equally likely or unlikely to cheat
 - Audit agency deals with servers
 - In practice servers are owned by different companies
Basic Aspects

- General access structure on players
- Qualified and Forbidden client subsets
- Focus on general linear secret sharing
- Realize their access structures using monotone span programs
Thank you 😊